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Abstract: Effects of Hall current and rotation on steady MHD Couette 
flow of Class-II of a viscous, incompressible and electrically conducting 
fluid in the presence of a uniform transverse magnetic field are studied. 
Exact solution of the governing equations is obtained in closed form. 
Expressions for shear stress at the lower and upper plates due to primary 
and secondary flows and mass flow rates in the primary and secondary 
flow directions are derived. Asymptotic behavior of the solution for 
velocity and induced magnetic field is analyzed for large values of 

rotation parameter 2K and magnetic parameter 2M to gain some 
physical insight into flow pattern. Heat transfer characteristics of the fluid 
are considered taking viscous and Joule dissipations into account. 
Numerical solution of energy equation and numerical values of rate of 
heat transfer at lower and upper plates are computed with the help of 
MATLAB software. The numerical values of velocity, induced magnetic 
field and fluid temperature are displayed graphically versus channel width 
variable  for various values of pertinent flow parameters whereas 

numerical values of shear stress at the lower and upper plates due to 
primary and secondary flows, mass flow rates in the primary and 
secondary flow directions and rate of heat transfer at the lower and upper 
plates are presented in tabular form for various values of pertinent flow 
parameters.
Keywords: Hall current, magnetic field, Coriolis force, modified Ekman 
boundary layer, modified Hartmann boundary layer.
Mathematics Subject Classification: 76U05, 76W05.
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1. Introduction

Theoretical/experimental investigation of hydromagnetic flow in a 
rotating environment has received significant attention of several researchers 
due to occurrence of various natural phenomena, which are directly governed 
by the action of Coriolis force, and its application in various technological 
situations. An order of magnitude analysis shows that in the basic field 
equations the effect of Coriolis force is more significant as compared to that 
of inertial and viscous forces. Furthermore, it is worthy to note that Coriolis 
and magnetohydrodynamic forces are comparable in magnitude and Coriolis 
force induces secondary flow in the fluid. Keeping in view the importance of 
such investigation, Jana et al1, Seth and Maiti2, Seth et al3-6, Chandran et al7, 
Singh et al8, Singh9, Das et al10 and Seth and Singh11 studied MHD Couette 
flow of a viscous, incompressible and electrically conducting fluid in a 
rotating system considering different aspects of the problem. Taking into 
account the above investigations made on MHD Couette flow in a rotating 
system, we are of opinion that MHD Couette flow may be induced in two 
ways and it may be recognized as (i) MHD Couette flow of class-I and (ii) 
MHD Couette flow of class-II. The fluid flow induced due to movement of a 
plate, when the fluid is bounded by a stationary plate placed at a finite 
distance from the moving plate, may be regarded as MHD Couette flow of 
class-I. This fluid flow is similar to the flow generated due to movement of a 
plate when the free stream is stationary. The fluid flow past a stationary plate, 
which is induced due to movement of a plate placed at a finite distance from 
the stationary plate, may be recognized as MHD Couette flow of class-II. This 
fluid flow is similar to the flow past a stationary plate due to moving free 
stream. Investigations carried out by Jana et al1, Seth and Maiti2, Seth et al3-5, 
Chandran et al7, Singh et al8 and Das et al10 belong to MHD Couette flow of 
class-I whereas research studies made by Seth et al6, Singh9 and Seth and 
Singh11 belong to MHD Couette flow of class-II. Unfortunately, the results of 
above research studies cannot be applied to the flow of an ionized gas. This is 
due to the fact that in an ionized gas where density is low and/or the applied 
magnetic field is strong, the effects of Hall current become significant. It may 
also be noted that Hall current induces secondary flow similar to the flow 
induced by Coriolis force. Keeping in view these facts Jana and Dutta12, Seth 
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and Ahmad13 and Jha and Apere14 discussed MHD Couette flow of class-I in 
a rotating system taking Hall current into account.

The aim of the present paper is to study steady MHD Couette flow of 
class-II of a viscous, incompressible and electrically conducting fluid in a 
rotating system in the presence of a uniform transverse magnetic field applied 
parallel to the axis of rotation taking Hall current into account.

2. Formulation of the Problem and its Solution

Consider steady Couette flow of a viscous, incompressible and electrically 
conducting fluid between two parallel plates z=0 and z=L in the presence of a 

uniform transverse magnetic field 0B applied in a direction parallel to z-axis. 

Fluid and channel are in a state of rigid body rotation with uniform angular 
velocity  about z-axis. The flow within the channel is induced due to 

movement of upper plate z=L in x-direction with uniform velocity 0U

whereas lower plate z=0 is kept fixed. Since plates of the channel are of 
infinite extent in x and y directions and fluid flow is steady so all physical 
quantities, except pressure, depend on z only. The fluid velocity q


and 

magnetic induction vector B


are assumed in the following form

(2.1)                    ( , ,0)x yq u u


; 0( , , )x yB B B B 


,

which are compatible with fundamental equations of Magnetohydrodynamics 
in a rotating frame of reference. Under the above assumptions the equations 
of motion and induction equation for magnetic field in rotating frame of 
reference become

(2.2)                  
2

0
2

1
2 x x

y
e

d u B dBp
u

x dz dz


 


     


,

(2.3)                    
2

0
2

1
2 y y

x
e

d u dBBp
u

y dz dz


 


    


,

(2.4)                    
1

0
p

z


 


,
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(2.5)                    
22

0 2 2
0 yx x

m m

d Bdu d B
B m

dz dz dz
 


   ,

(2.6)                    
2 2

0 2 2
0 y y x

m m

du d B d B
B m

dz dz dz
 

 
   ,

where 2( / 2 ), , , , , 1/ , , ande e m e e e e ep p B m              are 

modified pressure including fluid pressure, centrifugal force and magneto-
hydrodynamic pressure, electrical conductivity, magnetic permeability, 
density, kinematic coefficient of viscosity, magnetic viscosity, Hall current 
parameter, cyclotron frequency and electron collision time respectively.

Boundary conditions for fluid velocity are no-slip conditions. Upper plate 
of the channel is perfectly conducting and is moving with uniform velocity 

0U in x-direction while lower plate is kept fixed and is non-conducting. Thus 

the boundary conditions for fluid velocity and induced magnetic field are 
given by

(2.7)                  0, 0 at 0 ; 0, 0 at 0x y x yu u z B B z       ,

(2.8)                0 , 0 at ; 0, 0 atyx
x y

dBdB
u U u z L z L

dz dz


      .

Equation (2.4) shows the constancy of modified pressure along z-axis. For 

MHD Couette flow of class-I the pressure gradient terms 
1 p

x





and

1 p

y





, which are present in equations (2.2) and (2.3) respectively, are not 

considered by researchers1-5,7,8,10. This assumption is valid and it is clearly 
evident from conditions (2.7). For MHD Couette flow of class-II, values of 
the pressure gradient terms in equations (2.2) and (2.3) are obtained with the 
help of boundary conditions (2.8) which are given by
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(2.9)              0

1 1
0 ; 2 .

p p
U

x y 
 

    
 

Using (2.9) in equations (2.2) and (2.3), we obtain

(2.10)           
2

0
2

2 x x
y

e

u B B
u

z z




 
   

 
,

(2.11)            
2

0
0 2

2 ( ) y y
x

e

u BB
u U

z z




 
   

 
.

Combining equations (2.5) and (2.10) with the equations (2.6) and (2.11) 
respectively and representing them in non-dimensional form, we obtain

(2.12)            
2 2

2 2
0

dP d Q d Q
mi

d d d  
   ,

(2.13)            
2

2 2
2

2 ( 1)
d P dQ

iK P M
d d 

   ,

where

(2.14) 0, , / , / , , / ,x y x x m y y m xP u iv Q b ib b B R b B R z L u u U                  

0 0 0/ , / and /y x x y yv u U B B B B B B    .

In equations (2.12) and (2.13), 0m eR U L is magnetic Reynolds number, 
2 2K L   is rotation parameter which is reciprocal of Ekman number and 
2 2 2

0M B L  is magnetic parameter which is square of Hartmann 

number.
Boundary conditions (2.7) and (2.8), in non-dimensional form, become

(2.15)       0, 0 at 0 ; 1, 0 at 1.
dQ

P Q P
d

 


     

Solution of equations (2.12) and (2.13) subject to the boundary conditions 
(2.15) is given by   

(2.16)        
cosh

( ) sinh (1 cosh )
sinh

P
  


   ,
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(2.17)       
2 2

2

1 2 cosh
( ) (cosh 1) sinh

sinh

iK
Q

M

   
 

          
,

where 
(2.18a)       i    , and

(2.18b)       
 

   
1/21

2 24 2 2 2 2

2

1
, 2 1

2 1
M K m mM M

m
 

 
     
   

.

Shear Stress at the Plates

Non-dimensional shear stress components x and ,y due to primary and 

secondary flow respectively, at stationary and moving plates of the channel 
are given by

(2.19)                
0 1

cosh
;

sinh sinhx y x yi i
 

     
  

    .

Mass flow rates

Non-dimensional mass flow rates xQ and yQ in the primary and 

secondary flow direction respectively are given by

(2.20)             
1 cosh

1
sinhx yQ iQ


 
     

.

                                      3. Asymptotic Solutions

We shall now analyze the asymptotic behavior of the solution for large 
values of K2 and M2 to gain some physical insight into the flow pattern.

Case-I: When 2 21 (1)K and M O 
When K2 is large, boundary layer type flow is expected near the plates of 

channel. For the boundary layer flow near stationary plate 0  , the 

expressions for fluid velocity and induced magnetic field are obtained from 
equations (2.16) to (2.18) and are presented in the following form

(3.1)              1 1
1 11 cos ; sinu e v e          ,
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(3.2)      1 1
1 12

1
(1 )(1 cos ) (1 )( sin )

2 (1 )xb m e m e
K m

           
,

(3.3)      1 1
1 12

1
(1 )(1 cos ) (1 )( sin )

2 (1 )yb m e m e
K m

            
,

where 

(3.4)       
 
 

2

1 1 2 2

1
, 1

4 1

M m
K

K m
 

    
  

.

It is evident from expressions (3.1) to (3.4) that there arises a thin boundary 

layer of thickness 1
1( )O   near stationary plate of the channel. This boundary 

layer may be recognized as modified Ekman boundary layer and may be 
viewed as classical Ekman boundary layer modified by Hall current and
magnetic field. The thickness of this boundary layer decreases with the 

increase in either 2M or 2K . Similar type of boundary layer also appears near 
moving plate of the channel. Exponential terms in the expressions (3.1) to 

(3.3) damp out quickly as  increases. When 11  i.e. outside the 

boundary layer region, (3.1) to (3.3) assume the form

(3.5)       1 11, 0u v  ;    
2 2

(1 ) (1 )
,

2 (1 ) 2 (1 )x y

m m
b b

K m K m

  
 

 
.

It is revealed from the expressions in (3.5) that, in a region outside the 
boundary layer region, i.e. in the central core, fluid flows in primary flow 
direction only. This is due to the reason that fluid flow within the channel is 
induced due to the movement of upper plate of the channel. The primary and 

secondary induced magnetic fields xb and yb persist. These magnetic fields 

have considerable effects of Hall current and rotation and are unaffected by 
applied magnetic field.

Case-II: When  2 21 1M and K O   

This case also corresponds to boundary layer type flow. For the boundary 
layer flow near stationary plate 0  , the expressions for fluid velocity and 
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induced magnetic field are obtained from equations (2.16) to (2.18) and are 
given by

(3.6)             2 2
2 21 cos ; sinu e v e            ,

(3.7)           2 2
2 22 2

1
(1 cos ) sin

1
xb a e be

M m

           
,

(3.8)           2 2
2 22 2

1
(1 cos ) sin

1
yb b e ae

M m

           
,

where 

(3.9a)          2 2 2
2 2

1
( )

(1 )
a M mK bK

M m
   


,

(3.9b)         2 2 2
2 2

1
( )

(1 )
b M mK aK

M m
   


,

(3.9c)          1/2
21

, 1 1
2

a b m   .

The expressions (3.6) to (3.9) reveal that there appears a thin boundary layer 

of thickness 1
2( )O   near stationary plate of the channel. This boundary layer

may be identified as modified Hartmann boundary layer and may be viewed 
as classical Hartmann boundary layer modified by Hall current and rotation. 

The thickness of this boundary layer decreases with the increase in either 2M

or 2K . In the absence of Hall current (i.e. 0m  ) there appears pure Hartmann 
boundary layer near stationary plate. Similar type of boundary layer also 

appears near moving plate. When 21  i.e. outside the boundary layer 

region, (3.6) to (3.8) take the form

(3.10)     1 11, 0u v  ;    
2 2

,
(1 ) (1 )

x y

a b
b b

M m M m
 

 
.

It is evident from the expressions in (3.10) that, in a region outside boundary 
layer region, i.e. in the central core, fluid flows in primary flow direction only
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while both the primary and secondary induced magnetic fields xb and yb

persist. These induced magnetic fields have considerable effects of Hall 
current and magnetic field and are unaffected by rotation.

4. Heat transfer characteristics

We shall now discuss heat transfer characteristics of the fluid flow, when 
moving and stationary plates of the channel are maintained at uniform 

temperature 1 0 and T T respectively, where 0 1T T T  , T  being the fluid 

temperature. Energy equation taking viscous and Joule dissipations into 
account is given by

(4.1) 

22222
*

2 2

1
0 y yx x

p e p

du dBdu dBd T

dz C dz dz C dz dz


 

                                   

,

where * / pk C  is thermal diffusivity of fluid. and pk C are, respectively, 

thermal conductivity of fluid and specific heat at constant pressure.
The boundary conditions for temperature field are

(4.2)   0 1at 0 and atT T z T T z L     .

Representing equation (4.1), in non-dimensional form with the help of (2.14), 
we obtain 

(4.3)    
2

2
2

0 . .r c

d T dP d P dQ dQ
P E M

d d d d d    
   

     
   

,

where     * 2
0 1 0 0 1 0/ , / and / ( )r r pT T T T T P E U C T T       are non-

dimensional fluid temperature, Prandtl number and Eckert number 

respectively. andP Q are complex conjugate of P and Q respectively.

The boundary conditions (4.2), in non-dimensional form, become

(4.4)         (0) 0 and (1) 1T T  .

Making use of (2.16) to (2.18) in equation (4.3) and solving the resulting 
equation subject to the boundary conditions (4.4) by MATLAB software we 
have obtained numerical solution for fluid temperature T and numerical 
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values of rate of heat transfer at the stationary and moving plates of the 

channel for various values of 2, , andr cm K P E taking 2 10M  .

5. Results and Discussion

To study the effects of Hall current and rotation on the fluid velocity and 
induced magnetic field, the numerical values of the fluid velocity and induced 
magnetic field are depicted graphically versus channel width variable  in 

figures 1 to 4 for various values of Hall current parameter m and rotation 

parameter 2K taking 2 10M  . It is evident from figures 1 and 2 that primary 
velocity u decreases whereas secondary velocity v increases on increasing 

m . On increasing 2K , primary velocity u increases throughout the channel 
whereas secondary velocity v increases in the lower half of the channel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4



u,
 v

m=0.75, 1.25, 1.75

m=0.75, 1.25, 1.75

u

v

     Fig. 1. Velocity profiles when 2 3K 

This implies that Hall current retards fluid flow in primary flow direction 
whereas it has reverse effect on the fluid flow in secondary flow direction. 
Rotation has tendency to accelerate fluid flow in primary flow direction 
throughout the channel whereas it tends to accelerate fluid flow in secondary 
flow direction in the lower half of the channel.
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     Fig. 2. Velocity profiles when 0.75m 

It is noticed from figures 3 and 4 that primary induced magnetic field xb

decreases whereas secondary induced magnetic field yb increases on 

increasing m . xb and yb increase on increasing 2K .

This implies that Hall current tends to reduce primary induced magnetic 
field whereas it has reverse effect on the secondary induced magnetic field. 
Rotation tends to enhance both the primary and secondary induced magnetic 
fields.

The numerical values of fluid temperature, computed from energy 
equation (4.3) with the help of MATLAB software, are displayed graphically 
versus channel width variable  in figures 5 to 8 for various values of 

2, , andr cm K P E taking 2 10M  . Figures 5 to 8 reveal that fluid 

temperature T decreases on increasing m whereas it increases on increasing 

either 2 or or .r cK P E
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     Fig. 3. Induced magnetic field profiles when 2 3K 
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    Fig. 4. Induced magnetic field profiles when 0.75m 
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Fig. 6. Temperature profiles when 0.75, 0.71and 2r cm P E  

This implies that Hall current tends to reduce fluid temperature whereas 
rotation has reverse effect on it.
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    Fig. 7. Temperature profiles when 2 3, 0.75and 2cK m E  
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  Fig. 8. Temperature profiles when 2 3, 0.75and 0.71rK m P  

It may be noted that cE and rP represent the effects of viscous dissipation 

and thermal diffusion respectively. rP decreases when thermal diffusivity of 

the fluid increases. Thus we conclude that viscous dissipation tends to 
enhance fluid temperature whereas thermal diffusion has reverse effect on it.
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The numerical values of the shear stress at both the plates due to primary 
and secondary flows are presented in tabular form in tables 1 and 2 whereas 
that of mass flow rates in the primary and secondary flow directions are 

displayed in table 3 for various values of 2andm K taking 2 10M  . It is 

noticed from table 1 that primary shear stress at the stationary plate i.e. 
0x 




decreases whereas secondary shear stress at the stationary plate i.e. 
0y 




increases on increasing m . 
0x 




and 
0y 




increase on increasing 2K .

Table 1: Shear stress at the stationary plate

2K  m 
0x   0y  

0.75 1.25 1.75 0.75 1.25 1.75
3 3.0637 2.7545 2.5171 1.7519 1.9604 2.0254

5 3.3484 3.0965 2.9028 2.2112 2.4089 2.4749
7 3.6226 3.4058 3.2383 2.6005 2.7822 2.8424

This implies that Hall current tends to reduce primary shear stress at the 
stationary plate whereas it has reverse effect on the secondary shear stress at 
the stationary plate. Rotation tends to enhance both primary and secondary 
shear stress at the stationary plate. It is found from table 2 that, on increasing 

m , primary shear stress at the moving plate i.e. 
1x 




increases when 2 5K 

and secondary shear stress at the moving plate i.e. 
1y 




increases for every 

values of 2K considered. 
1x 




increases whereas 
1y 




decreases on 

increasing 2K . 

Table 2: Shear stress at the moving plate

2K 
m 

1x   1y  

0.75 1.25 1.75 0.75 1.25 1.75
3 -0.1071 -0.0960 -0.1132 0.3074 0.4094 0.4909
5 0.0145 0.0580 0.0746 0.2796 0.3468 0.4070

7 0.0930 0.1445 0.1739 0.2190 0.2538 0.2906

This implies that Hall current tends to enhance secondary shear stress at the 
moving plate and it tends to enhance primary shear stress at the moving plate 
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when 2 5K  . Rotation tends to enhance primary shear stress at the moving 
plate whereas it has reverse effect on secondary shear stress at the moving 
plate. It is noticed from table 2 that there exists flow separation at the moving 

plate in the primary flow direction on increasing 2K .

It is observed from table 3 that primary mass flow rate xQ decreases 

whereas secondary mass flow rate yQ increases on increasing m . xQ and yQ

increase on increasing 2.K
Table 3: Mass flow rates

2K 
m

xQ yQ

0.75 1.25 1.75 0.75 1.25 1.75

3 0.7388 0.7293 0.7164 0.1190 0.1473 0.1655
5 0.7754 0.7747 0.7696 0.1301 0.1529 0.1685
7 0.8053 0.8085 0.8073 0.1314 0.1485 0.1605

This implies that Hall current tends to reduce primary mass flow rate whereas 
it has reverse effect on secondary mass flow rate. Rotation tends to enhance 
both the primary and secondary mass flow rates.

The numerical values of rate of heat transfer at the stationary and moving 
plates, computed directly from the energy equation (4.3) with the help of 
MATLAB software, are presented in tabular form in tables 4 and 5 for 

various values of 2, , andr cm K P E taking 2 10.M  It is found from table 4 

that rate of heat transfer at the lower plate i.e. 
0

d

d 


 

 
 
 

decreases on 

increasing m whereas it increases on increasing 2K . This implies that Hall 
current tends to reduce rate of heat transfer at the stationary plate whereas 
rotation has reverse effect on it. It is interesting to note from table 4 that the 

numerical values of rate of heat transfer at the moving plate i.e. 
1

d

d 


 

 
 
 

do 

not vary on increasing either 2orm K which implies that rate of heat transfer 

at the moving plate is unaffected by Hall current and rotation. It is found from 

table 5 that 
0

d

d 


 

 
 
 

increases on increasing either orr cP E . 
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1

d

d 


 

 
 
 

decreases on increasing either orr cP E when 1rP  whereas it 

increases in magnitude with the increase in either orr cP E when 1rP  . 

Table 4: Rate of heat transfer at stationary and moving plates when 0.71rP  and 2cE 

2K 
m 

 
0

d
d 


 

 
1

d
d 


 

0.75 1.25 1.75 0.75 1.25 1.75

3 4.6404 4.2013 3.8643 0.2900 0.2900 0.2900
5 5.0447 4.6870 4.4120 0.2900 0.2900 0.2900
7 5.4341 5.1263 4.8883 0.2900 0.2900 0.2900

Table 5: Rate of heat transfer at stationary and moving plates when 0.75m  and 2 3K 

                    
                   

rP  rE                                                                  
 

0

d
d 


 

 
1

d
d 


 

1 1.5 2 1 1.5 2
0.02 1.0513 1.0769 1.1025 0.9900 0.9850 0.9800
0.05 1.1282 1.1923 1.2564 0.9750 0.9625 0.9500

.3 1.7691 2.1536 2.5382 0.8500 0.7750 0.7000
.71 2.8202 3.7303 4.6404 0.6450 0.4675 0.2900
1 3.5637 4.8455 6.1273 0.5000 0.2500 0
3 8.6910 12.5364 16.3819 -0.5000 -1.2500 -2
7 18.9456 27.9184 36.8911 -2.5000 -4.2500 -6

This implies that viscous dissipation tends to enhance rate of heat transfer at 
the stationary plate whereas thermal diffusion has reverse effect on it. Viscous 
dissipation tends to reduce rate of heat transfer at the moving plate and 

thermal diffusion has reverse effect on it when 1rP  and viscous dissipation 

tends to enhance rate of heat transfer at the moving plate whereas thermal 

diffusion has reverse effect on it when 1rP  . It is worthy to note that there 

exists flow reversal of heat near the moving plate due to thermal diffusion. 

Also the value of 
1

d

d 


 

 
 
 

is zero when 2and 1c rE P  i.e. there is no flow 

of heat either from moving plate to the fluid or from fluid to the moving plate 

when 2and 1c rE P  . This situation arises when the thicknesses of viscous 
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and thermal boundary layers are of same order of magnitude. 2for 1c rE P 

is called critical Eckert number corresponding to the moving plate.
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Abstract: Effects of Hall current and rotation on steady MHD Couette flow of Class-II of a viscous, incompressible and electrically conducting fluid in the presence of a uniform transverse magnetic field are studied. Exact solution of the governing equations is obtained in closed form. Expressions for shear stress at the lower and upper plates due to primary and secondary flows and mass flow rates in the primary and secondary flow directions are derived. Asymptotic behavior of the solution for velocity and induced magnetic field is analyzed for large values of rotation parameter 
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and magnetic parameter  to gain some physical insight into flow pattern. Heat transfer characteristics of the fluid are considered taking viscous and Joule dissipations into account. Numerical solution of energy equation and numerical values of rate of heat transfer at lower and upper plates are computed with the help of MATLAB software. The numerical values of velocity, induced magnetic field and fluid temperature are displayed graphically versus channel width variable 
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 for various values of pertinent flow parameters whereas numerical values of shear stress at the lower and upper plates due to primary and secondary flows, mass flow rates in the primary and secondary flow directions and rate of heat transfer at the lower and upper plates are presented in tabular form for various values of pertinent flow parameters.

Keywords: Hall current, magnetic field, Coriolis force, modified Ekman boundary layer, modified Hartmann boundary layer. 

Mathematics Subject Classification: 76U05, 76W05.


1. Introduction


Theoretical/experimental investigation of hydromagnetic flow in a rotating environment has received significant attention of several researchers due to occurrence of various natural phenomena, which are directly governed by the action of Coriolis force, and its application in various technological situations. An order of magnitude analysis shows that in the basic field equations the effect of Coriolis force is more significant as compared to that of inertial and viscous forces. Furthermore, it is worthy to note that Coriolis and magnetohydrodynamic forces are comparable in magnitude and Coriolis force induces secondary flow in the fluid. Keeping in view the importance of such investigation, Jana et al1, Seth and Maiti2, Seth et al3-6, Chandran et al7, Singh et al8, Singh9, Das et al10 and Seth and Singh11 studied MHD Couette flow of a viscous, incompressible and electrically conducting fluid in a rotating system considering different aspects of the problem. Taking into account the above investigations made on MHD Couette flow in a rotating system, we are of opinion that MHD Couette flow may be induced in two ways and it may be recognized as (i) MHD Couette flow of class-I and (ii) MHD Couette flow of class-II. The fluid flow induced due to movement of a plate, when the fluid is bounded by a stationary plate placed at a finite distance from the moving plate, may be regarded as MHD Couette flow of class-I. This fluid flow is similar to the flow generated due to movement of a plate when the free stream is stationary. The fluid flow past a stationary plate, which is induced due to movement of a plate placed at a finite distance from the stationary plate, may be recognized as MHD Couette flow of class-II. This fluid flow is similar to the flow past a stationary plate due to moving free stream. Investigations carried out by Jana et al1, Seth and Maiti2, Seth et al3-5, Chandran et al7, Singh et al8 and Das et al10 belong to MHD Couette flow of class-I whereas research studies made by Seth et al6, Singh9 and Seth and Singh11 belong to MHD Couette flow of class-II. Unfortunately, the results of above research studies cannot be applied to the flow of an ionized gas. This is due to the fact that in an ionized gas where density is low and/or the applied magnetic field is strong, the effects of Hall current become significant. It may also be noted that Hall current induces secondary flow similar to the flow induced by Coriolis force. Keeping in view these facts Jana and Dutta12, Seth and Ahmad13 and Jha and Apere14 discussed MHD Couette flow of class-I in a rotating system taking Hall current into account.


The aim of the present paper is to study steady MHD Couette flow of class-II of a viscous, incompressible and electrically conducting fluid in a rotating system in the presence of a uniform transverse magnetic field applied parallel to the axis of rotation taking Hall current into account.


2. Formulation of the Problem and its Solution

Consider steady Couette flow of a viscous, incompressible and electrically conducting fluid between two parallel plates z=0 and z=L in the presence of a uniform transverse magnetic field 
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 applied in a direction parallel to z-axis. Fluid and channel are in a state of rigid body rotation with uniform angular velocity 
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 about z-axis. The flow within the channel is induced due to movement of upper plate z=L in x-direction with uniform velocity 
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 whereas lower plate z=0 is kept fixed. Since plates of the channel are of infinite extent in x and y directions and fluid flow is steady so all physical quantities, except pressure, depend on z only. The fluid velocity 
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 and magnetic induction vector 
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 are assumed in the following form
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which are compatible with fundamental equations of Magnetohydrodynamics in a rotating frame of reference. Under the above assumptions the equations of motion and induction equation for magnetic field in rotating frame of reference become


(2.2)                  
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(2.3)                    
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(2.6)                    
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where 
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 are modified pressure including fluid pressure, centrifugal force and magneto- hydrodynamic pressure, electrical conductivity, magnetic permeability, density, kinematic coefficient of viscosity, magnetic viscosity, Hall current parameter, cyclotron frequency and electron collision time respectively.

Boundary conditions for fluid velocity are no-slip conditions. Upper plate of the channel is perfectly conducting and is moving with uniform velocity 
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 in x-direction while lower plate is kept fixed and is non-conducting. Thus the boundary conditions for fluid velocity and induced magnetic field are given by


(2.7)                  
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Equation (2.4) shows the constancy of modified pressure along z-axis. For MHD Couette flow of class-I the pressure gradient terms 
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, which are present in equations (2.2) and (2.3) respectively, are not considered by researchers1-5,7,8,10. This assumption is valid and it is clearly evident from conditions (2.7). For MHD Couette flow of class-II, values of the pressure gradient terms in equations (2.2) and (2.3) are obtained with the help of boundary conditions (2.8) which are given by


(2.9)              
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Using (2.9) in equations (2.2) and (2.3), we obtain


 (2.10)           
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Combining equations (2.5) and (2.10) with the equations (2.6) and (2.11) respectively and representing them in non-dimensional form, we obtain


(2.12)            
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where
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In equations (2.12) and (2.13), 
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Boundary conditions (2.7) and (2.8), in non-dimensional form, become


(2.15)       
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Solution of equations (2.12) and (2.13) subject to the boundary conditions (2.15) is given by   


(2.16)        
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where 

(2.18a)       
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 Shear Stress at the Plates


Non-dimensional shear stress components 
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 due to primary and secondary flow respectively, at stationary and moving plates of the channel are given by
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Mass flow rates


Non-dimensional mass flow rates 
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 in the primary and secondary flow direction respectively are given by
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                                      3. Asymptotic Solutions

We shall now analyze the asymptotic behavior of the solution for large values of K2 and M2 to gain some physical insight into the flow pattern.


 Case-I: When 
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When K2 is large, boundary layer type flow is expected near the plates of channel. For the boundary layer flow near stationary plate
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, the expressions for fluid velocity and induced magnetic field are obtained from equations (2.16) to (2.18) and are presented in the following form
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where 

(3.4)       
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It is evident from expressions (3.1) to (3.4) that there arises a thin boundary layer of thickness 
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 near stationary plate of the channel. This boundary layer may be recognized as modified Ekman boundary layer and may be viewed as classical Ekman boundary layer modified by Hall current and magnetic field. The thickness of this boundary layer decreases with the increase in either 
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. Similar type of boundary layer also appears near moving plate of the channel. Exponential terms in the expressions (3.1) to (3.3) damp out quickly as 
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 increases. When 
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 i.e. outside the boundary layer region, (3.1) to (3.3) assume the form
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It is revealed from the expressions in (3.5) that, in a region outside the boundary layer region, i.e. in the central core, fluid flows in primary flow direction only. This is due to the reason that fluid flow within the channel is induced due to the movement of upper plate of the channel. The primary and secondary induced magnetic fields 
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 persist. These magnetic fields have considerable effects of Hall current and rotation and are unaffected by applied magnetic field.


Case-II: When 
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This case also corresponds to boundary layer type flow. For the boundary layer flow near stationary plate 
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, the expressions for fluid velocity and induced magnetic field are obtained from equations (2.16) to (2.18) and are given by

(3.6)          

[image: image60.wmf](


)


(


)


22


22


1cos;sin


ueve


ahah


hbhhbh


--


=-=


,





(3.7)           

[image: image61.wmf]22


22


22


1


(1cos)sin


1


x


baebe


Mm


ahah


bhbh


--


éù


=--


ëû


+


,
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where 
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The expressions (3.6) to (3.9) reveal that there appears a thin boundary layer of thickness 
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 near stationary plate of the channel. This boundary layer may be identified as modified Hartmann boundary layer and may be viewed as classical Hartmann boundary layer modified by Hall current and rotation. The thickness of this boundary layer decreases with the increase in either 
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It is evident from the expressions in (3.10) that, in a region outside boundary layer region, i.e. in the central core, fluid flows in primary flow direction only while both the primary and secondary induced magnetic fields 
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 persist. These induced magnetic fields have considerable effects of Hall current and magnetic field and are unaffected by rotation.


4. Heat transfer characteristics

We shall now discuss heat transfer characteristics of the fluid flow, when moving and stationary plates of the channel are maintained at uniform temperature 
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 being the fluid temperature. Energy equation taking viscous and Joule dissipations into account is given by
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The boundary conditions for temperature field are


(4.2)   
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Representing equation (4.1), in non-dimensional form with the help of (2.14), we obtain 


(4.3)    
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where 
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 are non-dimensional fluid temperature, Prandtl number and Eckert number respectively. 
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The boundary conditions (4.2), in non-dimensional form, become
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Making use of (2.16) to (2.18) in equation (4.3) and solving the resulting equation subject to the boundary conditions (4.4) by MATLAB software we have obtained numerical solution for fluid temperature 
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5. Results and Discussion


To study the effects of Hall current and rotation on the fluid velocity and induced magnetic field, the numerical values of the fluid velocity and induced magnetic field are depicted graphically versus channel width variable 
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 in figures 1 to 4 for various values of Hall current parameter 
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     Fig. 1. Velocity profiles when 
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This implies that Hall current retards fluid flow in primary flow direction whereas it has reverse effect on the fluid flow in secondary flow direction. Rotation has tendency to accelerate fluid flow in primary flow direction throughout the channel whereas it tends to accelerate fluid flow in secondary flow direction in the lower half of the channel.
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     Fig. 2. Velocity profiles when 
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It is noticed from figures 3 and 4 that primary induced magnetic field 

[image: image103.wmf]x


b


 decreases whereas secondary induced magnetic field 
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This implies that Hall current tends to reduce primary induced magnetic field whereas it has reverse effect on the secondary induced magnetic field. Rotation tends to enhance both the primary and secondary induced magnetic fields.



The numerical values of fluid temperature, computed from energy equation (4.3) with the help of MATLAB software, are displayed graphically versus channel width variable 

[image: image109.wmf]h


 in figures 5 to 8 for various values of 

[image: image110.wmf]2


,,and


rc


mKPE


 taking 

[image: image111.wmf]2


10


M


=


. Figures 5 to 8 reveal that fluid temperature 
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     Fig. 3. Induced magnetic field profiles when 
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    Fig. 4. Induced magnetic field profiles when 
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      Fig. 5. Temperature profiles when 
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 Fig. 6. Temperature profiles when 
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This implies that Hall current tends to reduce fluid temperature whereas rotation has reverse effect on it.
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    Fig. 7. Temperature profiles when 
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  Fig. 8. Temperature profiles when 
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It may be noted that 
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 represent the effects of viscous dissipation and thermal diffusion respectively. 
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 decreases when thermal diffusivity of the fluid increases. Thus we conclude that viscous dissipation tends to enhance fluid temperature whereas thermal diffusion has reverse effect on it.


The numerical values of the shear stress at both the plates due to primary and secondary flows are presented in tabular form in tables 1 and 2 whereas that of mass flow rates in the primary and secondary flow directions are displayed in table 3 for various values of 
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Table 1: Shear stress at the stationary plate
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This implies that Hall current tends to reduce primary shear stress at the stationary plate whereas it has reverse effect on the secondary shear stress at the stationary plate. Rotation tends to enhance both primary and secondary shear stress at the stationary plate. It is found from table 2 that, on increasing 
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Table 2: Shear stress at the moving plate
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This implies that Hall current tends to enhance secondary shear stress at the moving plate and it tends to enhance primary shear stress at the moving plate when 
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. Rotation tends to enhance primary shear stress at the moving plate whereas it has reverse effect on secondary shear stress at the moving plate. It is noticed from table 2 that there exists flow separation at the moving plate in the primary flow direction on increasing 
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It is observed from table 3 that primary mass flow rate 
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Table 3: Mass flow rates
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This implies that Hall current tends to reduce primary mass flow rate whereas it has reverse effect on secondary mass flow rate. Rotation tends to enhance both the primary and secondary mass flow rates.


The numerical values of rate of heat transfer at the stationary and moving plates, computed directly from the energy equation (4.3) with the help of MATLAB software, are presented in tabular form in tables 4 and 5 for various values of 

[image: image166.wmf]2


,,and


rc


mKPE


 taking 

[image: image167.wmf]2


10.


M


=


 It is found from table 4 that rate of heat transfer at the lower plate i.e. 
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Table 4: Rate of heat transfer at stationary and moving plates when 
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Table 5: Rate of heat transfer at stationary and moving plates when 
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This implies that viscous dissipation tends to enhance rate of heat transfer at the stationary plate whereas thermal diffusion has reverse effect on it. Viscous dissipation tends to reduce rate of heat transfer at the moving plate and thermal diffusion has reverse effect on it when 
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 and viscous dissipation tends to enhance rate of heat transfer at the moving plate whereas thermal diffusion has reverse effect on it when 
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. It is worthy to note that there exists flow reversal of heat near the moving plate due to thermal diffusion. Also the value of 
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 i.e. there is no flow of heat either from moving plate to the fluid or from fluid to the moving plate when 
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. This situation arises when the thicknesses of viscous and thermal boundary layers are of same order of magnitude. 
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 is called critical Eckert number corresponding to the moving plate.
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