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Abstract: In the present paper, a Finsler space whose curvature tensor 
i
j k hH satisfies   ,i i i i

m j k h m j k h m j k h k j hH H g g     B where mB is Berwald 

covariant differential operator, m and m are non-null covariant vectors, 

is introduced and such space is called as a generalized H-recurrent Finsler 
space. The Ricci tensor k hH , the vector kH and the scalar curvature H of 

such space are non-vanishing. Under certain conditions a generalized H-
recurrent Finsler space becomes a Landsberg space. Some conditions have 
been pointed out which reduce a generalized H-recurrent Finsler space

( 2)nF n  into a Riemannian space of constant Riemannian curvature. If 

the covariant vector m   is independent of ix and the dimension of the 

space is greater than two, the space is necessarily Riemannian.
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1. Introduction

A 3-dimensional Riemannian space of recurrent curvature was 
introduced and studied by H. S. Ruse1. This study was extended to an n-
dimensional Riemannian space by A. G. Walker2. Several significant 
contributions towards such spaces were made by a large number of 
geometers including E. M. Patterson3, Y. C. Wong4, Y. C. Wong and K. 
Yano5. Such theory was extended to Finsler spaces by A. Mόor6,7, R. S. 
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Mishra and H. D. Pande8, R. N. Sen9, R. B. Misra10, P. N. Pandey11-18 and 
many others. U. C. De and N. Guha19 introduced a generalized recurrent 
Riemannian manifold. U. C. De and D. Kamilya20, Y. B. Maralabhavi and 
M. Rathnamma21 also contributed towards a generalized recurrent and 
generalized concircular recurrent Riemannian manifolds. The aim of the 
present paper is to introduce and study a generalized H-recurrent Finsler 
space.

Let nF be an n-dimensional Finsler space equipped with the metric 
function F satisfying the requisite conditions22. Let the components of the 
corresponding metric tensor and the connection coefficients of Berwald be
denoted by i jg and i

j kG respectively. These are positively homogeneous of 

degree zero in .ix Due to their homogeneity in ix , we have

(1.1)    (a) 0h
j k hC x     and    (b)   0,i h

j k hG x      

where , i
j k h h j k j k hC g G  = h

i
j kG and .h hx


 





j k hC and i

j k hG are components 

of tensors and are symmetric in their lower indices. The Berwald covariant 
derivative of an arbitrary tensor i

jT with respect to kx is given by 

(1.2)               ( ) ,i i i r r i i r
k j k j r j k j r k r j kT T T G T G T G     B

  

where .r r s
k s kG G x      

The Berwald covariant derivative gives rise to the commutation formula 

(1.3)             ( ) ,i i r i i r i r
j k h k j h h jk r r j k h r h j kT T T H T H T H    B B B B

   

where i
j k hH defined by1

(1.4)                [ ] [ ] [ ]2 ,i i i r i r
j k h j k h r h j k r j k hH G G G G G   

are components of Berwald curvature tensor and 

(1.5)     (a)       .i i h
j k j k hH H x 

In (1.4), the square brackets denote the skew-symmetric part of the tensor 

with respect to the indices enclosed therein and .j jx


 


It is clear from the

                                                          
1 In Rund’s book, i

j k hH defined here, is denoted by i
h k jH . This difference must be noted.
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definition that the Berwald curvature tensor i
j k hH is skew-symmetric in its 

first two lower indices and positively homogeneous of degree zero in ix . 

Berwald deviation tensor i
jH is defind as

(1.5)    ( ) .i i k
j j kb H H x 

From the contraction of the indices i and j in , andi i i
j k h j k jH H H , we have

(1.5)    ( ) , ( ) , ( ) ( 1) .i i k
k h i k h k i k kc H H d H H e H x n H                                                                                            

The Berwald curvature tensor i
j k hH satisfies the following Bianchi identities

(1.6)  0.i i i r i r i r i
m j k h k m j h j k mh j k hm r kh j m r h j k m rH H H H G H G H G     B B B    

The commutation formulae for the operators j and kB are given by

(1.7)          .i i r i i r
j k h k j h h j k r r j k hT T T G T G     B B    

A Finsler space nF is called recurrent if its curvature tensor i
j k hH

satisfies

(1.8)              ,i i
m j k h m j k hH H B

where m is a non-null covariant vector10. The vector m appearing in (1.8) 

is called the recurrence vector. P. N. Pandey11 proved that the recurrence 
vector m is independent of 'ix s and showed that the Bianchi identities 

(1.6) for a recurrent Finsler space split into the following identities

(1.9)     (a)    0,i i i
m j k h k m j h j k mhH H H    

             (b)    0.r i i r i r
j k hm r r k hm j j r hm kH G H G H G  

The Riemannian curvature R of a Finsler Space nF at a point ix with 

respect to 2-directions  ,i ix X is defined as22

(1.10)      
( , )

,
( )

i i i h j k
i j hk

i h j k
ih j k i j hk

K x x x x X X
R

g g g g x x X X




  

 

where i
j k hK are components of Cartan curvature tensor and .r

i j hk r j ihkK g K
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A point ix of a Finsler space nF is said to be an isotropic point if the 
Riemannian curvature at ix is independent of the choice of the direction iX . 

A Finsler space nF is called isotropic Finsler space or a Finsler space of 
scalar curvature if every point of nF is isotropic. A two dimensional Finsler 
space is necessarily isotropic.

The necessary and sufficient condition for a Finsler space ( 2)nF n  to
be a Finsler space of scalar curvature is given by

(1.11)                     2 .i i i
h h hH F R l l 

If the Riemannian curvature R is constant, the space is said to be a space of 
constant curvature. The necessary and sufficient condition for a Finsler space 

( 2)nF n  to be of constant curvature is given by

(1.12)                     .l i k j i j l k i k l jH R g g g g 

A Finsler space nF is said to be a Landsberg space if it satisfies 

(1.13)       0,i
i j k hy G 

where .j
i i jy g x 

2. Generalized H-Recurrent Finsler Space

Let us consider a Finsler space nF whose Berwald curvature tensor 
i
j k hH satisfies

(2.1)                ,i i i i
m j k h m j k h m j k h k j hH H g g     B

where m and m are non-null covariant vector fields. We shall call such 

Finsler space as a generalized H-recurrent Finsler space.

Let us consider a generalized H-recurrent Finsler space characterized by
(2.1). Transvecting (2.1) by hx , we get

(2.2)              .i i i i
m j k m j k m j k k jH H y y     B

Further transvecting (2.2) by kx , we have

(2.3)              2 .i i i i
m j m j m j jH H F x y     B
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Contracting the indices i and j in (2.1), (2.2) and (2.3) and using (1.5 c), we 
get

(2.4)             ( 1) ,m k h m k h m k hH H n g   B

(2.5)             ( 1)m k m k m kH H n y   B   and

(2.6)             2.m m mH H F  B   

The last three equations show that the tensor k hH , the vector kH and the 

scalar curvature H cannot vanish because the vanishing of any one of these 
would imply 0,m  a contradiction.

Therefore, we conclude
Theorem 2.1. The Ricci tensor k hH , the curvature vector kH and the 

scalar curvature H of a generalized H-recurrent Finsler space are non-
vanishing.

Differentiating (2.5) partially with respect to hx , we get

(2.7)           ( 1) ( 1) .h m k h m k m k h h m k m k hH H H n y n g             B   

Using the commutation formula (1.7), ,h k k hH H  and h k k hy g  , we 

have

(2.8)    ( 1) ( 1) .r
m k h r hmk h m k m k h h m k m k hH H G H H n y n g            B     

Using (2.4) in (2.8), we get

(2.9)          ( 1) .r
r hmk h m k h m kH G H n y          

Transvecting (2.9) by kx and using (1.1 b) and (1.5 e), we have

(2.10)            20 ,h m h mH F        

which implies

(2.11)        
 

2
.

h m

h m H
F





  




If the vector m is independent of ix , the equation (2.11) shows that the 

vector m is also independent of ix . Conversly, if the vector m is 

independent of ix , we get 0.h mH   In view of theorem 3.1, the condition 
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0h mH   implies 0h m  , i.e. the covariant vector m is also 

independent of ix . This leads to

Theorem 2.2. The covariant vector m is independent of ix if and only 

if the covariant vector m is independent of ix .

Suppose the vector m is not independent of ix , then (2.9) and (2.11) 

together imply

(2.12)         2

( 1)
.r

r hmk h m k k

n H
H G H y

F
      

 
   

Transvecting (2.12) by mx , we get 

(2.13)          2

( 1)
0,m

h m k k

n H
x H y

F
     

 
 

which implies

(2.14)       2

( 1)
0,h h k k

n H
H y

F
       

 


where .h
h x  

The equation (2.14) implies at least one of the following conditions 

(2.15)      
2

( 1)
( ) , ( ) .h h k k

n H
a b H y

F
  

  

Thus, we have

Theorem 2.3. In a generalized H-recurrent Finsler space for which the 
covariant vector m is not independent of ix , at least one of the conditions 

(2.15 a) and (2.15 b) holds.

Suppose (2.15 b) holds. Then (2.12) implies

(2.16)             
2

( 1)
0.r

r hmk

n H
y G

F


    

Since 1 and 0n H  , we have 0r
r hmky G  . Therefore the space is a

Landsberg space. Thus, we have

Theorem 2.4. A generalized H-recurrent Finsler space is a Landsberg 
space if condition (2.15 b) holds.
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If the covariant vector ,m m   in view of Theorem 3.3, (2.15 b) holds 

good. In view of this fact, we may rewrite Theorem 3.4 in the following 
form

Theorem 2.5. A generalized H-recurrent Finsler space is necessarily a 
Landsberg space provided .m m  

Differentiating (2.2) partially with respect to hx , we get

        .i i i i i i i
h m j k h m j k m j k h h m j k k j m j k h k j hH H H y y g g                 B

Utilizing the commutation formula exhibited by (1.7) and using
i i

h j k j k hH H  and (2.1), we have

(2.17)        .r i i r i r i i i
j k hm r r k j hm j r k hm h m j k h m j k k jH G H G H G H y y          

Transvecting (2.17) by iy and using the identity 0i
i jky H  established by the 

first author11, we get

(2.18)                     0.r i
j k i hm rH y G 

Transvection of (2.18) by kx gives

(2.19)                    0.r i
j i hm rH y G 

If det 0,i
jH  (2.19) implies 0i

i hm ry G  , i.e. the space is a Landsberg space. 

Thus, we have

Theorem 2.6. A generalized H-recurrent Finsler space is a Landsberg 
space provided det 0i

jH  .

Transvecting (2.17) by kx and using 2 ,k
kx y F we have

(2.20)             2 .r i i r i i i
j hm r r j hm h m j h m j jH G H G H F x y         

Substituting the value of h m from (2.11) in (2.20), we get

(2.21)       ,r i i r i i i
j hm r r j hm h m j j jH G H G H H l l       



where and .
i

i i
i

yx
l l

F F
 


If
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(2.22)          0r i i r
j hm r r j hmH G H G  .

We have at least one of the following conditions

(2.23)         (a)   0,h m     (b)   .i i i
j j jH H l l 

Putting 2H F R , (2.23 b) may be written as 

(2.24)         2i i i
j j jH F R l l  .

Therefore, the space is a Finsler space of scalar curvature.
Using (2.23 b) in (2.22), we get 0,r

r hm jHl G  which, in view of Theorem 3.1 

and r
r

y
l

F
 , implies 0,r

r hm jy G  i.e. the space is a Landsberg space. Thus, 

we see that if (2.23 a) does not hold, the space is a Landsberg space of scalar 
curvature. But in view of Numata’s theorem21, a Landsberg space 

( 2)nF n  of scalar curvature is a Riemannian space of constant Riemannian 
curvature provided 0R  . This leads to

Theorem 2.7. A generalized H-recurrent Finsler space ( 2)nF n 
admitting 0r i i r

j hm r r j hmH G H G  is a Riemannian space of constant 

Riemannian curvature provided the covariant vector field m is not 

independent of ix .

3. A Generalized H-recurrent Finsler Space with the Vector m
Independent of the Directional Arguments

Let us consider a generalized H-recurrent Finsler space with the 
covariant vector m independent of ix . In view of Theorem 3.1, the 

covariant vector m is also independent of ix . Thus, for the space 

considered, we have

(3.1)          (a)   0,h m        (b)   0.h m 

In view of (3.1), (2.9) and (2.17) reduce to

(3.2)           0r
r hm kH G    

and

(3.3)          0.r i i r i r
j k hm r r k hm j j r hm kH G H G H G  
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Transvecting (3.3) with kx and using (1.1 b) and (1.5 b), we get

(3.4)              .r i i r
j hm r r hm jH G H G

Taking skew-symmetric part of (3.3) with respect to the indices j, k and h, 
we get

(3.5)              0.r i r i r i
j k hm r k h j mr h j k mrH G H G H G  

Transvecting (3.5) with kx , we have 

(3.6)              .r i r i
j hm r h j mrH G H G

In view of (3.5), Bianchi identities (1.6) reduces to 

(3.7)               0,i i i
m j k h k m j h j k mhH H H  B B B

which in view of (2.1), further reduce to 

(3.8)          
 

    0.

i i i i i
m j k h k m j h j k mh m j k h k j h

i i i i
k m j h j mh j k mh m k h

H H H g g

g g g g

     

     

   

    

In view of (2.1), the identities

                     0,i i i
m j k k m j j k mH H H  B B B

reduces to

(3.9)              0.i i i
m j k k m j j k mH H H    

Differentiating (3.9) partially with respect to hx and using (3.1 a), we get

(3.10)                0.i i i
m j k h k m j h j k mhH H H    

Using (3.10) in (3.8), we have

(3.11)               0.i i i i i i
m j k h k j h k m j h j mh j k mh m k hg g g g g g             

Contracting the indices i and j in (3.11), we find

(3.12)             ( 2) 0.m k h k mhn g g   

If 2,n  we have

(3.13)                  0.m k h k mhg g  
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Differentiating partially with respect to ,jx and using 2j k h j k hg C  and (3.1b), 

we obtain

(3.14)                 0.m j k h k j mhC C  

Transvecting (3.14) with ,mx we have 0,m
m j k hx C  which implies at least 

one of the following

(3.15)      (a)   0,m
m x        (b)   0.j k hC 

Since the vector m is independent of ix , 0m
m x  implies 0m  13. 

Therefore (3.15 a) is not true. Hence (3.15 b) is true, i.e. the Finsler space is 
necessarily Riemannian. This leads to

Theorem 3.1. A generalized H-recurrent Finsler space ( 2)nF n  with 

the covariant vector field m independent of ix , is necessarily Riemannian.
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In (1.4), the square brackets denote the skew-symmetric part of the tensor 
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 It is clear from the
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where 
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The Riemannian curvature R of a Finsler Space 
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A point 
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If the Riemannian curvature R is constant, the space is said to be a space of constant curvature. The necessary and sufficient condition for a Finsler space 
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A Finsler space
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2. Generalized H-Recurrent Finsler Space


Let us consider a Finsler space 
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The last three equations show that the tensor 
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The equation (2.14) implies at least one of the following conditions 
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Thus, we have
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In view of (2.1), the identities
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13. Therefore (3.15 a) is not true. Hence (3.15 b) is true, i.e. the Finsler space is necessarily Riemannian. This leads to

Theorem 3.1. A generalized H-recurrent Finsler space 
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