On a Generalized H-Recurrent Finsler Space

P. N. Pandey and Shivalika Saxena
Department of Mathematics
University of Allahabad, Allahabad-211 002
Email: pnpiaps@gmail.com, mathshivalika@gmail.com

Anjali Goswami

Department of Mathematics
Jagannath Gupta Institute of Engineering \& Technology, Sitapura, Jaipur
Email: dranjaligoswami09@gmail.com
(Received June 14, 2011)

Abstract

In the present paper, a Finsler space whose curvature tensor $H_{j k h}^{i}$ satisfies $\mathscr{B}_{m} H_{j k h}^{i}=\lambda_{m} H_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)$, where \mathscr{B}_{m} is Berwald covariant differential operator, λ_{m} and μ_{m} are non-null covariant vectors, is introduced and such space is called as a generalized H -recurrent Finsler space. The Ricci tensor $H_{k n}$, the vector H_{k} and the scalar curvature H of such space are non-vanishing. Under certain conditions a generalized H recurrent Finsler space becomes a Landsberg space. Some conditions have been pointed out which reduce a generalized H-recurrent Finsler space $F^{n}(n>2)$ into a Riemannian space of constant Riemannian curvature. If the covariant vector λ_{m} is independent of \dot{x}^{i} and the dimension of the space is greater than two, the space is necessarily Riemannian. Keywords: Finsler space, Generalized H-recurrent Finsler space, Ricci tensor, Landsberg space, Riemannian space of constant Riemannian curvature 2010 MS Classification No.: 53B40

1. Introduction

A 3-dimensional Riemannian space of recurrent curvature was introduced and studied by H. S. Ruse ${ }^{1}$. This study was extended to an ndimensional Riemannian space by A. G. Walker ${ }^{2}$. Several significant contributions towards such spaces were made by a large number of geometers including E. M. Patterson ${ }^{3}$, Y. C. Wong ${ }^{4}$, Y. C. Wong and K. Yano ${ }^{5}$. Such theory was extended to Finsler spaces by A. Móor ${ }^{6,7}$, R. S.

Mishra and H. D. Pande ${ }^{8}$, R. N. Sen ${ }^{9}$, R. B. Misra ${ }^{10}$, P. N. Pandey ${ }^{11-18}$ and many others. U. C. De and N. Guha ${ }^{19}$ introduced a generalized recurrent Riemannian manifold. U. C. De and D. Kamilya ${ }^{20}$, Y. B. Maralabhavi and M. Rathnamma ${ }^{21}$ also contributed towards a generalized recurrent and generalized concircular recurrent Riemannian manifolds. The aim of the present paper is to introduce and study a generalized H-recurrent Finsler space.

Let F^{n} be an n-dimensional Finsler space equipped with the metric function F satisfying the requisite conditions ${ }^{22}$. Let the components of the corresponding metric tensor and the connection coefficients of Berwald be denoted by $g_{i j}$ and $G_{j k}^{i}$ respectively. These are positively homogeneous of degree zero in \dot{x}^{i}. Due to their homogeneity in \dot{x}^{i}, we have

$$
\begin{equation*}
\text { (a) } C_{j k h} \dot{x}^{h}=0 \quad \text { and } \quad \text { (b) } \quad G_{j k h}^{i} \dot{x}^{h}=0 \tag{1.1}
\end{equation*}
$$

where $C_{j k h}=\dot{\partial}_{h} g_{j k}, G_{j k h}^{i}=\dot{\partial}_{h} G_{j k}^{i}$ and $\dot{\partial}_{h} \equiv \frac{\partial}{\partial \dot{x}^{h}}$. $C_{j k h}$ and $G_{j k h}^{i}$ are components of tensors and are symmetric in their lower indices. The Berwald covariant derivative of an arbitrary tensor T_{j}^{i} with respect to x^{k} is given by

$$
\begin{equation*}
\mathscr{B}_{k} T_{j}^{i}=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} G_{r k}^{i}-T_{r}^{i} G_{j k}^{r} \tag{1.2}
\end{equation*}
$$

where $G_{k}^{r}=G_{s k}^{r} \dot{x}^{s}$.
The Berwald covariant derivative gives rise to the commutation formula

$$
\begin{equation*}
\mathscr{B}_{j} \mathscr{B}_{k} T_{h}^{i}-\mathscr{B}_{k} \mathscr{B}_{j} T_{h}^{i}=T_{h}^{r} H_{j k r}^{i}-T_{r}^{i} H_{j k h}^{r}-\left(\dot{\partial}_{r} T_{h}^{i}\right) H_{j k}^{r}, \tag{1.3}
\end{equation*}
$$

where $H_{j k h}^{i}$ defined by ${ }^{1}$

$$
\begin{equation*}
H_{j k h}^{i}=2\left\{\partial_{[j} G_{k] h}^{i}+G_{r h[j[j]}^{i} G_{k]}^{r}+G_{r[j}^{i} G_{k k h}^{r}\right\}, \tag{1.4}
\end{equation*}
$$

are components of Berwald curvature tensor and

$$
\begin{equation*}
\text { (a) } H_{j k}^{i}=H_{j k h}^{i} \dot{x}^{h} \text {. } \tag{1.5}
\end{equation*}
$$

In (1.4), the square brackets denote the skew-symmetric part of the tensor with respect to the indices enclosed therein and $\partial_{j} \equiv \frac{\partial}{\partial x^{j}}$. It is clear from the

[^0]definition that the Berwald curvature tensor $H_{j k h}^{i}$ is skew-symmetric in its first two lower indices and positively homogeneous of degree zero in \dot{x}^{i}.
Berwald deviation tensor H_{j}^{i} is defind as
\[

$$
\begin{equation*}
\text { (b) } H_{j}^{i}=H_{j k}^{i} \dot{x}^{k} \text {. } \tag{1.5}
\end{equation*}
$$

\]

From the contraction of the indices i and j in $H_{j k h}^{i}, H_{j k}^{i}$ and H_{j}^{i}, we have

$$
\begin{equation*}
\text { (c) } H_{k h}=H_{i k h}^{i} \text {, (d) } H_{k}=H_{i k}^{i} \text {, (e) } H_{k} \dot{x}^{k}=(n-1) H . \tag{1.5}
\end{equation*}
$$

The Berwald curvature tensor $H_{j k h}^{i}$ satisfies the following Bianchi identities

$$
\begin{equation*}
\mathscr{B}_{m} H_{j k h}^{i}+\mathscr{B}_{k} H_{m j h}^{i}+\mathscr{B}_{j} H_{k m h}^{i}+H_{j k}^{r} G_{h m r}^{i}+H_{k h}^{r} G_{j m r}^{i}+H_{h j}^{r} G_{k m r}^{i}=0 . \tag{1.6}
\end{equation*}
$$

The commutation formulae for the operators $\dot{\partial}_{j}$ and \mathscr{B}_{k} are given by

$$
\begin{equation*}
\dot{\partial}_{j} \mathscr{B}_{k} T_{h}^{i}-\mathscr{B}_{k} \dot{\partial}_{j} T_{h}^{i}=T_{h}^{r} G_{j k r}^{i}-T_{r}^{i} G_{j k h}^{r} . \tag{1.7}
\end{equation*}
$$

A Finsler space F^{n} is called recurrent if its curvature tensor $H_{j k h}^{i}$ satisfies

$$
\begin{equation*}
\mathscr{B}_{m} H_{j k h}^{i}=\lambda_{m} H_{j k h}^{i}, \tag{1.8}
\end{equation*}
$$

where λ_{m} is a non-null covariant vector ${ }^{10}$. The vector λ_{m} appearing in (1.8) is called the recurrence vector. P. N. Pandey ${ }^{11}$ proved that the recurrence vector λ_{m} is independent of $\dot{x}^{i} ' s$ and showed that the Bianchi identities (1.6) for a recurrent Finsler space split into the following identities
(a) $\lambda_{m} H_{j k h}^{i}+\lambda_{k} H_{m j h}^{i}+\lambda_{j} H_{k m h}^{i}=0$,
(b) $H_{j k}^{r} G_{h m r}^{i}+H_{r k}^{i} G_{h m j}^{r}+H_{j r}^{i} G_{h m k}^{r}=0$.

The Riemannian curvature R of a Finsler Space F^{n} at a point x^{i} with respect to 2-directions $\left(\dot{x}^{i}, X^{i}\right)$ is defined as ${ }^{22}$

$$
\begin{equation*}
R=\frac{K_{i j h k}\left(x^{i}, \dot{x}^{i}\right) \dot{x}^{i} \dot{x}^{h} X^{j} X^{k}}{\left(g_{i h} g_{j k}-g_{i j} g_{h k}\right) \dot{x}^{i} \dot{x}^{h} X^{j} X^{k}}, \tag{1.10}
\end{equation*}
$$

where $K_{j k h}^{i}$ are components of Cartan curvature tensor and $K_{i j h k}=g_{r j} K_{i h k}^{r}$.

A point x^{i} of a Finsler space F^{n} is said to be an isotropic point if the Riemannian curvature at x^{i} is independent of the choice of the direction X^{i}.

A Finsler space F^{n} is called isotropic Finsler space or a Finsler space of scalar curvature if every point of F^{n} is isotropic. A two dimensional Finsler space is necessarily isotropic.

The necessary and sufficient condition for a Finsler space $F^{n}(n>2)$ to be a Finsler space of scalar curvature is given by

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right) \tag{1.11}
\end{equation*}
$$

If the Riemannian curvature R is constant, the space is said to be a space of constant curvature. The necessary and sufficient condition for a Finsler space $F^{n}(n>2)$ to be of constant curvature is given by

$$
\begin{equation*}
H_{l i k j}=R\left(g_{i j} g_{l k}-g_{i k} g_{l j}\right) \tag{1.12}
\end{equation*}
$$

A Finsler space F^{n} is said to be a Landsberg space if it satisfies

$$
\begin{equation*}
y_{i} G_{j k h}^{i}=0, \tag{1.13}
\end{equation*}
$$

where $y_{i}=g_{i j} \dot{x}^{j}$.

2. Generalized H-Recurrent Finsler Space

Let us consider a Finsler space F^{n} whose Berwald curvature tensor $H_{j k h}^{i}$ satisfies

$$
\begin{equation*}
\mathscr{B}_{m} H_{j k h}^{i}=\lambda_{m} H_{j k h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right), \tag{2.1}
\end{equation*}
$$

where λ_{m} and μ_{m} are non-null covariant vector fields. We shall call such Finsler space as a generalized H -recurrent Finsler space.

Let us consider a generalized H-recurrent Finsler space characterized by (2.1). Transvecting (2.1) by \dot{x}^{h}, we get

$$
\begin{equation*}
\mathscr{B}_{m} H_{j k}^{i}=\lambda_{m} H_{j k}^{i}+\mu_{m}\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right) . \tag{2.2}
\end{equation*}
$$

Further transvecting (2.2) by \dot{x}^{k}, we have

$$
\begin{equation*}
\mathscr{B}_{m} H_{j}^{i}=\lambda_{m} H_{j}^{i}+\mu_{m}\left(\delta_{j}^{i} F^{2}-\dot{x}^{i} y_{j}\right) . \tag{2.3}
\end{equation*}
$$

Contracting the indices i and j in (2.1), (2.2) and (2.3) and using (1.5 c), we get

$$
\begin{align*}
& \mathscr{B}_{m} H_{k h}=\lambda_{m} H_{k h}+(n-1) \mu_{m} g_{k h}, \tag{2.4}\\
& \mathscr{B}_{m} H_{k}=\lambda_{m} H_{k}+(n-1) \mu_{m} y_{k} \text { and } \tag{2.5}\\
& \mathscr{B}_{m} H=\lambda_{m} H+\mu_{m} F^{2} . \tag{2.6}
\end{align*}
$$

The last three equations show that the tensor $H_{k h}$, the vector H_{k} and the scalar curvature H cannot vanish because the vanishing of any one of these would imply $\mu_{m}=0$, a contradiction.
Therefore, we conclude
Theorem 2.1. The Ricci tensor $H_{k n}$, the curvature vector H_{k} and the scalar curvature H of a generalized H-recurrent Finsler space are nonvanishing.

Differentiating (2.5) partially with respect to \dot{x}^{h}, we get

$$
\begin{equation*}
\dot{\partial}_{h} \mathscr{B}_{m} H_{k}=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{k}+\lambda_{m} H_{k h}+(n-1)\left(\dot{\partial}_{h} \mu_{m}\right) y_{k}+(n-1) \mu_{m} g_{k h} . \tag{2.7}
\end{equation*}
$$

Using the commutation formula (1.7), $\dot{\partial}_{h} H_{k}=H_{k h}$, and $\dot{\partial}_{h} y_{k}=g_{k h}$, we have
(2.8) $\mathscr{B}_{m} H_{k h}-H_{r} G_{h m k}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{k}+\lambda_{m} H_{k h}+(n-1)\left(\dot{\partial}_{h} \mu_{m}\right) y_{k}+(n-1) \mu_{m} g_{k h}$.

Using (2.4) in (2.8), we get

$$
\begin{equation*}
-H_{r} G_{h m k}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{k}+(n-1)\left(\dot{\partial}_{h} \mu_{m}\right) y_{k} . \tag{2.9}
\end{equation*}
$$

Transvecting (2.9) by \dot{x}^{k} and using (1.1 b) and (1.5 e), we have

$$
\begin{equation*}
0=\left(\dot{\partial}_{h} \lambda_{m}\right) H+\left(\dot{\partial}_{h} \mu_{m}\right) F^{2} \tag{2.10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\dot{\partial}_{h} \mu_{m}=-\frac{\left(\dot{\partial}_{h} \lambda_{m}\right)}{F^{2}} H \tag{2.11}
\end{equation*}
$$

If the vector λ_{m} is independent of \dot{x}^{i}, the equation (2.11) shows that the vector μ_{m} is also independent of \dot{x}^{i}. Conversly, if the vector μ_{m} is independent of \dot{x}^{i}, we get $H \dot{\partial}_{h} \lambda_{m}=0$. In view of theorem 3.1, the condition
$H \dot{\partial}_{h} \lambda_{m}=0$ implies $\dot{\partial}_{h} \lambda_{m}=0$, i.e. the covariant vector λ_{m} is also independent of \dot{x}^{i}. This leads to

Theorem 2.2. The covariant vector μ_{m} is independent of \dot{x}^{i} if and only if the covariant vector λ_{m} is independent of \dot{x}^{i}.

Suppose the vector λ_{m} is not independent of \dot{x}^{i}, then (2.9) and (2.11) together imply

$$
\begin{equation*}
-H_{r} G_{h m k}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right)\left(H_{k}-\frac{(n-1) H}{F^{2}} y_{k}\right) . \tag{2.12}
\end{equation*}
$$

Transvecting (2.12) by \dot{x}^{m}, we get

$$
\begin{equation*}
\left(\dot{\partial}_{h} \lambda_{m}\right) \dot{x}^{m}\left(H_{k}-\frac{(n-1) H}{F^{2}} y_{k}\right)=0, \tag{2.13}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(\lambda_{h}-\dot{\partial}_{h} \lambda\right)\left(H_{k}-\frac{(n-1) H}{F^{2}} y_{k}\right)=0 \tag{2.14}
\end{equation*}
$$

where $\lambda=\lambda_{h} \dot{x}^{h}$.
The equation (2.14) implies at least one of the following conditions

$$
\text { (a) } \lambda_{h}=\dot{\partial}_{h} \lambda, \quad \text { (b) } \quad H_{k}=\frac{(n-1) H}{F^{2}} y_{k} \text {. }
$$

Thus, we have
Theorem 2.3. In a generalized H-recurrent Finsler space for which the covariant vector λ_{m} is not independent of \dot{x}^{i}, at least one of the conditions (2.15 a) and (2.15 b) holds.

Suppose (2.15 b) holds. Then (2.12) implies

$$
\begin{equation*}
\frac{(n-1) H}{F^{2}} y_{r} G_{h m k}^{r}=0 . \tag{2.16}
\end{equation*}
$$

Since $n \neq 1$ and $H \neq 0$, we have $y_{r} G_{h m k}^{r}=0$. Therefore the space is a Landsberg space. Thus, we have

Theorem 2.4. A generalized H-recurrent Finsler space is a Landsberg space if condition (2.15 b) holds.

If the covariant vector $\lambda_{m} \neq \dot{\partial}_{m} \lambda$, in view of Theorem 3.3, (2.15 b) holds good. In view of this fact, we may rewrite Theorem 3.4 in the following form

Theorem 2.5. A generalized H-recurrent Finsler space is necessarily a Landsberg space provided $\lambda_{m} \neq \dot{\partial}_{m} \lambda$.

Differentiating (2.2) partially with respect to \dot{x}^{h}, we get
$\dot{\partial}_{h}\left(\mathscr{B}_{m} H_{j k}^{i}\right)=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{j k}^{i}+\lambda_{m} H_{j k h}^{i}+\left(\dot{\partial}_{h} \mu_{m}\right)\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right)+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)$.
Utilizing the commutation formula exhibited by (1.7) and using $\dot{\partial}_{h} H_{j k}^{i}=H_{j k h}^{i}$ and (2.1), we have

$$
\begin{equation*}
H_{j k}^{r} G_{h m r}^{i}-H_{r k}^{i} G_{j h m}^{r}-H_{j r}^{i} G_{k h m}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{j k}^{i}+\left(\dot{\partial}_{h} \mu_{m}\right)\left(\delta_{j}^{i} y_{k}-\delta_{k}^{i} y_{j}\right) \tag{2.17}
\end{equation*}
$$

Transvecting (2.17) by y_{i} and using the identity $y_{i} H_{j k}^{i}=0$ established by the first author ${ }^{11}$, we get

$$
\begin{equation*}
H_{j k}^{r} y_{i} G_{h m r}^{i}=0 \tag{2.18}
\end{equation*}
$$

Transvection of (2.18) by \dot{x}^{k} gives

$$
\begin{equation*}
H_{j}^{r} y_{i} G_{h m r}^{i}=0 . \tag{2.19}
\end{equation*}
$$

If $\operatorname{det} H_{j}^{i} \neq 0$, (2.19) implies $y_{i} G_{h m r}^{i}=0$, i.e. the space is a Landsberg space. Thus, we have

Theorem 2.6. A generalized H-recurrent Finsler space is a Landsberg space provided $\operatorname{det} H_{j}^{i} \neq 0$.

Transvecting (2.17) by \dot{x}^{k} and using $\dot{x}^{k} y_{k}=F^{2}$, we have

$$
\begin{equation*}
H_{j}^{r} G_{h m r}^{i}-H_{r}^{i} G_{j h m}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right) H_{j}^{i}+\left(\dot{\partial}_{h} \mu_{m}\right)\left(\delta_{j}^{i} F^{2}-\dot{x}^{i} y_{j}\right) \tag{2.20}
\end{equation*}
$$

Substituting the value of $\dot{\partial}_{h} \mu_{m}$ from (2.11) in (2.20), we get

$$
\begin{equation*}
H_{j}^{r} G_{h m r}^{i}-H_{r}^{i} G_{j h m}^{r}=\left(\dot{\partial}_{h} \lambda_{m}\right)\left[H_{j}^{i}-H\left(\delta_{j}^{i}-l^{i} l_{j}\right)\right] \tag{2.21}
\end{equation*}
$$

where $l^{i}=\frac{\dot{x}^{i}}{F}$ and $l_{i}=\frac{y_{i}}{F}$.

$$
\begin{equation*}
H_{j}^{r} G_{h m r}^{i}-H_{r}^{i} G_{j h m}^{r}=0 . \tag{2.22}
\end{equation*}
$$

We have at least one of the following conditions

$$
\text { (a) } \quad \dot{\partial}_{h} \lambda_{m}=0, \quad \text { (b) } H_{j}^{i}=H\left(\delta_{j}^{i}-l^{i} l_{j}\right) .
$$

Putting $H=F^{2} R,(2.23 \mathrm{~b})$ may be written as

$$
\begin{equation*}
H_{j}^{i}=F^{2} R\left(\delta_{j}^{i}-l^{i} l_{j}\right) . \tag{2.24}
\end{equation*}
$$

Therefore, the space is a Finsler space of scalar curvature.
Using (2.23 b) in (2.22), we get $H l_{r} G_{h m j}^{r}=0$, which, in view of Theorem 3.1 and $l_{r}=\frac{y_{r}}{F}$, implies $y_{r} G_{h m j}^{r}=0$, i.e. the space is a Landsberg space. Thus, we see that if (2.23 a) does not hold, the space is a Landsberg space of scalar curvature. But in view of Numata's theorem ${ }^{21}$, a Landsberg space $F^{n}(n>2)$ of scalar curvature is a Riemannian space of constant Riemannian curvature provided $R \neq 0$. This leads to

Theorem 2.7. A generalized H-recurrent Finsler space $F^{n}(n>2)$ admitting $H_{j}^{r} G_{h m r}^{i}-H_{r}^{i} G_{j h m}^{r}=0$ is a Riemannian space of constant Riemannian curvature provided the covariant vector field λ_{m} is not independent of \dot{x}^{i}.

3. A Generalized H-recurrent Finsler Space with the Vector λ_{m} Independent of the Directional Arguments

Let us consider a generalized H-recurrent Finsler space with the covariant vector λ_{m} independent of \dot{x}^{i}. In view of Theorem 3.1, the covariant vector μ_{m} is also independent of \dot{x}^{i}. Thus, for the space considered, we have

$$
\begin{equation*}
\text { (a) } \quad \dot{\partial}_{h} \lambda_{m}=0, \quad \text { (b) } \quad \dot{\partial}_{h} \mu_{m}=0 \tag{3.1}
\end{equation*}
$$

In view of (3.1), (2.9) and (2.17) reduce to

$$
\begin{equation*}
H_{r} G_{h m k}^{r}=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{j k}^{r} G_{h m r}^{i}-H_{r k}^{i} G_{h m j}^{r}-H_{j r}^{i} G_{h m k}^{r}=0 . \tag{3.3}
\end{equation*}
$$

Transvecting (3.3) with \dot{x}^{k} and using (1.1 b) and (1.5 b), we get

$$
\begin{equation*}
H_{j}^{r} G_{h m r}^{i}=H_{r}^{i} G_{h m j}^{r} . \tag{3.4}
\end{equation*}
$$

Taking skew-symmetric part of (3.3) with respect to the indices j, k and h, we get

$$
\begin{equation*}
H_{j k}^{r} G_{h m r}^{i}+H_{k h}^{r} G_{j m r}^{i}+H_{h j}^{r} G_{k m r}^{i}=0 . \tag{3.5}
\end{equation*}
$$

Transvecting (3.5) with \dot{x}^{k}, we have

$$
\begin{equation*}
H_{j}^{r} G_{h m r}^{i}=H_{h}^{r} G_{j m r}^{i} . \tag{3.6}
\end{equation*}
$$

In view of (3.5), Bianchi identities (1.6) reduces to

$$
\begin{equation*}
\mathscr{B}_{m} H_{j k h}^{i}+\mathscr{B}_{k} H_{m j h}^{i}+\mathscr{B}_{j} H_{k m h}^{i}=0, \tag{3.7}
\end{equation*}
$$

which in view of (2.1), further reduce to

$$
\begin{align*}
& \lambda_{m} H_{j k h}^{i}+\lambda_{k} H_{m j h}^{i}+\lambda_{j} H_{k m h}^{i}+\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right) \tag{3.8}\\
& +\mu_{k}\left(\delta_{m}^{i} g_{j h}-\delta_{j}^{i} g_{m h}\right)+\mu_{j}\left(\delta_{k}^{i} g_{m h}-\delta_{m}^{i} g_{k h}\right)=0 .
\end{align*}
$$

In view of (2.1), the identities

$$
\mathscr{B}_{m} H_{j k}^{i}+\mathscr{B}_{k} H_{m j}^{i}+\mathscr{B}_{j} H_{k m}^{i}=0,
$$

reduces to

$$
\begin{equation*}
\lambda_{m} H_{j k}^{i}+\lambda_{k} H_{m j}^{i}+\lambda_{j} H_{k m}^{i}=0 . \tag{3.9}
\end{equation*}
$$

Differentiating (3.9) partially with respect to \dot{x}^{h} and using (3.1 a), we get

$$
\begin{equation*}
\lambda_{m} H_{j k h}^{i}+\lambda_{k} H_{m j h}^{i}+\lambda_{j} H_{k m h}^{i}=0 . \tag{3.10}
\end{equation*}
$$

Using (3.10) in (3.8), we have

$$
\begin{equation*}
\mu_{m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)+\mu_{k}\left(\delta_{m}^{i} g_{j h}-\delta_{j}^{i} g_{m h}\right)+\mu_{j}\left(\delta_{k}^{i} g_{m h}-\delta_{m}^{i} g_{k h}\right)=0 . \tag{3.11}
\end{equation*}
$$

Contracting the indices i and j in (3.11), we find

$$
\begin{equation*}
(n-2)\left(\mu_{m} g_{k h}-\mu_{k} g_{m h}\right)=0 \tag{3.12}
\end{equation*}
$$

If $n>2$, we have

$$
\begin{equation*}
\mu_{m} g_{k h}-\mu_{k} g_{m h}=0 \tag{3.13}
\end{equation*}
$$

Differentiating partially with respect to \dot{x}^{j}, and using $\dot{\partial}_{j} g_{k h}=2 C_{j k h}$ and (3.1b), we obtain

$$
\begin{equation*}
\mu_{m} C_{j k h}-\mu_{k} C_{j m h}=0 . \tag{3.14}
\end{equation*}
$$

Transvecting (3.14) with \dot{x}^{m}, we have $\mu_{m} \dot{x}^{m} C_{j k h}=0$, which implies at least one of the following
(a) $\mu_{m} \dot{x}^{m}=0$,
(b) $C_{j k h}=0$.

Since the vector μ_{m} is independent of $\dot{x}^{i}, \mu_{m} \dot{x}^{m}=0$ implies $\mu_{m}=0^{13}$. Therefore (3.15 a) is not true. Hence (3.15 b) is true, i.e. the Finsler space is necessarily Riemannian. This leads to

Theorem 3.1. A generalized H-recurrent Finsler space $F^{n}(n>2)$ with the covariant vector field λ_{m} independent of \dot{x}^{i}, is necessarily Riemannian.

Acknowledgement

The second author gratefully acknowledges the financial support provided by the UGC, India.

References

1. H. S. Ruse, Three-dimensional spaces of recurrent curvature, Proc. London Math. Soc., 50(2) (1949). 438-446.
2. A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc., 52(2) (1950) 36-64.
3. E. M. Patterson, Some theorems on Ricci-recurrent spaces., J. London Math. Soc., 27 (1952) 287-295.
4. Y. C. Wong, Linear connextions with zero torsion and recurrent curvature, Trans. Amer. Math. Soc., 102 (1962) 471-506.
5. Y. C. Wong and K. Yano, Projectively flat spaces with recurrent curvature, Comment. Math. Helv., 35 (1961) 223-232.
6. A. Moór, Untersuchungen über Finsler Räume von rekurrenter Krümmung, Tensor N. S., 13 (1963) 1-18.
7. A. Moór, Unterräume von rekurrenter Krümmung in Finslerraumen, Tensor N. S., 24 (1972) 261-265.
8. R. S. Mishra and H. D. Pandey, Recurrent Finsler space., J. Indian Math. Soc. (N.S.), 32 (1968) 17-22.
9. R. N. Sen, Finsler spaces of recurrent curvature, Tensor (N.S.), 19 (1968) 291-299.
10. R. B. Misra, On a recurrent Finsler space., Rev. Roumaine Math. Pures Appl., 18 (1973) 701-712.
11. P. N. Pandey, A note on recurrence vector, Proc. Nat. Acad. Sci., 51(A)(1981) 6-8.
12. P. N. Pandey, On some Finsler spaces of scalar curvature, Prog of Maths., 18 (1) (1984) 41-48.
13. P. N. Pandey, On decomposability of curvature tensor of a Finsler manifold, Acta Math. Acad. Sci. Hungar., 38 (1-4) (1981) 109-116.
14. P. N. Pandey, Decomposition of curvature tensor in a recurrent Finsler manifold. Tamkang J. Math. 10 (1) (1979) 31-34.
15. P. N. Pandey, A recurrent Finsler manifold with a concircular vector field, Acta Math. Acad. Sci. Hungar., 35 (3-4) (1980) 465-466.
16. P. N. Pandey, A recurrent Finsler manifold with a torse-forming vector field, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 119(3-4) (1985) 100-106.
17. P. N. Pandey, V. J. Dwivedi, On T-recurrent Finsler spaces. Progr. Math. (Varanasi) 21 (2) (1987) 101-112.
18. P. N. Pandey and Sunita Pal, Hypersurface of a recurrent Finsler space, J. Int. Acad. Phy. Sci., 7 (2003) 9-18.
19. U. C. De and N. Guha, On generalised recurrent manifolds. Proc. Math. Soc., 7 (1991) 7-11.
20. U. C. De and D. Kamilya, On generalized concircular recurrent manifolds, Bull. Calcutta Math. Soc., 86 (1) (1994) 69-72.
21. Y. B. Maralabhavi and M. Rathnamma, Generalized recurrent and concircular recurrent manifolds, Indian J. Pure Appl. Math., 30(11) (1999) 1167-1171.
22. H. Rund, The Differential Geometry of Finsler Spaces, Springer - Verlag, Berlin, 1959.
23. S. Numata, On Landsberg spaces of scalar curvature, J. Korean Math. Soc., 12 (1975) 97-100.
24. P. N. Pandey, On a Finsler space of zero projective curvature, Acta Math. Acad. Sci. Hunger., 39(1982) 387-388.

[^0]: ${ }^{1}$ In Rund's book, $H_{j k h}^{i}$ defined here, is denoted by $H_{h k j}^{i}$. This difference must be noted.

