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Abstract: This paper analyses free transverse axisymmetric vibrations of 

non-homogeneous circular plates of linearly varying thickness on the 

basis of classical plate theory. The non-homogeneity of plate material is 

assumed to arise due to variation in Young’s Modulus and density along 

radial direction. An approximate solution has been obtained using Ritz 

method. The basis functions have been chosen to satisfy the essential 

boundary conditions. Convergence to four digit exactitude is 

demonstrated for first three natural frequencies of plates. Numerical 

results are presented for circular plates with clamped, simply supported 

and free boundary conditions. This study investigates the effect of various 

parameters namely non-homogeneity parameter, density parameter   and 

taper parameter on the natural frequencies of circular plates for first three 

modes of vibration. Results in some special cases are compared with 

existing solutions available from analytical and other numerical methods, 

which show an excellent agreement. 

Keywords: Vibrations, non-homogeneous, circular plate, linearly varying 

thickness, Ritz method. 
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1. Introduction 
 

Plates of tapered thickness are commonly used as structural elements in 

constructions of ships, aircrafts, automobiles and other vehicles. Therefore it 

is important to predict the dynamic behavior of such plate type structures to 

ensure good design. In the literature, a considerable amount of work has 
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been reported on vibrations of homogeneous circular plates of variable 

thickness, and few of them are reported in ref.
1-6

. In various technological 

situations, particularly in space shuttle, high speed aircrafts, missile 

technology and microelectronics, certain parts have to operate under elevated 

temperatures which causes non-uniform heating in case of variable thickness 

structural components, resulting in non-homogeneity of the material, i.e. the 

elastic constants of the material become functions of space variable. Very 

few models representing the behavior of non-homogeneous materials have 

been reported in the literature. The earliest model was proposed by Bose
7
, 

where Young’s modulus and density are supposed to vary with radius vector. 

Biswas
8
 in his model considered exponential variations for torsional rigidity 

and the material density. Rao et al.
9
 dealing with vibration of non-

homogeneous isotropic thin plates have assumed linear variations for 

young’s modulus and density. In a series of papers, Tomar et al.
10-13

 have 

analyzed the dynamic behavior of non-homogenous isotropic plates of 

variable thickness of different geometries. The non-homogeneity of plate 

material is assumed to arise due to variations of and density exponentially 

along one direction taking some parameter for variation of Young’s modulus 

and density. Gupta et al.
6
 considered a more general model for non-

homogeneity of plate material where Young’s modulus and density i. e. E= 

E0e
µx

, ρ = 0 e
ηx

 are assumed to vary exponentially in radial direction in 

different manner. In all the studies Poisson’s ratio have been assumed to be 

constant.                                                                                                                                                              

This paper investigates the natural frequencies of linearly tapered 

circular plates taking into account, the non-homogeneity which arises due to 

variations in and density of the plate material, applying Ritz method. The 

basis functions based upon static deflection for isotropic plates have been 

chosen. Convergence and comparison studies have also been presented to 

verify the accuracy of present method.  

 

2. Analysis 
 

Consider a thin circular plate of radius a, thickness h(r), density ρ, 

elastically restrained against rotation and translation by springs of stiffness 

kφ  and k referred to cylindrical polar coordinate  (r, θ, z ), where the axis of 

the plate is taken as the line r = 0 and its middle surface as the plane  z = 0. 

The maximum kinetic energy of the plate is given by 
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where W is the transverse deflection, ρ is the mass density and ω is the 

frequency in rad/s. 

The maximum strain energy of the plate is given by 

(2.2)      
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 where 1/kφ is the rotational flexibility of the spring and 
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is flexural rigidity of the plate, E  and ν are Young’s modulus and Poisson’s 

ratio of the plate material. 

 

3. Method of Solution: RITZ Method 

 

Ritz method requires that the functional 

(3.1) 
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be minimized. 

For non-homogeneity of the plate material, let us assume that E and ρ are the 

functions of space variable r. Now (3.1) becomes 

(3.2)  
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Introducing non-dimensional variables 
__

,R
W r

a
W

a
   and H

h

a
 together 

with linear variation in thickness i.e. H = h0 (1+αR) and assuming 
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exponential variation (following Tomar et. al.
10-13

) for the non-homogeneity 

of the material in radial direction as follows: 

(3.3)                     R R

0 0 E  E e ,      e .µ       
                                                                                                                  

Assuming the deflection function as 
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where Ai  are undetermined coefficients  and α i , βi  are unknown 

constants     to be determined from boundary conditions (Leissa 
14

), 
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Using non-dimensional variables 
__

W and R along with relations (3.3) and 

(3.4), the functional J(W) given by (3.2) becomes 
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The minimization of the functional J(W) given by (3.7)  requires

 

(3.8)               
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This leads to a system of homogeneous equations in  Ai , i =  0, 1, 2, …, m, 

whose non-trivial solution leads to the frequency equations 
 

(3.9)                 |A – Ω
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where    A = [aij] and B = [bij] are square matrices of order (m+1) given by 
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4. Numerical Results and Discussion 
 

The frequency equation (3.9) has been solved to obtain first three natural 

frequencies for various values of plate parameters such as taper parameter α 

(= 0.1,  0.5), non-homogeneity parameter µ(= -0.5 , 0.0 , 1.0), and 

density parameter η (= -0.5 , 0.0, 1.0 ).  The Poisson’s ratio ν has been fixed  

as 0.3. Three boundary conditions namely clamped (  = 10
20

, K = 10
20

),  

simply-supported ( K = 10
20

), and free(  = 0, K = 0) have been 

considered. 

The convergence study has been carried out for circular plates with ν = 

0.3 for different sets of plate parameters. The convergence graphs for 

clamped, simply-supported and free plates are shown in figures 1(a, b, c) for 

α = -0.5, µ = -0.5, η = -0.5. It is observed that 17 terms of admissible 

function give first three frequency parameter at least accurate to four 

significant digits. 

Numerical results are presented in Tables 1-3 and figures 2-4, Tables 1-3 

give the values of frequency parameter Ω for different values of non-

homogeneity parameter µ, density parameter η, and taper parameter α for 

linearly varying thickness plates for first three modes of vibration for 

clamped, simply-supported and free plates respectively. It is observed that 

the frequency parameter Ω for free plate is smaller than that for clamped 

plate and greater than that for simply-supported plate. The frequency 

parameter Ω is found to increase with the increase in non-homogeneity 

parameter µ as well as taper parameter α, while it decreases with the increase 

in density parameter η. 

Figures 2(a, b, c) show the plots for frequency parameter Ω versus taper 

parameter α for µ = -0.5, η = 1.0 and µ = 1.0, η = -0.5 for clamped, simply-

supported and free plate for the first three modes of vibration, respectively. It 

is observed that frequency parameter Ω increases with increasing values of 
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taper parameter α. The rate of increase of Ω with α is more pronounced in 

case of clamped plate as compared to simply-supported and free plates. The 

frequency parameter for µ = 1.0, η = -0.5 are higher than that for µ = -0.5, η 

= 1.0. Also the rate of increase of Ω with increasing values of α in all the 

three plates becomes higher and higher with increase in number of modes. 

Figures 3(a, b, c) depict the variation of frequency parameter Ω versus 

non-homogeneity parameter µ for η = -0.5, α = -0.5, 0.5 for clamped, 

simply-supported and free plate for the first three modes of vibrations, 

respectively. It is observed that frequency parameter Ω increases with 

increasing values of µ. The rate of increase for free plate is higher than 

simply-supported plate but lesser than clamped plate. The rate of increase of 

Ω with µ increases by increasing α for all the three plates. This rate of 

increase gets pronounced with the increase in number of modes. 

Figures 4(a, b, c) show the effect of density parameter η on frequency 

parameter Ω for µ= 1.0,    α = -0.5, 0.5 for all the three plates vibrating in 

fundamental, second and third mode respectively, it is found that frequency 

decreases with increasing value of density parameter. The rate of decrease 

for clamped plate is higher than that for simply-supported plate and less than 

that for free plate. The rate of decrease gets pronounced in higher and higher 

modes.  

Table 4 shows a comparison of results for homogeneous (µ = 0.0, η = 

0.0) circular plate of uniform thickness (α = 0.0) with exact solutions given 

by Leissa
14

 and approximate solutions obtained by Ansari
15

 using Ritz 

method and Azimi
16

 using receptence method. Table 5 gives a comparison of 

results for homogeneous circular plate of linearly varying thickness with 

those obtained by Lal
17 

using frobenius method, Singh and Saxena
1
 and 

Gutierrez et. al
18

 using Rayleigh-Ritz method for clamped and simply-

supported plate. An excellent agreement of results shows the versatility of 

present technique.  

 

5. Conclusion 
 

 The present paper analyzes free transverse vibrations of non-

homogeneous circular plates of linearly varying thickness on the basis of 

classical plate theory, using Ritz method. The frequency parameter increases 

with increasing values of taper parameter α as well as non-homogeneity 

parameter µ, while it decreases with increasing values of density parameter 

η. These results presented here have been known for the first time and can be 

benchmark for design engineer to have desired frequency with four decimal 

exactitude, by a proper choice of plate parameters i.e. taper parameter, non-

homogeneity parameter and density parameter. The accuracy of the approach 
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has been verified by demonstrating a close agreement to our results with 

those of exact solutions and obtained by various techniques: differential 

quadrature method receptence method, frobenius method, Rayleigh-Ritz 

method. 
 

Table 1: Values of frequency parameter Ω for clamped plate 

 
α  µ=-0.5 µ=0.0    µ=1.0 

    η=-0.5    η=0.0 η=1.0    η=-0.5     η=0.0     η=1.0    η=-0.5     η=0.0 

 
 

I 

-0.5 5.7823 5.2676 4.3141 6.7376 6.1504 5.0589 9.1707 8.4058 6.9743 

-0.1 8.7588 8.0053 6.6021 10.2651 9.4027 7.7906 14.1380 13.0084 10.8804 

0.0 9.5005 8.6879 7.1733 11.1464 10.2158 8.4746 15.3791 14.1597 11.8597 

0.1 10.2429 9.3712 7.7453 12.0288 11.0301 9.1598 16.6210 15.3122 12.8406 

0.5 13.2232 12.1153 10.0431 15.5730 14.3022 11.9150 21.6007 19.9361 16.7811 

 
 

II 

-0.5 26.9194 23.7356 18.3158 30.8689 27.3003 21.1908 40.4535 35.9954 28.2756 

-0.1 36.6128 32.5249 25.4691 41.9476 37.3763 29.4418 54.8302 49.1502 39.1806 

0.0 38.9153 34.6170 27.1791 44.5753 39.7711 31.4115 58.2295 52.2669 41.7754 

0.1 41.1865 36.6819 28.8692 47.1658 42.1338 33.3573 61.5775 55.3385 44.3361 

0.5 50.0418 44.7439 35.4855 57.2558 51.3481 40.9670 74.5900 67.2920 54.3284 

 
 

III 

-0.5 62.6438 54.9912 42.0592 71.6302 63.0612 48.5050 93.0924 82.4331 64.1358 

-0.1 83.3343 73.6638 57.1214 94.9453 84.1680 65.6374 122.4932 109.2119 86.1412 

0.0 88.1704 78.0372 60.6645 100.3867 89.1041 69.6613 129.3342 115.4552 91.2930 

0.1 92.9159 82.3316 64.1483 105.7237 93.9486 73.6158 136.0391 121.5774 96.3510 

0.5 111.2162 98.9146 77.6392 126.2838 112.6362 88.9131 161.8258 145.1506 115.8773 
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Table 2: Values of frequency parameter Ω for simply-supported plate 
 

 
     

Table 3:  Values of frequency parameter Ω for free plate 
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Table 4: Comparison of frequency parameter Ω for homogeneous ( µ = 0.0,η = 0.0) circular 

plate of uniform  thickness (α = 0.0) 

 
* Values taken from Sharma6,   ● Values taken from Leissa14,  ◊ Values taken from Azimi16 

    Table 5:Comparison of frequency parameter Ω for homogeneous (µ=0.0,η=0.0) circular 

plate of linear thickness 

 

 

 
 

*  Values taken from Sharma
6
, ° Values taken from Lal

17
,  

• 
Values taken from Singh and 

Saxena
1
,  

◊ 
Values taken from Gutierrez et al .

18 
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Fig. 1. Convergence of the normalized frequency parameter Ω/Ω* for the first three modes 

of vibration for η= -0.5, µ = -0.5, α= -0.5 for (a) clamped, (b) Simply-supported, (c) free 

plate. ◊, Fundamental mode; □, Second mode; ∆, Third mode. Ω 
*
 the frequency using 20 

terms. 
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Fig. 2.  Frequency parameter Ω for clamped, simply-supported and free plate vibrating in 

(a) fundamental (b) second  and (c) third mode ─────, clamped ; ­­­­­­­­­­­, simply-

supported; ………, free. ∆, µ = -0.5, η =1.0;   □, µ = 1.0, η =-0.5; 



198                                         Seema Sharma, R. Lal and Neelam 

 

            

 
Fig. 3.  Frequency parameter Ω for clamped, simply-supported and free plate vibrating in (a) 

fundamental (b) second  and (c) third mode for η=-0.5. 

─────, clamped ; ­­­­­­­­­, simply-supported;  …………, free.   ∆,  α = -0.5;   □, α = 0.5; 



                     Free Transverse Vibrations of Non-Homogeneous Circular                       199 

 

               

 
 

       Fig. 4. Frequency parameter Ω for clamped, simply-supported and free plate vibrating in 

(a) fundamental (b) second  and (c) third mode for µ = 1.0 

         ────, clamped ; ­­­­­­­­, simply-supported; ………free. ∆,  α = -0.5;   □, α = 0.5; 
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