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Abstract: This paper analyses free transverse axisymmetric vibrations of
non-homogeneous circular plates of linearly varying thickness on the
basis of classical plate theory. The non-homogeneity of plate material is
assumed to arise due to variation in Young’s Modulus and density along
radial direction. An approximate solution has been obtained using Ritz
method. The basis functions have been chosen to satisfy the essential
boundary conditions. Convergence to four digit exactitude is
demonstrated for first three natural frequencies of plates. Numerical
results are presented for circular plates with clamped, simply supported
and free boundary conditions. This study investigates the effect of various
parameters namely non-homogeneity parameter, density parameter and
taper parameter on the natural frequencies of circular plates for first three
modes of vibration. Results in some special cases are compared with
existing solutions available from analytical and other numerical methods,
which show an excellent agreement.
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1. Introduction

Plates of tapered thickness are commonly used as structural elements in
constructions of ships, aircrafts, automobiles and other vehicles. Therefore it
is important to predict the dynamic behavior of such plate type structures to
ensure good design. In the literature, a considerable amount of work has
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been reported on vibrations of homogeneous circular plates of variable
thickness, and few of them are reported in ref.*. In various technological
situations, particularly in space shuttle, high speed aircrafts, missile
technology and microelectronics, certain parts have to operate under elevated
temperatures which causes non-uniform heating in case of variable thickness
structural components, resulting in non-homogeneity of the material, i.e. the
elastic constants of the material become functions of space variable. Very
few models representing the behavior of non-homogeneous materials have
been reported in the literature. The earliest model was proposed by Bose’,
where Young’s modulus and density are supposed to vary with radius vector.
Biswas® in his model considered exponential variations for torsional rigidity
and the material density. Rao et al.’ dealing with vibration of non-
homogeneous isotropic thin plates have assumed linear variations for
young’s modulus and density. In a series of papers, Tomar et al.’%*2 have
analyzed the dynamic behavior of non-homogenous isotropic plates of
variable thickness of different geometries. The non-homogeneity of plate
material is assumed to arise due to variations of and density exponentially
along one direction taking some parameter for variation of Young’s modulus
and density. Gupta et al.° considered a more general model for non-
homogeneity of plate material where Young’s modulus and density i. e. E=
Eoe", p = p,e™ are assumed to vary exponentially in radial direction in

different manner. In all the studies Poisson’s ratio have been assumed to be
constant.

This paper investigates the natural frequencies of linearly tapered
circular plates taking into account, the non-homogeneity which arises due to
variations in and density of the plate material, applying Ritz method. The
basis functions based upon static deflection for isotropic plates have been
chosen. Convergence and comparison studies have also been presented to
verify the accuracy of present method.

2. Analysis

Consider a thin circular plate of radius a, thickness h(r), density p,
elastically restrained against rotation and translation by springs of stiffness
kK, and k referred to cylindrical polar coordinate (r, 6, z ), where the axis of
the plate is taken as the line r = 0 and its middle surface as the plane z = 0.
The maximum kinetic energy of the plate is given by

a2z
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where W is the transverse deflection, p is the mass density and ® is the
frequency in rad/s.
The maximum strain energy of the plate is given by
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where 1/k, is the rotational flexibility of the spring and

_ ER®
_12(1—v2)’

is flexural rigidity of the plate, E and v are Young’s modulus and Poisson’s
ratio of the plate material.

3. Method of Solution: RITZ Method

Ritz method requires that the functional
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be minimized.

For non-homogeneity of the plate material, let us assume that E and p are the
functions of space variable r. Now (3.1) becomes
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R = r and H= Etogether
a a

ho (1+aR) and assuming

Introducing non-dimensional variables W =

nmlé

with linear variation in thickness i.e. H
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exponential variation (following Tomar et. al.’**3
of the material in radial direction as follows:

(3.3) E=Eg", p =pe™.

) for the non-homogeneity

Assuming the deflection function as

@4 W=YAW (R)=YAWL+aR + AROR

where A; are undetermined coefficients 7" =W /a and o.; , B; are unknown
constants  to be determined from boundary conditions (Leissa '),
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Using non-dimensional variables W and R along with relations (3.3) and
(3.4), the functional J(W) given by (3.2) becomes
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The minimization of the functional J(W) given by (3.7) requires

(3.8) aJ—(W)=O, i=0,1,2,...,m

oA
This leads to a system of homogeneous equations in Aj,i= 0, 1,2, ..., m,
whose non-trivial solution leads to the frequency equations

(3.9) IA—Q°B| =
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where A = [a;] and B = [b;] are square matrices of order (m+1) given by
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1

(3.11) by =[e™(L+oRWW,RdR, for i=0,1,2,....m; j=0,1,2,..m.
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4. Numerical Results and Discussion

The frequency equation (3.9) has been solved to obtain first three natural
frequencies for various values of plate parameters such as taper parameter o
(= 0.0, £0.1, = 0.5), non-homogeneity parameter u(= -0.5, 0.0 , 1.0), and

density parameter 1 (=-0.5, 0.0, 1.0 ). The Poisson’s ratio v has been fixed
as 0.3. Three boundary conditions namely clamped (X, = 10%, K = 10%),
simply-supported (K, =0,K = 10%), and free(k, = 0, K = 0) have been
considered.

The convergence study has been carried out for circular plates with v =
0.3 for different sets of plate parameters. The convergence graphs for
clamped, simply-supported and free plates are shown in figures 1(a, b, c) for
a=-05 p =-0.5 n=-05 Itis observed that 17 terms of admissible
function give first three frequency parameter at least accurate to four
significant digits.

Numerical results are presented in Tables 1-3 and figures 2-4, Tables 1-3
give the values of frequency parameter Q for different values of non-
homogeneity parameter p, density parameter m, and taper parameter o for
linearly varying thickness plates for first three modes of vibration for
clamped, simply-supported and free plates respectively. It is observed that
the frequency parameter Q for free plate is smaller than that for clamped
plate and greater than that for simply-supported plate. The frequency
parameter Q is found to increase with the increase in non-homogeneity
parameter p as well as taper parameter o, while it decreases with the increase
in density parameter 1.

Figures 2(a, b, c) show the plots for frequency parameter Q versus taper
parameter o, for p =-0.5, 1= 1.0 and p = 1.0, n = -0.5 for clamped, simply-
supported and free plate for the first three modes of vibration, respectively. It
is observed that frequency parameter Q increases with increasing values of
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taper parameter a. The rate of increase of Q with a is more pronounced in
case of clamped plate as compared to simply-supported and free plates. The
frequency parameter for p = 1.0, n = -0.5 are higher than that for g = -0.5, n
= 1.0. Also the rate of increase of Q with increasing values of o in all the
three plates becomes higher and higher with increase in number of modes.

Figures 3(a, b, ¢) depict the variation of frequency parameter € versus
non-homogeneity parameter p for n = -0.5, o = -0.5, 0.5 for clamped,
simply-supported and free plate for the first three modes of vibrations,
respectively. It is observed that frequency parameter € increases with
increasing values of W. The rate of increase for free plate is higher than
simply-supported plate but lesser than clamped plate. The rate of increase of
Q with p increases by increasing a for all the three plates. This rate of
increase gets pronounced with the increase in number of modes.

Figures 4(a, b, c) show the effect of density parameter n on frequency
parameter Q for p= 1.0, = -0.5, 0.5 for all the three plates vibrating in
fundamental, second and third mode respectively, it is found that frequency
decreases with increasing value of density parameter. The rate of decrease
for clamped plate is higher than that for simply-supported plate and less than
that for free plate. The rate of decrease gets pronounced in higher and higher
modes.

Table 4 shows a comparison of results for homogeneous (n = 0.0, n =
0.0) circular plate of uniform thickness (o = 0.0) with exact solutions given
by Leissa'® and approximate solutions obtained by Ansari® using Ritz
method and Azimi™® using receptence method. Table 5 gives a comparison of
results for homogeneous circular plate of linearly varying thickness with
those obtained by Lal'” using frobenius method, Singh and Saxena' and
Gutierrez et. al'® using Rayleigh-Ritz method for clamped and simply-
supported plate. An excellent agreement of results shows the versatility of
present technique.

5. Conclusion

The present paper analyzes free transverse vibrations of non-
homogeneous circular plates of linearly varying thickness on the basis of
classical plate theory, using Ritz method. The frequency parameter increases
with increasing values of taper parameter o as well as non-homogeneity
parameter W, while it decreases with increasing values of density parameter
n. These results presented here have been known for the first time and can be
benchmark for design engineer to have desired frequency with four decimal
exactitude, by a proper choice of plate parameters i.e. taper parameter, non-
homogeneity parameter and density parameter. The accuracy of the approach
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has been verified by demonstrating a close agreement to our results with
those of exact solutions and obtained by various techniques: differential
quadrature method receptence method, frobenius method, Rayleigh-Ritz

method.
Table 1: Values of frequency parameter Q for clamped plate
o u=-0.5 u=0.0 pu=1.0
n=-0.5 n=0.0 | n=1.0 n=-0.5 1=0.0 n=1.0 n=-0.5 1n=0.0

I

0.5 | 5.7823 52676 | 43141 | 6.7376 6.1504 5.0589 | 9.1707 8.4058 6.9743

0.1 | 8.7588 8.0053 | 6.6021 | 10.2651 | 9.4027 7.7906 | 14.1380 | 13.0084 | 10.8804

0.0 | 9.5005 86879 | 7.1733 | 11.1464 | 10.2158 | 8.4746 | 15.3791 | 14.1597 | 11.8597

0.1 | 102429 | 93712 | 7.7453 | 12.0288 | 11.0301 | 9.1598 | 16.6210 | 15.3122 | 12.8406

05 | 132232 | 12.1153 | 10.0431 | 155730 | 14.3022 | 11.9150 | 21.6007 | 19.9361 | 16.7811
Il

0.5 | 26.9194 [ 23.7356 | 18.3158 | 30.8689 | 27.3003 | 21.1908 | 40.4535 | 35.9954 | 28.2756

0.1 | 36.6128 | 32.5249 | 25.4691 | 41.9476 | 37.3763 | 29.4418 | 54.8302 | 49.1502 | 39.1806

0.0 | 389153 | 34.6170 | 27.1791 | 445753 | 39.7711 | 31.4115 | 58.2295 | 52.2669 | 41.7754

0.1 | 41.1865 | 36.6819 | 28.8692 | 47.1658 | 42.1338 | 33.3573 | 61.5775 | 55.3385 | 44.3361

05 | 50.0418 | 44.7439 | 35.4855 | 57.2558 | 51.3481 | 40.9670 | 745900 | 67.2920 | 54.3284
1]

0.5 | 62.6438 | 54.9912 | 42.0592 | 71.6302 | 63.0612 | 48.5050 | 93.0924 | 82.4331 | 64.1358

0.1 | 833343 | 73.6638 | 57.1214 | 94.9453 | 84.1680 | 65.6374 | 122.4932 | 109.2119 | 86.1412

0.0 | 881704 | 78.0372 | 60.6645 | 100.3867 | 89.1041 | 69.6613 | 129.3342 | 115.4552 | 91.2930

0.1 | 929159 | 82.3316 | 64.1483 | 105.7237 | 93.9486 | 73.6158 | 136.0391 | 121.5774 | 96.3510

05 | 111.2162 | 98.9146 | 77.6392 | 126.2838 | 112.6362 | 88.9131 | 161.8258 | 145.1506 | 115.8773
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Table 2: Values of frequency parameter Q for simply-supported plate
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Table 3: Values of frequency parameter Q for free plate
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Table 4: Comparison of frequency parameter Q for homogeneous ( u = 0.0,n = 0.0) circular
plate of uniform thickness (o= 0.0)

w=03
mode | Clamped plate Simply-supported plate Free plate

1021588 10.2158° 48351 483517 5.0031 9.0031°
I 102158*  10.216° 1977% 4935

297200 29.7200°

397711 3977117 10.TE* 70 7207 3844532 3844377
I 39.7711°  39.7711°

80.1041  80.10417 741561  T74.1561° g7.7502  §7.7502°
11 $9.104°  §9.103 7420% 74.136°

* Values taken from Sharma®, e Values taken from Leissa'®, 0 Values taken from Azimi®

Table 5:Comparison of frequency parameter Q for homogeneous (1=0.0,n=0.0) circular
plate of linear thickness

o Clarnped plate
I 11 111
6.1504 6.1504* | 27.3003 27.3002* 63.0612 63.0611%
05 | 6.1522° a1s04° 27.3006°  27.300° 63.0605° 63.067
04027 04027% | 37.3763 373763 24168 34.1680%
0.1 0.4016° 94027 | 37.3742° 3376 84.1188° 34.168
94027 37.376"
11.0301 11.03001* | 421338 421337* 03.0486 030436
0.1 11.0207°  11.030° | 42.1408°  42.134° 93.9014° 93.949
11.03" 42.133"
143022 143021* | 51.3481 513480% 112.636 112.6360%
0.5 | 14.3033° 143027 | 51.3588°  51.349 112.4586° 112.64
5-5 plate
I II I
3.5498 3.5498* | 21.2386 212386* 53.4405 53.4404%
05 | 3.35507° 3.5498 | 21.2419°  21.23% 53.4005° 53441
4 6637 46637+ | 280774 280774 | 70.2127 70.2127*
01 | 4.6627° 46637 | 28.0765°  2B.077 70.2104° 70213
4.664° 28.078"
5.2061 52061* | 31.3465 313465* | 780323 78.0323*
0.1 5.2065° 520617 | 31.3467°  31.346 78.0254° 78.037
5.206" 31.346"
6.2927 6.2007* | 377424  377423* 03.0347 03.0342*%
0.5 £.2908° 6.2928° | 37.7414° 37743 92.7375° 93.047

* Values taken from Sharma®, ° Values taken from Lal'’, "~ Values taken from Singh and
Saxena’, % Values taken from Gutierrez et a

| .18
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Fig. 1. Convergence of the normalized frequency parameter ©/Q* for the first three modes
of vibration for n=-0.5, i = -0.5, a=-0.5 for (a) clamped, (b) Simply-supported, (c) free
plate. 0, Fundamental mode; o, Second mode; A, Third mode. Q  the frequency using 20

terms.
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Fig. 2. Frequency parameter Q for clamped, simply-supported and free plate vibrating in
(a) fundamental (b) second and (c) third mode
supported; ......

, clamped ;
, free. A, n=-0.5,1=1.0; o,n=1.0,1=-0.5;
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Fig. 3. Frequency parameter Q for clamped, simply-supported and free plate vibrating in (a)
fundamental (b) second and (¢) third mode for n=-0.5.
—, clamped ; --------- , simply-supported; ............ ,free. A, a=-0.5; 0,a=0.5;
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Fig. 4. Frequency parameter Q for clamped, simply-supported and free plate vibrating in
(@) fundamental (b) second and (c) third mode for u=1.0

, clamped ; -------- , simply-supported; ......... free. A, a=-0.5; O, a=0.5;
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