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Abstract In many astrophysical and geophysical situations such as in 
the theories of sunspot magnetic fields, heating of solar corona and the 
instability of stellar astrospheres in magnetic fields, the instability of 
fluid of variable density is of considerable importance. Therefore in this 
paper, the hydromagnetic instability of a rotating sphere in axial flow 
has been studied. Assuming the fluid to be permeated by a uniform 
vertical magnetic field, the solution has been obtained through the use of 
a variational principle. The dispersion relation has been obtained for a 
fluid in which the density is stratified exponentially along the direction 
of the magnetic field. The dispersion relation has been solved 
graphically and it is found that the growth rate of the unstable 
perturbations decreases with the effect of viscosity showing thereby 
stabilizing influence of viscosity. The growth rate is, however, found to 
increase with the effects of rotation, compressibility and magnetic 
resistivity. Therefore, rotation, compressibility and magnetic resistivity 
are destabilizing the system. 
Keywords: Instability, compressibility, magnetic resistivity and 
viscosity.  
Mathematics Subject Classification: 76E07, 76E19, 76E25 
 
 

1. Introduction 
 

In many astrophysical situations such as in the theories of sunspot 
magnetic fields, heating of solar corona and the instability of stellar 
astrospheres in magnetic fields, the instability of fluid of variable density is 
of considerable importance. A comprehensive account of these 
investigations was given by Chandrasekhar1. 

Ariel2 has investigated the instability of an inviscid compressible layer 
of a fluid of variable density in the presence of a uniform vertical magnetic 
field. Bhatia3 studied the combined influence of viscosity and 
compressibility on the Rayleigh-Taylor instability of a stratified fluid. 
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Sharma4 has studied the Rayleigh-Taylor instability of compressible 
rotating finitely conducting inviscid plasma of variable density. 

The flow field for the steady laminar incompressible boundary layer on 
a sphere rotating in axial flow has been studied theoretically by 
Schlichting5, Hoskin6, Lee et al.7, Kumari and Nath8 and El-Shaarawi et al.9 
and by experimentally by Luthander and Rydberg10, and El-Shaarawi11. 
Their results showed marked influence of rotation on laminar separation, 
drag, and the critical Reynolds number, for which the drag coefficient 
decreases abruptly. Axial flow with the uniform velocity is directed from 
left to right along the axis of rotation as shown in Fig.1  

 
Fig. 1 

Therefore, it is interesting to examine the combined effect of magnetic 

resistivity, viscosity and rotation of sphere on the instability of compressible 

fluid of variable density. 

2. Perturbation Equation 
 

The relevant linearized perturbation equations governing the motion of 
conducting viscous compressible rotating fluid are 
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where  , , , ,x y zp h h h h 


and  , ,u u v w


are the perturbations, respectively, 

in density  ,  pressure p , magnetic field H


 and velocity u


. Here 

 0,0,g g


 
is the gravity,   is the coefficient of viscosity,   is the 

magnetic resistivity, C is the velocity of sound and 


 is the angular 
velocity of sphere. 

Assuming that, the ambient magnetic field is uniform and is acting 

along the vertical direction i.e.  0,0,H H


 
and that the sphere is rotating 

about z-axis i.e.  0,0,  


, we seek solutions of the above equations by 

analyzing the disturbance in terms of normal modes, whose dependence on 
space coordinates x, y and z and time t is of the form 

     2.6 exp ,yxF z ik x ik y n t 
 

where  F z is some function of , xz k and yk are the horizontal wave 

numbers  2 2 2
x yk k k  and n (may be complex) is the frequency of the 

harmonic disturbance. 
Using (2.6) in equation (2.1)-(2.5), we get 
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where D stands for the operator 
d

dz
. 

Eliminating some of the variables from the above equations, we obtain 
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From equation (2.7) and (2.8), we get 
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and x y y xik h ik h  
 

are respectively vertical 

components of the vector curl u


and .h


 
 

3. Boundary Conditions 
 

We assume that the fluid under consideration is confined between two 
planes at 0z   and z d . Since at the boundaries the fluid cannot have a 
normal component of velocity, we have 0w   at 0z   and .z d  

For the electromagnetic conditions at the boundaries, we have either 0zh 
 

or 0zDh  at 0z   and ,z d according to weather the boundaries are of 

perfectly conducting or insulating material. 
If we preclude the possibility of a surface charge and surface current on 

the boundary, we have 
0, 0D    at 0z   and .z d  

 
4. Variational Principle 

 

Let us suppose that the solutions belonging to the characteristic value in
 

are , ,i i iw h 
 and i  and solutions corresponding to the characteristic value 

jn are , ,j j jw h  and ,j where the suffix z on hhas been dropped for 

convenience. 
Multiplying equation (2.16) for i  by jw and integrating with respect to z

from 0z   to ,z d  we get  
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Integrating by parts and using boundary conditions, we get 
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Setting i j  in equation (4.2) and considering the arbitrary variations ,w  

,h  and   in the corresponding physical quantities , ,w h   and   
compatible with boundary conditions and proceeding along usual lines we 
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can show that 0.n   Thus equation (4.2) (with i j ) provides the 

variational formulation of the present problem. 
Making use of the existence of variational principle, we now treat the 

problem of instability of fluid in which undisturbed density distribution  is 

given by 
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where 1 denotes the density at the lower boundary and   is the 

stratification constant. 
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In order to ensure that the density variation within the fluid is small 
compared to the average density, we make an assumption that 
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Evaluating the integrals in equation (4.2) by substituting these solutions and 
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we get the dispersion relation as 
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where the coefficients 'iB s are given in the appendix. The parameter 

, ,S C F and R  measure respectively the effects of viscosity, compressibility, 

rotation and magnetic resistivity in terms of Alfven velocity .V  

5. Discussion 
 

Stable stratification ( 0a



  ): Appling the Hurwitz’ criterion to the 

dispersion relation (2.13), we find that as all the terms of this equation 

become positive when  0 ,a  the values of  are either all the real and 

negative or there are two (or four or six or eight or ten) real and negative 
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values and remaining are complex with negative real parts, thereby 
implying stability in each case. We thus find that a stable stratification 
remains stable whether the effects of magnetic resistivity, rotation, 
compressibility and viscosity are included simultaneously. 

Unstable stratification ( 0a



  ): Appling the Hurwitz’ criterion to the 

dispersion relation (2.13), we find that when  0 ,a  at least one root of

is always real and positive for all wave numbers x. Since the dispersion 
relation is quit complex, we have performed graphical calculations to locate 
the roots of  for the unstable mode of wave propagation for several values 
of physical parameters involved. These calculations are presented in Fig. (2 
- 5), where we have shown growth rate (positive real value of ) against 
wave number x for different values of parameters , ,S C F and R taking fixed 

values of G = 5.0, 0.1.a   
 

 
Figure 2 
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Figure 3 

 
 

Figure 4 
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Figure 5 
 

Fig. (2, 3 & 4) shows that for the fixed values of other parameters, the 

growth rate (positive real root of 210  ) increases as the parameter 

F(characterizing rotation), R(characterizing magnetic resistivity) and
1

C
(the 

parameters characterizing compressibility), increase. Thus the rotation, 
magnetic resistivity and   compressibility are destabilizing the system. Fig. 
(5) show that the growth rate decreases with increasing value of parameter 
S(characterizing viscosity) implying thereby that the viscosity has a 
stabilizing influence on the unstable mode of disturbance. 
 

We may thus conclude that the effect of rotation, magnetic resistivity, 
and compressibility are destabilizing on the stability of a stratified layer of a 
hydromagnetic fluid configuration. The effect of viscosity is, however, 
stabilizing on the same configuration.  
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