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Abstract: In this paper, differential quadrature method (DQM) has been 

employed for free vibration analysis of circular plate of parabolically 

varying thickness resting on Pasternak foundation. The governing 

differential equation of motion of such plates has been derived using 

Hamilton’s energy principle. Mode shapes and natural frequencies for 

different values of parameters have been presented for first three modes of 

vibration for two boundary conditions namely clamped and simply 

supported. The convergence studies have been carried out to fix the grid 

points required for achieving four decimal accuracy. Also, for some 

special cases the solutions are verified by comparing them with the 

published results and are found to be in excellent agreement. 

Keywords: Circular Plate, Variable Thickness, Pasternak Foundation, 

Differential Quadrature Method. 
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1. Introduction 
 

The study of vibration of plates are often encountered in engineering 

applications and their use in machine design, nuclear reactor technology, 

naval and aerospace structures are quite common. The problem of plates 

resting on an elastic foundation finds application in foundation engineering 

such as floor slabs of multi-storey buildings, foundation of deep wells and 

storage tanks, pavement slabs of roads and air fields. In many structural 

components, it is desirable or even necessary to vary the thickness of plate. 

A lot of literature is available on the plates of uniform/non-uniform 

thickness resting on Pasternak foundation
1-7

, to mention a few. Most of the 

studies have been devoted to rectangular plates and very little has been 

reported for circular plates.  
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In this paper, a differential quadrature technique has been used for 

analysis of vibration of a circular plate with variable thickness resting on 

Pasternak foundation. The analysis is based on classical plate theory. An 

attractive advantage of the DQM, introduced by Bellman et al.
8-9

, is that it 

can produce the acceptable accuracy of numerical results and therefore can 

be very useful for rapid evaluation in engineering design. 
 

2. Mathematical Formulation 
 

Consider an isotropic homogeneous circular plate of radius a, thickness 

h(r) and density ρ resting on Pasternak foundation with spring and shear 

stiffness Kf and Gf respectively, referred to cylindrical polar coordinate 

system (r, , z). Small deflection axisymmetric motion of such a plate is 

governed by the equation
7
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where a comma followed by a suffix represents the partial differentiation 

with respect to that variable and 
 2

3

112 


hE
D  is the flexural rigidity of the 

plate, w the transverse deflection, t the time, E,  are the Young’s modulus 

and Poisson’s ratio of the material of the plate. 

Introducing the non-dimensional variables x = r/a, w  = w/a , h = h/a  

together with the parabolic thickness variation along radial direction, i.e.  

(2.2)  h  = h0(1+αx
2
),    

(2.1) reduces to  
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where w (x,t) = W(x)e
it

 (for harmonic vibrations),  is the radian 

frequency, ho is thickness of  plate at the center,   is the taper parameter, 
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Equation (2.3), which is fourth order linear differential equation with 

variable coefficients, involving several parameters becomes quite complex 

and therefore its exact solution is not possible. Equation (2.3) together with 

boundary conditions at the edge x=1 and regularity condition at the center 

x=0 constitutes boundary value problem, which has been solved numerically 

employing differential quadrature method (DQM). 
 
 

3. Method of Solution 
 

Let x1, x2 , ….., xm be the m grid points in the applicability range [0,1] of 

the plate. The DQ method approximates the n
th

 order derivative of W(x) 

w.r.t. x at discrete point xi as 

(3.1)   ,)()(
1

)()(

j

m

j

n

iji

n

x xWcxW 
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Now, discretizing eq.(2.3) at the grid point x = xi and substituting the 

values of first four derivatives of W from eq.(2.4), we get 
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The satisfaction of eq. (3.6) at (m-3) grid points xi , i=2, 3, ….., (m-2) 

together with the regularity condition at the center provides a set of (m-2) 

equations in terms of unknowns Wj(≡ W(xj)), j=1, 2, ……, m. The resulting 

system of equations can be written in the matrix form as 

(3.7)        0* WB ,                                                                               
   

where B and *W are matrices of order (m-2) x m and m x 1, respectively. 

The (m-2) internal grid points chosen for collocation are the zeros of shifted 

Chebyshev polynomial of order (m-2) with orthogonality range (0,1) given 

by   

 

. 
 

         
 

4. Boundary Conditions and Frequency Equations 

 

By satisfying the relations 

(i) 0
dx

dW
W                                           :   for clamped edge, 
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and 

(ii) 0
2

2


dx

dW

xdx

Wd
W

                            :   for simply–supported edge, 

a set of two homogeneous equations in terms of  Wj is obtained. These 

equations together with field eq. (3.7) give a complete set of m equations in 

m unknowns. For a clamped plate, the above set of homogeneous equations 

can be written as 

(4.1)    * 0 ,
c

B
W

B

 
    

 
  

where cB  is a matrix of order 2 x m. 

For a non-trivial solution of eq. (4.1), the frequency determinant must vanish 

and hence 

 (4.2)   0.
c

B

B
      .                                                                                      

Similarly for simply supported plate, the frequency determinant can be 

written as 

(4.3)   0
sB

B
.        

5. Results and Discussion 
 

The frequency equations (4.2) and (4.3) are transcendental in nature, 

from which infinitely many roots of Ω can be obtained. Frequencies for first 

three modes of vibration have been computed in both the cases of boundary 

conditions in view of their importance. Results have been computed accurate 

to fourth decimal place for the following values of plate parameters: α=-

0.5(0.1)0.5; K=0(100)500; G=0(5)25; υ=0.3. 

In general, the accuracy of the results is increased by increasing number 

of grid points. To guarantee the accuracy of frequency obtained by DQM, it 

is necessary to conduct some convergence studies to determine the numbers 

of grid points required to attain four decimal exactitude for first three modes 

of vibration. Table 1 is such a study for clamped and simply supported plates 

of parabolicallyvarying thickness. The table lists first three natural 

frequencies for different sets of parameters viz. α=-0.1, G=25, K=500; 

α=0.5, G=25, K=500; α=-0.2, G=5, K=300;  α=0.3, G=5, K=100. In most of 

the cases, a monotonic convergence is observed. One notices that the first 
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three natural frequencies require at least 15 grid points for four digit 

exactitude. 
 

Table 1 Convergence of Normalized Frequency Parameter Ω for First Three 

Modes of Vibrations 

   m Clamped Plate Simple supported plate 

I II III I II III 

α= - 0.1, G = 25, K = 500 

12 27.7060 52.9324 99.3728 26.1208 46.1095 87.0511 

13 27.7059 52.9324 99.3740 26.1208 46.1095 87.0563 

14 27.7059 52.9324 99.3742 26.1208 46.1095 87.0556 

15 27.7059 52.9324 99.3741 26.1208 46.1095 87.0554 

16 27.7059 52.9324 99.3741 26.1208 46.1095 87.0554 

17 27.7059 52.9324 99.3741 26.1208 46.1095 87.0554 

18 27.7059 52.9324 99.3741 26.1208 46.1095 87.0554 

19 27.7059 52.9324 99.3741 26.1208 46.1095 87.0554 

20 27.7059 52.9324 99.3741 26.1208 46.1095 87.0554 

α= 0.5, G = 25, K = 500 

12 28.7458 59.7614 115.6990 24.7893 48.2303 97.7206 

13 28.7458 59.7615 115.6950 24.7893 48.2294 97.627 

14 28.7458 59.7616 115.6960 24.7893 48.2297 97.6162 

15 28.7458 59.7616 115.6970 24.7893 48.2297 97.6257 

16 28.7458 59.7616 115.6970 24.7893 48.2297 97.6257 

17 28.7458 59.7616 115.6970 24.7893 48.2297 97.6257 

18 28.7458 59.7616 115.6970 24.7893 48.2297 97.6257 

19 28.7458 59.7616 115.6970 24.7893 48.2297 97.6257 

20 28.7458 59.7616 115.6970 24.7893 48.2297 97.6257 

α= - 0.2, G = 5, K = 300 

12 20.5432 42.3635 86.3296 19.1245 35.2765 73.9534 

13 20.5432 42.3635 86.3305 19.1245 35.2764 73.9569 

14 20.5432 42.3635 86.3305 19.1245 35.2764 73.9570 

15 20.5432 42.3635 86.3305 19.1245 35.2764 73.9569 

16 20.5432 42.3635 86.3305 19.1245 35.2764 73.9569 

17 20.5432 42.3635 86.3305 19.1245 35.2764 73.9569 

18 20.5432 42.3635 86.3305 19.1245 35.2764 73.9569 

19 20.5432 42.3635 86.3305 19.1245 35.2764 73.9569 

20 20.5432 42.3635 86.3305 19.1245 35.2764 73.9569 

α=0.3, G=5, K=100 

12 16.8174 47.6855 101.3820 12.2854 36.1687 84.2028 

13 16.8174 47.6857 101.3800 12.2854 36.1682 84.1619 

14 16.8174 47.6857 101.3820 12.2854 36.1684 84.1532 

15 16.8174 47.6857 101.3820 12.2854 36.1684 84.1562 

16 16.8174 47.6857 101.3820 12.2854 36.1684 84.1564 

17 16.8174 47.6857 101.3820 12.2854 36.1684 84.1563 

18 16.8174 47.6857 101.3820 12.2854 36.1684 84.1563 

19 16.8174 47.6857 101.3820 12.2854 36.1684 84.1563 

20 16.8174 47.6857 101.3820 12.2854 36.1684 84.1563 
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Table 2: Value of frequency parameter Ω for clamped plate 

 

Mo

de 

α K 

0      200    500 

G        G    G 

 

 

 

 

I 

 0      0  10 25      0 10 25 

-0.5 6.6320 16.2651 18.2678 20.8848 24.3693 25.7691 27.7019 

-0.3 8.0760 16.6173 18.5634 21.1097 24.3349 25.7143 27.6189 

-0.1 9.5055 17.1357 19.0257 21.5027 24.4647 25.8272 27.7059 

0 10.2158 17.4460 19.3082 21.7514 24.5838 25.9385 27.8051 

0.1 10.9235 17.7857 19.6201 22.0302 24.7352 26.0823 27.9373 

0.3 12.3317 18.5416 20.3211 22.6666 25.1253 26.4576 28.2901 

0.5 13.7310 19.3832 21.1088 23.3920 25.6178 26.9351 28.7458 

 

 

 

II 

-0.5 30.0152 33.8117 39.0136 45.6885 38.8265 43.4135 49.4836 

-0.3 34.1610 37.2529 41.7257 47.6460 41.4628 45.5197 50.9982 

-0.1 37.9627 40.5844 44.5637 49.9304 44.2267 47.9037 52.9324 

0 39.7711 42.2107 45.9974 51.1398 45.6261 49.1504 53.9933 

0.1 41.5301 43.8126 47.4323 52.3771 47.0292 50.4189 55.0965 

0.3 44.9242 46.9491 50.2929 54.9046 49.8329 52.9960 57.3913 

0.5 48.1833 50.0051 53.1293 57.4702 52.6208 55.5993 59.7616 

 

 

 

III 

-0.5 69.8624 71.6173 78.0160 86.6786 74.1747 80.3658 88.7945 

-0.3 78.1241 79.5409 84.8042 92.1282 81.6203 86.7565 93.9271 

-0.1 85.5877 86.7862 91.3539 97.8030 88.5536 93.0343 99.3741 

0 89.1041 90.2194 94.5297 100.6458 91.8670 96.1034 102.1253 

0.1 92.5050 93.5491 97.6424 103.4740 95.0938 99.1235 104.8730 

0.3 99.0173 99.9456 103.6920 109.0630 101.3220 105.0200 110.3260 

0.5 105.2133 106.0509 109.5309 114.5425 107.2953 110.7367 115.6968 

 

Table 2 and 3 present the values of frequency parameter Ω for clamped and 

simply supported plates respectively for α=-0.5, -0.3, -0.1, 0.0, 0.1, 0.3, 0.5; 

K=0, 200, 500 and G=0, 10, 25, for first three modes of vibration. 
 

Comparison of frequency parameter Ω with the results obtained by Ansari
10

, 

Azimi
11

 and exact results given by Leissa
12

 for clamped and simply 

supported plates of uniform thickness (α=0.0) without foundation (K=0, 

G=0) , is  given in Table 4  for first three modes of vibration.A comparison 

of our results for clamped and simply supported plates of parabolically 

varying thickness without foundation (K=0, G=0) is shown in Table 5 with 

the results obtained by Ansari
10

, Lal
13

, Gutierrez et al.
14

. 

Figure 1 depicts the variation of frequency parameter Ω with respect to 

taper parameter α for clamped and simply supported plates vibrating in 

fundamental mode. It is observed that in the absence of foundation, 

frequency parameter Ω increases by increasing the value of taper parameter 

α for both the plates. In presence of Winkler foundation, frequency 

parameter Ω increases by increasing α for clamped plate while for simply 

supported plate it decreases by increasing α. In presence of Pasternak 

foundation, for clamped plate frequency parameter Ω first decreases and then 



168                                 Seema Sharma, R. Lal and Shivani Srivastava
 

  

 

increases with a local minima in the vicinity of α=-0.3 while frequency 

parameter Ω decreases continuously by increasing α for simply supported 

plate. 
 

Table 3:  Value of Frequency Parameter Ω for Simply Supported Plate 
 

Mode α K 

0        200          500 

G          G            G 

 

 

 

 

I 

 0      0  10 25      0 10 25 

-0.5 4.0392 15.5894 17.5564 20.1405 24.0689 25.3796 27.2268 

-0.3 4.4034 15.3087 17.2208 19.7376 23.5778 24.8556 26.6570 

-0.1 4.7576 15.0768 16.9303 19.3775 23.1140 24.3620 26.1208 

0 4.9351 14.9785 16.8025 19.2145 22.8988 24.1314 25.8689 

0.1 5.1142 14.8914 16.6861 19.0629 22.6959 23.9127 25.6286 

0.3 5.4787 14.7490 16.4865 18.7937 22.3273 23.5122 25.1846 

0.5 5.8537 14.6467 16.3288 18.5681 22.0067 23.1599 24.7893 

 

 

 

II 

-0.5 23.8870 28.6439 34.7876 42.1888 34.6074 39.7969 46.3680 

-0.3 26.3765 30.3273 35.5619 42.1746 35.4460 40.0104 45.9807 

-0.1 28.6437 32.0494 36.6444 42.6145 36.5686 40.6561 46.1095 

0 29.7200 32.9132 37.2563 42.9558 37.1925 41.0857 46.3163 

0.1 30.7664 33.7759 37.9007 43.3582 37.8445 41.5669 46.5963 

0.3 32.7863 35.4934 39.2588 44.3045 39.2081 42.6445 47.3281 

0.5 34.7290 37.1968 40.6782 45.3880 40.6244 43.8310 48.2297 

 

 

 

III 

-0.5 59.9533 62.0274 69.5996 79.4460 65.0210 72.2791 81.7972 

-0.3 66.0394 67.7227 73.7764 81.9962 70.1731 76.0325 84.0317 

-0.1 71.5534 72.9855 78.1248 85.2533 75.0824 80.0874 87.0554 

0 74.1561 75.4925 80.2995 87.0135 77.4540 82.1463 88.7207 

0.1 76.6756 77.9303 82.4604 88.8225 79.7755 84.2063 90.4456 

0.3 81.5074 82.6292 86.7235 92.5210 84.2841 88.3018 94.0019 

0.5 86.1120 87.1299 90.8964 96.2609 88.6351 92.3404 97.6257 
 
 

Table 4 Comparison of Frequency Parameter for Circular Plate of Uniform Thickness 
 

Mode Clamped plate S-S plate 

I 10.2158     10.2158*      4.9351            4.977* 

  10.2158
○
     10.216

◊
      4.9352

○
            4.935

◊
 

  

 

  

 

  

II 39.7711     39.771*      29.72             29.76* 

  39.7711
○
     39.771

◊
      29.7200

○
             29.720

◊
 

  

 

  

 

  

III 89.1041     89.104*      74.1561     74.20* 

   89.1041
○
     89.103

◊
      74.1961

○
       74.156

◊
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Table 5: Comparison of frequency parameter for circular plate of parabolic thickness 

variation 

 

.
 

○  values obtained by Ritz  method10, *  values obtained  by Frobenius method13, 

◊   values obtained  by  Rayleigh-Ritz method14
 

 

Figure 2 shows the effect of taper parameter α on frequency parameter Ω 

for clamped and simply supported plate vibrating in second mode. It is seen 

that in the absence of foundation and in presence of Winkler foundation, 

frequency parameter Ω increases by increasing α for both the plates. For the 

plates resting on Pasternak foundation, the effect of increasing α is that 

frequency parameter Ω increases in case of clamped boundary while 

frequency parameter Ω first decreases and then increases with a local 

minima in the vicinity of α=-0.3. 

 

Figure 3 shows the behavior of frequency parameter Ω versus taper 

parameter α for both the plates vibrating in third mode. It is found that 

frequency parameter Ω increases by increasing α in all the cases for both the 

plates. 
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Figure 1: Frequency parameter Ω for plate vibrating in fundamental mode. 

∆  :    K=0, G=0;      □  :  K=500, G=0 ;           ○ :  K=500, G=25. 

────── : Clamped Plate ;     ------------ :    Simply Supported Plate. 

 

 
Figure 2: Frequency parameter Ω for plate vibrating in second mode. 

∆  :    K=0, G=0;      □  :  K=500, G=0 ;           ○ :  K=500, G=25. 

────── : Clamped Plate ; ------------ :    Simply Supported Plate. 

Ω
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Figure 3: Frequency parameter Ω for plate vibrating in third mode 

∆  :    K=0, G=0;      □  :  K=500, G=0 ;           ○ :  K=500, G=25. 

────── : Clamped Plate ;  ------------ :  Simply Supported Plate. 
 

Also the frequency parameter Ω increases by increasing spring stiffness 

parameter K as well as shear stiffness parameter G for both the plates. The 

rate of increase with K as well as G gets reduced by increasing α for both the 

plates for all the three modes of vibration. 

Figures (4 A and B) show the plots of normalized transverse 

displacements for α=-0.5, 0.5;  K=0, G=0; K=500, G=0; K=500; G= 25, for 

the first three modes of vibration for clamped and simply supported plates 

respectively . The nodal radii of the plates decrease by increasing K as well 

as G for α=-0.5 for both the plates except for clamped plate where the radii 

of nodal circle decreases in the order of no foundation, Pasternak foundation, 

Winkler foundation for first two modes. Further nodal radii increases by 

increasing the value of K as well as G for α=0.5 for both the plates. 
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Fig. 4: A. Normalized Transverse Displacement for Clamped Plate. 

∆ : K=0, G=0;   □ :  K=500, G=0;  ○ :  K=500, G=25. 

──────  : α= -0.5;      ------------------   α=0.5 

 
       

Fig. 4 B. Normalized Transverse Displacement for Simply Supported Plate. 

∆  :  K=0, G=0;  □ :  K=500, G=0; ○ :  K=500, G=25. 

──────  : α= -0.5;      ----------------  : α=0.5. 
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5. Conclusion 
 

The vibration of circular plates of parabolically varying thickness resting 

on Pasternak foundation has been studied in the present paper employing 

DQM. The method is straight forward and is capable of determining 

frequencies and mode shapes as close to the exact ones as desired. Results 

have also been presented for Winkler foundation as a special case of 

Pasternak foundation and for the plate without foundation. The following 

conclusions are drawn from numerical results reported in the previous 

section. 

1. The frequency parameter increases by increasing the value of taper 

parameter α. 

2. Frequency parameter Ω increases by increasing the foundation 

parameters K and G. 

The results have been known for the first time and will be useful for further 

research workers & design engineer. 
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