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Abstract: The thermal convection in a layer of electrically conducting 

micropolar fluid heated from in the presence of a uniform magnetic field 

and rotation in a porous medium is considered. Using Boussinesq 

approximation, the linearized stability theory and normal mode analysis 

method for perturbation equations relevant to the problem, the dispersion 

relation is derived and the exact solutions are obtained for the case of two 

free boundaries.The presence of coupling between thermal and micropolar 

effects, uniform rotation , magnetic field and medium permeability may 

bring overstability in the system. The critical Rayleigh number for the 

onset of ordinary cellular convection and the onset of overstability are 

computed numerically using Newton-Raphson method through the 

software FORTRAN-95. It is found that these critical Rayleigh numbers 

increase with the increase in magnetic field , rotation and micropolar 

coefficients (dynamic microrotation viscosity and the coefficient of 

angular viscosity )implying thereby their stabilizing effect on the system , 

whereas critical Rayleigh numbers decrease with increase in medium 

permeability. It is evident from graphs that overstability is dominant 

parameter accounting for low wave numbers, however reverse occur for 

large wave numbers. 

Keywords: Dynamic microrotation viscosity, micropolar coefficients, 

Newton-Raphson method, magnetic field 

2010 MS Classification No.: 76S05 
 

1. Introduction 

Micropolar theory was introduced by Eringen
1
 in order to describe some 

physical systems which do not satisfy the Navier Stokes equations. To 

explain the kinematics of such media,micropolar fluid involves a spin vector, 

responsible for microrotation and microinertia tensor (gyration parameter) 

which accounts for the atoms and molecules inside the macroscopic fluid 

particles in addition to the classical velocity vector field. These fluids are 
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able to describe the behaviour of suspension, liquid crystals, animal blood 

etc,  Eringen
2
 and Perez-Garcia et al.

3
, Laidlaw

4
, Lekkerkerker

5
 and Bradley 

(in dielectric fluids
6
). The medium has been considered to be non –porous in 

all the above studies. When a fluid permeates a porous material, the gross 

effect is represented by the Darcy’s law. As a result of this microscopic law, 

the usual viscous term in the equations of micropolar fluid is replaced by   

])')(/1([ 1 q  k   , where   is the viscosity and '     is micropolar  

coefficient  of viscosity, 1k  is the medium permeability and q  is the 

Darcian(filter) velocity of the fluid. The problem of stability of a fluid layer 

in a porous medium subjected to a temperature gradient is of importance in 

geophysics, ground water hydrology , petroleum engineering,chemical  

engineering etc The effect of magnetic field on the stability of such a flow is 

of great interest in geophysics for example in the study of Earth’s core where  

the Earth’s mantle, which consists of conducting fluid , behaves like aporous 

medium which can become  convectively unstable as a result of differential 

diffusion. Also, the rotation of the Earth distorts the boundaries of hexagonal 

convection cell in a fluid through a porous medium and the distortion plays 

an important role in the extraction of energy in the geothermal regions. The 

rotating fluid also finds applications in metrophysics and oceanography. 

Sharma and Kumar
7,8,9

 have studied thermal convection of  micropolar fluids 

with different parameters on the system in porous media. 

  The problem of hydromagnetics of rotating micropolar fluids has 

relevance and importance in chemical engineering, geophysics and bio-

mechanics. Keeping in mind several geophysical situations involving 

uniform magnetic field, the numerical investigations of the stability of 

electrically conducting rotating micropolar fluids heated from below is 

considered in the presence of uniform magnetic field in a porous medium.   

2. Formulation of the Problem and Disturbance Equations 
 

Consider an infinite horizontal layer of an incompressible, electrically 

conducting micropolar fluids of thickness d  in a porous medium  acted on 

by a uniform vertical rotation ),0,0(   and a uniform vertical magnetic 

field  H 0,0,H  and gravity force g(0,0,-g). This fluid layer is heated from 

below but convection sets in when the temperature gradient 

    dT dZ   between the lower and upper boundaries exceeds a 

certain critical value. The critical temperature gradient depends upon the 

bulk properties and boundary conditions of the fluid.   
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Let ˆq, , , , , g,  , , , , ,  , v zT k T c p e    ω,  and j  denote the velocity, the 

spin, the temperature, the density, electrical resistivity, the specific heat at 

constant volume, medium porosity, thermodynamic pressure, the unit vector 

in z direction and microinertia constant, respectively.   ,,  are the 

coefficients of angular viscosity and  ),,( zyxr   . Assume that external 

couples and heat sources are not present. Tk  and   are thermal conductivity 

and coefficients giving account of coupling between the spin flux and the 

heat flux . The magnetic permeability is assumed to be unity. Also the 

equation of state is given by 

  00  1 TT    , 

where 00 ,T  are reference density, reference temperature at the lower 

boundary and   is the coefficient of thermal expansion .  

Let us now consider  the  stability  of  the  system  in  the  usual  way by   

giving  small perturbations on the initial state and on seeing the reaction of 

the perturbations on the system. The steady state solution is 

)(,0,0 zpp  ωq ), ( ), ( ).z and T T z    

Let   , , ,  ,  ,  ,  x y zu u u δp  u ω and  zyx hhh ,, h  denote, respectively, 

the perturbations in fluid velocity )0,0,0(q , spin ω , pressure p , density  , 

temperature T  and magnetic field  H 0,0, .H  Then the linearized 

perturbation equations relevant to the problem, using Boussinesq 

approximation are 
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Also the equation of state is given by   00 1 TT    , where 00 ,T  

are reference density, reference temperature at the lower boundary and   is 

the coefficient of thermal expansion . Using the non–dimensional numbers  
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and then removing the stars for convenience, the non–dimensional forms of 

equations (2.1)–(2.5) become 
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where new dimensionless coefficients are 1
1 2
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magnetic Prandtl number 2p  are 
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  is the thermal diffusivity.                                                          

  Let us assume both the boundaries to be free and perfectly heat 

conducting. The case of two free boundaries, though little artificial is the 

most appropriate for stellar atmosphere. Since the surfaces are fixed and are 

maintained at fixed temperature  
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where ),( zu is the z –component of vorticity 

Applying the curl operator twice to equation (2.9) and taking z –component, 
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where   .  zz                                                     

Applying  the  curl  operator  to  equation(2.9),  (2.11)  and  (2.13),  and 

taking  z – component, we get   
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where  zh ,is the z components of current density. Taking the z –

component of equation (2.13) and linearized form of equation (2.11) are  

(2.19)   ,
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 If the medium adjoining the fluid is electrically non conducting ,then  

bounadry conditions are  
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at z=0 and z=1.    

3. Methodology (Normal Mode Analysis Method) 

Analyzing the disturbances into the normal mode, we assume that the 

solutions of equations (2.15)-(2.20) are given by  
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yx kkk   is the resultant wave-number, xk  and  
yk  are real 

constants and n  is the stability parameter which can be, complex, in general. 

For solution having the dependence of the form (3.1), equations (2.15) –
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The boundary conditions (2.21)  using equations (3.2)- (3.7) transform to 
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(3.9) 0,0D ,0 ,0 ,0 ,0 323322  BDXGDZDGDD ,  at  z=0 & 1.          

It can be shown from equations (3.2)–(3.7) and boundary conditions (3.9),  

that all even order derivatives of U  vanish on the boundaries .The proper 

solution of U  characterizing the lowest mode is 
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where 0U   is a constant. Substituting the solution (3.10) in equation (3.8) and 
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In the absence of rotation i.e. 0)(  , equation(34) reduces to  
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4. Mathematical Analysis 

The case of overstability  
Since for overstability, we wish to determine critical Rayleigh number for 

the onset of overstability, it suffices to find conditions for which (3.11) will 

admit of solution with in  real. Substituting iinn   in equation (3.11), the 

real part and eliminating from it and the  imaginary part ,yield 

  

(4.1)    

6 1 4 3 2 2 21 1
1 12

2 2 2

1 11
2 21 1 1

1

1 2 1 1

2 1 1
2 2 5 41

22 2

21 2 1 2 1

22
[ [ {(1 ) ( )} {(1 )2

4 42
(1 )( ) (1 )} { (1 )

4

4 2
(1 ) }] [ { (1 ) (1 )(

i i

i

Ep l Ep
R n Ep lb n b Ep l b A

p p p

Ep l Ep A Ep l
K Ep l K b K H

k p k k

Ep l
K n b b K K E

pk p k p k

  

 


  

  

 


  

        

       

      
2

1 2

2

1 2
3 21 1

1 22 2

2 22 1 2 1 1

2 2 2 1
2 21 1

2

2 1 2 1

2 12 2
51 1

1 1

2 2 1

2
) }

4 2 (1 )
{ (1 )(2 ) (1 ) ( ) (1 )

22
(1 )} { (1 ) (1 ) (1 )

4 4

(1
( ) } (1 )] [

2 2

A
p l

p

Ep Ep lA K
b K K Ep l

p pp k p k k

Ep l EpH A H
b K K

p k p k

Ep l H Ep AH
Ep l Ep A b K b

p p k





 







 



 


       


      


     

2

2 2

2 1

2 2 1 2 1
5 3

2 2

2 1 2 1 2 1

4 1
1 4 1 2 2 31 1

1

2 2 21

2 1 2 1 2 1
2 5 4 4 1 2 3 11

12

22 1

)

2 (1 )
{ (1 )} (1 )]

4 2

2(1 )
[ { (2 ) (1 )

(1 )
} { }] [ { (1

4 4 4

i i

i i

K

p k

A K H H A
b K b K

p k p k p k

Ep Epb K
KA n Ep b n b

p p pk

H Ep K H H
b b b n Ep lb n b

pp k

 


 

  
 

 


 

  
 


    


     


     1

2

2 1
2 1 1 1 1

1 1

2 21 1

2 1 2 1
4 3 2 2 2 2 4

1

2 1 1 1

3
2 2 1 1

1 2

2 2 2 2

)

2(1 )
{2 (1 ) ( )} { (1 ) }}

4

(1 ) 2
{ ( (1 ) ) }] 4 [

4 2

2
{ (1 ( )) 2 (1 )} (2 )]

i

i

Ep l

p

Ep Ep AEpK H
b A Ep l b K Ep l

p pk k

K A H H A
b b K b n Ep l

p k p k

Ep l Ep b
n b Ep l Ab A b

p p p p




 
 




 






       


      

        2 4 1] [ ik n l 

 

 



156                             Veena Sharma and Sudrshna Sharma 

 

2 1 1
2 1 1

2 2 22 1 1

2 1
3 1 2

2 2

1 2 1 2 1

2 1 2 1
1 1

1 2

2 (1 ) 4
{ ( 2(1 )) ( (1 ) (1 ) )

2 (1 ) 2 (1 )
( (1 ) )} { (1 ) (

4

(1 ) ) }] .
4 4

i

b l l K A
n A b K A

p p pp k k

A H l K A K
K b A b

k p k p k

H H A
A b

p p

 
   


 

 
 

 
 




 
 


       

 
     

  

                                                                               

and 

 

(4.2)   
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where 0B  , 1B , 2B , 3B , 4B  are the cofficients ,which are quite  lengthy, not  

mentioned.  
                                                                       

The case of stationary convection   

 When the instability sets in as stationary convection, the marginal state is 

characterized  by 0n . Putting 0in  in equation (4.1), we obtain  
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                     5. Numerical Results and Conclusion 

We have plotted the variation of the Rayleigh number (R) with wave 

number (k) using equation (4.1) satisfying(4.2) and (4.3) for both stationary 

and overstable cases for values of dimensionless parameters 

,5.01,1,1.0,1,1,1,5.0 21   andEpplKA    
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                      Fig.1                                                                  Fig.2           

Figures 1 and 2 correspond to two values of the angular velocity of rotation 4 and 6 

rev. min
-1, respectively.  It is evident from the graphs that the Rayleigh number increases 

with the increases in rotation parameter, depicting the stabilizing effect of rotation 
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Fig.3                                                   Fig.4 

Figures 3 and 4 correspond to two values of the magnetic field H= 10 Gauss and 15 Gauss, 

respectively. The graphs show that the Rayleigh number increases with the increases in magnetic 

field depicting the stabilizing effect of magnetic field. 
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Fig.5                                                              Fig.6 

Figures 5 and 6 correspond to two values of medium permeability     1k  3 and 1, 

respectively. It is evident from the graphs that the Rayleigh number decreases with  the 

increases  in permeability depicting destabilizing  effect of permeability 
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Fig.7                                                      Fig.8 
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Fig.9                                                       Fig10 

Figures 7–10 correspond to two values of micropolar coefficients    1.5, 

1.0 and    =2.5, 1.2 accounting for dynamic microrotation viscosity and 

coefficient of angular viscosity, respectively. The graphs  show that the 

Rayleigh number for the stationary convection and for the case of 

overstability increases with the increase in micropolar coefficients  implying 

thereby the stabilizing effect  of  dynamic  microrotation  viscosity and 

coefficient of angular viscosity on the system 

It is clear from graphs that the Rayleigh number for overstability is 

always less than the Rayleigh number for stationary convection, for a fixed 

wave number. Moreover, rotation and magnetic field introduce oscillatory 

modes in the system. The presence of coupling between thermal and 

micropolar effects may bring over stability in the system.  
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