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Abstract: The role of interlayer interaction in outer and inner layers of 
Cuprate Superconductors has been investigated with in the BCS theory 
irrespective of the pairing mechanism. The expression for interlayer, 
intralayer order parameter (Δ) and excitonic correlation parameter (γ) for 
inner and outer layers has been obtained and numerically solved. We 
have explained relevance of our results in context of observation of two 
gaps and presence of pseudogap in underdoped cuprates. It is also found 
that interlayer order parameter for inner layers is considerably lower then 
for outer layers and mere addition of layers cannot increase Tc

indefinitely.
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1. Introduction

After the discovery of Superconductivity in 1911 by Kamerling Onnes, 
for about 70 years scientists were not able to push the transition temperature 
beyond about twenty degrees of absolute zero (Tc~23K for Nb3Ge). Only 
after the discovery1 in 1986 of materials that become superconducting at 
much higher Tc, the pursuit of room temperature superconductivity is 
revived. The highest Tc at the moment is 170K for Hg based 
superconductors.

The high Tc Superconductors have many peculiar properties. One of 
them is the link between their layered structure and transition temperature 
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and other is development of pseudogap well above Tc in underdoped 
cuprates.

It is now well established that increase in CuO2 layers per unit cell 
increases Tc, being maximum for n=3 and then decreases2,3. Role of 
interlayer interaction is investigated by many workers4-11 and are found to 
play significant role in enhancement of Tc and stabilising superconducting 
order with respect to fluctuations. Khandka and Singh12 recently showed that 
increasing number of layers alone cannot increase Tc but density of state 
also should increase to ensure enhancement of Tc. But increasing no. of 
layers beyond n=3 results in redistribution of charge, giving rise to 
underdoped inner layers and overdoped outerlayers13, and density of state no 
more remains a monotonous function of number of layers. This limits the 
increasing Tc. Chakraverty et al.14 suggested a competing order along with 
interlayer interaction in the inner layers which could effectively bring down 
Tc for n> 3 and explained the Tc Vs n behaviour satisfactorily. Therefore a 
critical attention to the inner layers of these materials is needed. When inner 
layers are underdoped, bulk Tc is low13. A similar situation is present in 
underdoped cuprates, which have low Tc and are accompanied by 
pseudogap15-17. A question arises whether a common cause is manifested in 
the two situations? 

It is still unclear what relationship pseudogap is having with 
superconductivity, whether they are different manifestation of same 
correlations or they are different phenomenon altogether. Giving this debate 
a fresh look is a recent experiment of Angle resolved photoemission 
spectroscopy (ARPES) and Scanning Tunnelling microscopy18-20 which 
suggest the presence of two gaps in underdoped cuprates, and one  of the two 
(gaps) vanishes at Tc. This along with a distinct temperature and doping 
dependence of gap seems to suggest a competing nature between 
Superconducting gap and pseudogap18, 19. A similar competing order is also 
being suggested14 in inner layers of cuprate superconductors by Chakrevarty 
et al. as stated earlier.

In view of above here we present a microscopic approach to investigate 
the pairing gap with in the superconducting region by considering interlayer 
interaction for inner as well as outer layers with in BCS theory but 
irrespective of the pairing mechanism to have some insight into the 
pseudogap region.

2. Mathematical formulation

The Hamiltonian for our system can be described as:
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where, C+
ik, Cik   denoted  the fermion  creation  &  annihilation   operator 

respectively, K is the wave vector and  is spin index for fermions.
In equation (1) the   first term is the energy of   the free charge carriers 

within the CuO2 planes. The second term describes BCS type intralayer 
attractive interaction originating from any proposed mechanism7 and the 
third term represents interlayer pairing8 and Vij represents the attractive 
interactions containing contribution from any proposed mechanism mediated 
interaction9, 10-16.

Here we obtain self consistent expression for interlayer correlation 
parameter (γ  ) and order parameter for outer layers and inner layers. We 

apply Green’s function technique24.
In our present analysis we use a Green’s function, defined as-
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Putting the value of commutator [Crk , H] in the equation (3) we get 
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where, Grr qq
 is another Green’s function, which may be written as:-
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Using these Green’s functions, we can obtain the expression for order 
parameter  & correlation parameter . The interlayer order parameter  

may be written as
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where  = -1, for fermion,  K = Boltzmann constant & T = Temperature.
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Green`s function Gjj qq

 ( + i) & G jj qq


 ( - i) may be expressed as
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Substitute both Green’s functions G jj qq

 ( + i) & G jj qq


 ( - i) from 

equations (14) and (15) in equation (13) and then after solving, we get 
Correlation function
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Then we can obtained the expression for interlayer order parameter   by 
substituting correlation function in equation (12)-
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Converting summation over k` into an integration with cut-off energy 
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Interlayer order parameter is also calculated using Green’s function from eq. 
(10) and (11), neglecting Interlayer interactions, we get 
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Equation (18) and (19) are numerically solved to find interlayer ( for inner 
and outer layers) and intralayer order parameter for different values of 
temperatures for multilayer cuprates (n=4) .Curve between  Vs T deferent 
is plotted.

The interlayer and intralayer excitonic correlation is expressed as 
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where  = -1, for fermion, K = Boltzmann constant & T = Temperature.
The Green`s functions Grsqq
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Substitute both Green’s functions Grsqq
 ( + i) & Grsqq

 ( - i) in equation 

(21) & than after solving, we get Correlation function for 
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Substituting   eq. (22) in eq. (20), the expression for excitonic correlation is 
obtained as

           

2 2( )
1 1

2 22 22 ( )

Eq j
j

E Tanhq KTk Eq j
j

    

 
    





.

Converting summation over K` into an integration with cut-off energy 
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By using equation (23) and (24), we numerically calculated interlayer (inner 
and outer layers) and intralayer excitonic correlations for different values of 
temperature respectively and curve of   Vs T is drawn.

3. Results and Discussion

In the present work we tried to investigate the role of inner and outer 
layers with interlayer interaction on superconducting order parameter and 
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excitonic type of correlations in high Tc cuprate superconductors and hence 
to have some insight into the pseudogap region.
For this, expression of interlayer order parameter for inner (Δi) and outer 
layer (0) is obtained along with intralayer order parameter (11) from 
equation (18 & 19), for n=4 and n=1 CuO2 layers per unit cell. Constant 
density of states is assumed at fermi level with cut off energy ±ħωD, taking  
ħωD=0.0862ev.

These equations are numerically solved as a function of temperature. Fig 
(1) shows the curve between superconducting order parameter(Δ) and 
temperature(T). It is clear from the curve that interlayer order parameter (ΔI

& 0) exceeds intralayer (11) order parameter at temperatures close to Tc. 
We attribute this robustness of interlayer order parameter to their ability to 
either suppress or screen fluctuations close to Tc . This is supported14, 21, 22

by the fact that fluctuations depresses Tc more for n=1 then for n=3. This in 
turn helps the superconducting state to stabilize and increase Tc. Fig.(1) also 
shows the interlayer order parameter for inner layers is less than for outer 
layers. Our results show that increasing n beyond 3 would amount for more 
inner layers then outer layers, and since inner layers are not contributing 
much towards increasing Tc, increasing no. of layers alone cannot bring 
about an indefinite increase in Tc. Also increasing no. of CuO2 layers 
beyond n = 3, the inner layers become under doped and a competing order14

may develop to bring the Tc down. This situation is similar to the under 
doped cuprates where competing order is suggested18, 19 in pseudogap region 
and which can decrease the Tc in them. This draws support from the 
experiments predicting two gaps, one of which vanishes18, 20, 23 at Tc.

It seems underdoped materials give rise to low Tc and if pseudogap is 
universal in them, presence of pseudogap in inner layers of multilayer 
cuprates is a distinct possibility.

In order to have an insight into the pseudogap region, expression for 
interlayer excitonic correlations is also obtained (Eq. (23)). It is numerically 
solved for inner layers (i), outer layer (0) and intralayer (γII) excitonic 
correlations (eq. (24)) as a function of temperature. Fig (2) shows the curve 
of  γ Vs T. The curve shows that 0 and i falls rapidly close to Tc as 
superconducting state is reached from above. This can be explained in terms 
of reduced fluctuation close to Tc due to interlayer interaction. This in turn 
strengthens Δi & 0 , which is supported by our results. Also fig (2) shows 
intralayer excitonic correlation (γII) to be independent of temperature and 
thus decrease intralayer order parameter more close to Tc . 

In conclusion we can say interlayer interactions are indeed helping to 
maintain high Tc as long as inner layers don’t become underdoped. As no of 
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layers are increased the effective contribution of inner layers goes on 
decreasing by virtue of redistribution of charges13. So for optimum number 
of CuO2 layers per unit cell, maximum Tc is obtained. Doping the cuprates 
also bears a close resemblance. Increasing doping first produce pseudogap 
with competing pairing,low Tc & later overdoped region again with low Tc 
.At critical doping the competing order is  absent and the hole concentration 
is right enough to produce superconductivity at high Tc. Careful experiments 
to search for pseudogap in inner layers of multilayer cuprates is very much 
desirable and can throw light on universality of Tc variation with no. of 
layers n & doping x.
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Fig. 1. Delta (∆) vs Temperature (T)
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Fig. 2. Gamma (γ) vs Temperature (T)
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1. Introduction

After the discovery of Superconductivity in 1911 by Kamerling Onnes, for about 70 years scientists were not able to push the transition temperature beyond about twenty degrees of absolute zero (Tc~23K for Nb3Ge). Only after the discovery1 in 1986 of materials that become superconducting at much higher Tc, the pursuit of room temperature superconductivity is revived. The highest Tc at the moment is 170K for Hg based superconductors.


The high Tc Superconductors have many peculiar properties. One of them is the link between their layered structure and transition temperature and other is development of pseudogap well above Tc in underdoped cuprates.


It is now well established that increase in CuO2 layers per unit cell increases Tc, being maximum for n=3 and then decreases2,3. Role of interlayer interaction is investigated by many workers4-11 and are found to play significant role in enhancement of Tc and stabilising superconducting order with respect to fluctuations. Khandka and Singh12 recently showed that increasing number of layers alone cannot increase Tc but density of state also should increase to ensure enhancement of Tc. But increasing no. of layers beyond n=3 results in redistribution of charge, giving rise to underdoped inner layers and overdoped outerlayers13, and density of state no more remains a monotonous function of number of layers. This limits the increasing Tc. Chakraverty et al.14 suggested a competing order along with interlayer interaction in the inner layers which could effectively bring down Tc for n> 3 and explained the Tc Vs n behaviour satisfactorily. Therefore a critical attention to the inner layers of these materials is needed. When inner layers are underdoped, bulk Tc is low13. A similar situation is present in underdoped cuprates, which have low Tc and are accompanied by pseudogap15-17. A question arises whether a common cause is manifested in the two situations? 


It is still unclear what relationship pseudogap is having with superconductivity, whether they are different manifestation of same correlations or they are different phenomenon altogether. Giving this debate a fresh look is a recent experiment of Angle resolved photoemission spectroscopy (ARPES) and Scanning Tunnelling microscopy18-20 which suggest the presence of two gaps in underdoped cuprates, and one  of the two (gaps) vanishes at Tc. This along with a distinct temperature and doping dependence of gap seems to suggest a competing nature between Superconducting gap and pseudogap18, 19. A similar competing order is also being suggested14 in inner layers of cuprate superconductors by Chakrevarty et al. as stated earlier.


In view of above here we present a microscopic approach to investigate the pairing gap with in the superconducting region by considering interlayer interaction for inner as well as outer layers with in BCS theory but irrespective of the pairing mechanism to have some insight into the pseudogap region.


2. Mathematical formulation

The Hamiltonian for our system can be described as:
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where, C+ik(, Cik(   denoted  the  fermion  creation  &  annihilation   operator respectively, K is the wave vector and ( is spin index for fermions.


In equation (1) the   first term is the energy of   the free charge carriers within the CuO2 planes. The second term describes BCS type intralayer attractive interaction originating from any proposed mechanism7 and the third term represents interlayer pairing8 and Vij represents the attractive interactions containing contribution from any proposed mechanism mediated interaction9, 10-16.
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Now, evaluating the commutator [Crq( , H] using the Hamiltonian (1), we get 
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Putting the value of commutator [Crk( , H] in the equation (3) we get 
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 Now we introduce the order parameter ( such as
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Substituting these order parameters in equation (4), finally we obtained the equation

(5)             
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where, 
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This Green’s function may also may be written in term of equation of motion as:


(7)                             
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Evaluating the Commutator 
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Substituting the value of 
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But from the law of conservation of energy E-q = Eq. So

(9)         
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Now, by the help of equation (5) & equation (9), we obtain both Green’s functions 
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(11)       
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Using these Green’s functions, we can obtain the expression for order parameter ( & correlation parameter (. The interlayer order parameter (

[image: image21.wmf]^


 may be written as


 (12)          

[image: image22.wmf](')


''


'


VkqCC


jr


jkjk


k


++


D=


å


^


-¯


.


Correlation function 

[image: image23.wmf]+


¯


-


+





'


'


k


j


jk


C


C


 is related to Green’s function 

[image: image24.wmf]G


jjqq


¯


-


 as



[image: image25.wmf]''


()()


1


,


(13)


jkjk


ii


GG


jjqqjjqq


d


i


e


kT


CC


wewe


w


w


h


++


-¯


¯¯


+--


¥


--


=-


ò


-¥


-


                       


where ( = -1, for fermion,  K = Boltzmann constant & T = Temperature.


Green`s function 
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(15)              
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Substitute both Green’s functions 
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(( - i() from equations (14) and (15) in equation (13) and then after solving, we get Correlation function

(16)             
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Then we can obtained the expression for interlayer order parameter (
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 by substituting correlation function in equation (12)-


(17)               
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Converting summation over k` into an integration with cut-off energy 
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                                                                                                                        Interlayer order parameter is also calculated using Green’s function from eq. (10) and (11), neglecting Interlayer interactions, we get 
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Equation (18) and (19) are numerically solved to find interlayer ( for inner and outer layers) and intralayer order parameter for different values of temperatures for multilayer cuprates (n=4) .Curve between ( Vs T deferent is plotted.


The interlayer and intralayer excitonic correlation is expressed as 
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The correlation function (
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 may be expressed in terms of Green’s function as


(21)     
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where ( = -1, for fermion, K = Boltzmann constant & T = Temperature.


The Green`s functions 
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Substitute both Green’s functions 
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 (( - i() in equation (21) & than after solving, we get Correlation function for (

(22)     
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Substituting   eq. (22) in eq. (20), the expression for excitonic correlation is obtained as
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Converting summation over K` into an integration with cut-off energy 
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 from the fermi level, and also multiply by No then we get the correlation parameter ( as
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By using equation (23) and (24), we numerically calculated interlayer (inner and outer layers) and intralayer excitonic correlations for different values of temperature respectively and curve of  ( Vs T is drawn.

3. Results and Discussion

In the present work we tried to investigate the role of inner and outer layers with interlayer interaction on superconducting order parameter and excitonic type of correlations in high Tc cuprate superconductors and hence to have some insight into the pseudogap region.


For this, expression of interlayer order parameter for inner (Δ(i) and outer layer (((0) is obtained along with intralayer order parameter ((11) from equation (18 & 19), for n=4 and n=1 CuO2 layers per unit cell. Constant density of states is assumed at fermi level with cut off energy ±ħωD, taking  ħωD=0.0862ev. 


These equations are numerically solved as a function of temperature. Fig (1) shows the curve between superconducting order parameter(Δ) and temperature(T). It is clear from the curve that interlayer order parameter (Δ(I & ((0) exceeds intralayer ((11) order parameter at temperatures close to Tc. We attribute this robustness of interlayer order parameter to their ability to either suppress or screen fluctuations close to Tc . This is supported14, 21, 22 by the fact that fluctuations depresses Tc more for n=1 then for n=3. This in turn helps the superconducting state to stabilize and increase Tc. Fig.(1) also shows the interlayer order parameter for inner layers is less than for outer layers. Our results show that increasing n beyond 3 would amount for more inner layers then outer layers, and since inner layers are not contributing much towards increasing Tc, increasing no. of layers alone cannot bring about an indefinite increase in Tc. Also increasing no. of CuO2 layers beyond n = 3, the inner layers become under doped and a competing order14 may develop to bring the Tc down. This situation is similar to the under doped cuprates where competing order is suggested18, 19 in pseudogap region and which can decrease the Tc in them. This draws support from the experiments predicting two gaps, one of which vanishes18, 20, 23 at Tc.


It seems underdoped materials give rise to low Tc and if pseudogap is universal in them, presence of pseudogap in inner layers of multilayer cuprates is a distinct possibility.


In order to have an insight into the pseudogap region, expression for interlayer excitonic correlations is also obtained (Eq. (23)). It is numerically solved for inner layers (((i), outer layer (((0) and intralayer (γII) excitonic correlations (eq. (24)) as a function of temperature. Fig (2) shows the curve of  γ Vs T. The curve shows that ((0 and ((i falls rapidly close to Tc as superconducting state is reached from above. This can be explained in terms of reduced fluctuation close to Tc due to interlayer interaction. This in turn strengthens Δ(i & ((0 , which is supported by our results. Also fig (2) shows intralayer excitonic correlation (γII) to be independent of temperature and thus decrease intralayer order parameter more close to Tc . 


In conclusion we can say interlayer interactions are indeed helping to maintain high Tc as long as inner layers don’t become underdoped. As no of layers are increased the effective contribution of inner layers goes on decreasing by virtue of redistribution of charges13. So for optimum number of CuO2 layers per unit cell, maximum Tc is obtained. Doping the cuprates also bears a close resemblance. Increasing doping first produce pseudogap with competing pairing,low Tc & later overdoped region again with low Tc .At critical doping the competing order is  absent and the hole concentration is right enough to produce superconductivity at high Tc. Careful experiments to search for pseudogap in inner layers of multilayer cuprates is very much desirable and can throw light on universality of Tc variation with no. of layers n & doping x.
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Fig. 1. Delta (∆) vs Temperature (T)
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Fig. 2. Gamma (γ) vs Temperature (T)
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