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Abstract: In this paper, an SIR model to study the spread of carrier 

dependent infectious diseases in a population with constant immigration 

is proposed and analyzed by considering ecological effects. It is assumed 

that the density of carrier population is governed by a generalized logistic 

model, the growth rate of which increases as the cumulative density of 

ecological factors increases. The cumulative density of ecological factors 

is also assumed to be governed by the population density dependent 

logistic model. The model is analyzed by using qualitative theory of 

differential equations and by computer simulation. 

    It is shown that as the density of the carrier population, caused by 

ecological factors increases, the infectious disease spreads faster and it 

becomes more endemic. The growth of human population due to 

immigration further enhances the spread of infectious diseases. 

Keywords: Infectious diseases; Carrier; Ecological factors; Modified 

carrying capacity; Immigration; Simulation. 
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1. Introduction 
 

There are many carrier dependent infectious diseases which afflict 

human population around the world. In particular, the regions in developing 

countries, which are situated in equatorial zones, are most affected by such 

diseases
1,2,3,4,5,6

. In such regions, the villages, towns and cities lack 

sanitation in general, which results in the presence of various kinds of 

carriers, such as flies, ticks, mites and others in the habitat. These carriers 

grow and survive in plant vegetation, bushes in residential areas near open 

drainage, garbage storages, parks, water storage tanks and ponds, etc.
3,7

. It 

may be pointed out that their population grow in the mounds formed by the 

roots of the bushes and plants as well as on the branches and the leaves
8,9,10

. 
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The carrier population increases further as the bushes and plants become 

denser and denser. It is also noted that densities of these ecological factors 

(such as biomass of leaves in bushes and plants etc.) may change due to the 

growth of human population in the area because of human interactions with 

these factors. Therefore in this paper, an SIR model is proposed for the 

spread of carrier dependent infectious diseases by considering explicitly the 

effect of ecological factors which may depend upon human population. To 

be specific in the modelling process, we consider that the cumulative density 

of ecological factors is governed by a logistic type equation which is 

modified by human interactions. 

 

2. SIR Model with Constant Immigration 
 

Let the total human population density )(tN  is divided into three classes: 

the susceptible density )(tX , the infective density )(tY  and the density of  

removed class )(tZ , i.e. ZYXN  . If )(tB  is the cumulative density of 

ecological factors as biomass of leaves in bushes and plants etc., favourable 

to the growth of carrier population then it is assumed that the cumulative 

density of ecological factors )(tB  is governed by a generalized logistic 

equation. Further, let )(tC  be the carrier population density whose logistic 

growth rate coefficient )(Bs  and modified carrying capacity )(BL  depend 

upon the cumulative density of ecological factors )(tB .  

Keeping in view the above factors and by assuming simple mass action 

interaction, an SIR model is proposed as follows: 

 

                  
dXXCXYA

dt

dX
  , 

                   YdvXCXY
dt

dY
)( 1   , 

                  
dZY

dt

dZ
 1 ,                                         

(1)                    YdNA
dt

dN
 ,  
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0    BNrBKrrB 2

2

0 /  , where rrr  10  

                                          NZYX  , 

                  0)0(,0)0(,0)0(,0)0(,0)0(  BCZYX . 
 

For feasibility of the model (1), we must have 0)( 1  sBs  for 0B . 

In the above model, A is  constant immigration rate of human population, d 

is natural death rate constant,   and   are the transmission coefficients due 

to infective and carrier population respectively,   is the disease related 

death rate constant, 1s  is the death rate coefficient of carriers due to natural 

factors as well as by control measures. Further, 0r  is the natural growth rate 

coefficient of )(tB , 1r  is the natural depletion rate coefficient of )(tB , 2r  is 

the growth rate coefficient of )(tB  due to human population density related 

factors and K  is the carrying capacity of )(tB  which is assumed to be a 

constant, 1  is recovery rate constant i.e. the rate at which individuals 

recover and transfer to the removed class from the infective class. In (1), 

)(Bs  is the growth rate per capita of the carrier population density such that 

1)( sBs   is its intrinsic growth rate as compared to the usual logistic model. 

In view of the assumption that the growth rate per capita )(Bs  increases as 

the cumulative density of ecological factors  )(tB  increases, so we have,  

 (2)                        0)0( 0  ss  and  0
)(

)(


Bd

Bds
 ,        

where 0s  is the value of )(Bs  when 0B . It may be pointed out here that, 

when )(Bs  is independent of B , it takes constant value and that value is 

assumed to be 0s . Further, 10 ss   as growth rate coefficient of carrier must 

be greater than it’s control rate coefficient for it’s existence. 

It is assumed that the modified carrying capacity )(BL  increases as )(tB  

increases, so we have  
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(3)                         0)0( 0  LL   and    0
)(


dB

BdL
 ,   

   

where 0L  is the value of )(BL  when 0B . It is to be noted here that, when 

)(BL  is independent of B , it takes constant value and that value is assumed 

to be 0L . 
 

3. Equilibrium Analysis 

 

To analyze the model (1), we consider the following reduced system 

(since NZYX  ): 

                  YdvCZYNYZYN
dt

dY
)()()( 1   , 

                  dZY
dt

dZ
 1 ,       

   

                  YdNA
dt

dN
 ,                                                                                                

(4) 

                  Cs
BL

Cs
CBs

dt

dC
1

2

0

)(
)(  ,                                                                           

                   BNr
K

Br
rB

dt

dB
2

2

0  . 

The following lemma is needed for analysis of the model (4) which is stated 

without proof.  

 

Lemma:  The set 
( , , , , ) : 0 / ,

0 / , 0 , 0m m

Y Z N C B Y N A d
W

Z N A d C C B B

   
  

       
 

attracts all solutions initiating in the positive orthant, 

where  )/()/( 2 dArrrKB om     and  10 )(}/)({ sBssBLC mmm  . 

 

      Now, we give the result of equilibrium analysis in the following theorem 

in terms of the basic reproduction number
)(

1

0
dd

A
R







; which 

determines biologically whether the disease dies out or spreads under the 

given conditions. 
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Theorem 1: There exist following six equilibria of the system (4) 

(i)  0,0,/,0,00 dAP  , which is a disease free equilibrium; 

(ii)  mBdAP ,0,/,0,01  , where  )/(}/{ 20 dArrrKBm   

(iii) )0,0,,,( 1112 NZYP  which exists provided the basic reproduction number 

1
)(

1

0





dd

A
R




;where

  )/(1

)(

1

1
1

dd

dvdA
Y








 , 1 1 1Z ( / d)Y ,   

            
 

  ))(/()/(1
)/(1

1
11

1

1 dvdA
dd

N 


 


, 

(iv) ),0,,,( 11113 BNZYP   which exists if the basic reproduction number 

1
0
R , where  1201 }/{ NrrrKB  , 11, ZY  and 1N  are defined above, 

(v) )0,
~

,
~

,
~

,
~

( 11114 CNZYP  , where 

    )/()/(12/
~

)/()/()/(14
~

111

2

1 ddCdAddVVY    

where   111

~
)/()/(1)()/( CddddAV   , 111

~
)/(

~
YdZ  ,  

dYAN /)
~

(
~

11   and  ))(/(
~

10001 sssLC  , 

(vi) )ˆ,ˆ,ˆ,ˆ,ˆ(
5

BCNZYP   exists in the subregion      

       





s

m m

W (Y, Z, N,C,B) : A /( d) Y N A / d, 0 Z N A / d,

0 C C ,0 B B

       

     

of  W  provided the basic reproduction number 1
)(

1

0





dd

A
R




. Here 

5
P  corresponds to persistence of disease.  

 

Proof: The existence of equilibrium points 0P , 1P ,  2P  , 3P  or 4P  is easy 

to prove. In the following we prove the existence of 5P . Existence of 

Equilibrium Point  )ˆ,ˆ,ˆ,ˆ,ˆ(5 BCNZYP  : 

We prove the existence of 5P  by the isocline method .The equilibrium 

point 5P  is obtained from the following equations, by putting left hand sides 

of (4) equal to zero:  

 

(5)            0)()()( 1

2  CZNCZNdvYY                                           

(6)          dYZ /1                               

(7)          /)( dNAY                               

(8)            }/)({)( 01 sBLsBsC  ,                   
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(9)          ))(/( 20 NrrrKB  .      
            

On substituting the value of Z  from (6) into (5), we get  
 

(10)      0)()/(1)/(1 11

2

1  NCNdCdYYd  .   

                        

Eliminating Y  from (7) and (10), we get following relation 

     
 

 

2 2

1 1

1 1

F (N) ( / ) 1 ( / d) (A dN)

{(A dN) / } 1 ( / d) C ( d) N NC 0,

     

             

    

   

where C  and B  are given by (8) and (9) respectively.  

Now, it is noted here that  

(11)   

   

 

 

2 2

1 1 1 0

0 2 0 1 0 2 0

1

F A /( d) ( A /( d) ) 1 ( / d) ( A / s d( d)).

s((rK / r ) (r KA / r ( d))) s L((rK / r ) (r KA / r ( d)))

(A /( d)) ( d ( A /( d)) 0,

         

    

          

                                

provided the basic reproduction number 1
)(

1

0





dd

A
R




. 

Further   

 

 (12)     0//1  dACdAF m ,              

 

where   }/)({)( 01 sBLsBsC mmm   and   )/()/( 20 dArrrKBm  . 

Thus it is concluded from (11) and (12) that there exists a root N̂  of 

0)(1 NF in dANdA /)/(   provided 1
0
R and it is unique provided  

 

 (13)   0)(1  NF  for dANdA /)/(  .           

                                                                                               

Thus, knowing the value of N̂  we can compute the values of  CZY ˆ,ˆ,ˆ  and 

B̂  from equations (6) to (9).  Hence the equilibrium 5P  exists and is unique 

provided (13) is satisfied. 
 

Remarks  

(a) We note that 
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 

 
5

1
1

P

2 0 0 1

dF (N) ˆ ˆˆ ˆ ˆ ˆ(d / ) Y(1 ( / d) ( NC / Y) Y C
dN

ˆ ˆ ˆ ˆ ˆ ˆ( Kr / s r ) s (B)L(B) s(B) s L (B) (N Y) 0,

         

       
 

 

Thus, it is clear that the above condition (13) is automatically satisfied at the 

equilibrium point 5P . 

(b)   We note that 0

5


Pdr

dY
 and 0

5


Pdr

dC
. 

 Since
dr

dC

d
YN

d

C

Y

NC
Y

d
Y

ddr

dY












































 11 11





    

and   

 

     5

1
0 0

P 1 1 2

0 0

ˆ ˆ ˆN Y 1 K s r I(B)
ddY

,
dr K rˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 Y NC Y d Y C d N Y 1 I(B)

d d s r d

  
    

  
      

               
      

 

which is positive. This shows that as the growth rate coefficient of 

cumulative density of ecological factors increases, the infective human 

population density increases at the equilibrium point 5P . Further, from above 

it is clear that 0

5



P
dr

dC
 whenever 0

5



P
dr

dY
. 

This shows that the carrier population density increases as the growth rate 

coefficient of cumulative density of ecological factors increases at the 

equilibrium point 5P . 

 

(c) we also note that  

 

(i)  

     5

1
0 0

2 1 1 2P

0 0

ˆ ˆ ˆ ˆN Y 1 KN s r I(B)
ddY

0,
dr K rˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 Y NC Y d Y C d N Y 1 I(B)

d d s r d

  
    

   
      

               
    

 

 

which shows that as the growth rate coefficient of cumulative density of 

ecological factors due to human population density related factors increases, 

the infective human population density increases at the equilibrium point 5P . 
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(ii)       

     5

1

2 1 1 2P
0 0

0 0

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆKN 1 Y NC Y d Y C d I(B)
ddC

0,
dr K rˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆs r 1 Y NC Y d Y C d N Y 1 I(B)

d d s r d

  
          
   

       
                
     

 

 

Thus it is clear that as the growth rate coefficient of cumulative density of 

ecological factors due to human population density related factors increases, 

the carrier population density increases at the equilibrium point 5P . 
 

4. Stability Analysis 
 

The local stability results of these equilibria are stated in the following 

theorem: 

Theorem 2:  The equilibria 3210 ,,, PPPP  and 4P  are locally unstable 

and the equilibrium 5P  is locally asymptotically stable provided the 

following conditions are satisfied, 

(14)               3/ˆ2ˆ 2222 YdC   ,      

  

(15)      22

0

22

0

2

2

2

2

2

0222 ˆ)ˆ(
)ˆ(

ˆ
)ˆ()ˆ()ˆˆˆ(3 YsdrrKBL

BL

Cs
BsBLZYN  









 ,

          

(16)             3/ˆ4ˆ 2222

1 YdC   .                          

 

Proof: In the following, we study the local stability behavior of 

3210 ,,, PPPP  and 4P  by the method of variational matrix and the sixth 

equilibrium point 5P  is studied by using Lyapunov’s theory. 

The variational matrix iT  corresponding to the equilibrium points 

5,4,3,2,1,0iP  is given by:  

        

1

2
i

0 0
1 2

0
2 2

G(Y, Z, N,C) Y C Y C (N Y Z) 0

d 0 0 0

0 d 0 0

T ,2s C s C L (B)
0 0 0 s(B) s s (B)C

L(B) L (B)

2r B
0 0 r B 0 r r N

K

        
 

 
 
  
     
 
 
  
    
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 where  )()2(),,,( 1 dCZYNCNZYG   . 

 

Stability Behavior of  0,0,/,0,00 dAP  : 

For equilibrium point 0P , we find that one eigenvalue of 0T  is )/(2 dArr  , 

which is positive. Thus, 0P  is unstable. 

Stability Behavior of ),0,/,0,0(1 mBdAP  : 

For equilibrium point 1P , we note that one of the eigenvalues of 1T  is 

1)( sBs m  , which is positive. Thus 1P  is unstable. 

Stability Behavior of   )0,0,,,( 1112 NZYP  : 

For equilibrium point 2P , we note that one of the eigenvalues of 2T  is  

12Nrr  , which is positive. Thus 2P  is unstable. 

Stability Behavior of  ),0,,,( 11113 BNZYP  : 

For equilibrium point 3P , we note that one of the eigenvalues of 3T  is 

11)( sBs  ,  which is positive. Thus 3P  is unstable. 

Stability Behavior of )0,
~

,
~

,
~

,
~

( 11114 CNZYP  : 

For equilibrium point 4P , we find that one of the eigenvalues of 4T  is  

12

~
Nrr  ,  which is positive. Thus 4P  is unstable. 

Stability Behavior of  )ˆ,ˆ,ˆ,ˆ,ˆ(5 BCNZYP  : 

Since this equilibrium is very important and the nature of 5P  cannot be 

stated easily from the variational matrix. Thus, we prove the local stability 

result of 5P  using Lyapunov’s theory by considering the positive definite 

function: 

 (17)               2 2 2 2 20 31 2
k kk kk

V y z n c b ,
2 2 2 2 2

        

          

(where YYy ˆ , ZZz ˆ , NNn ˆ , CCc ˆ , BBb ˆ  and 

210 ,,, kkkk  and 3k  are positive constants to be chosen appropriately.) 

Thus, 
dt

dV
  along the linearised system (4) can be written after 

rearrangement of terms as:  
 

(18)  
dt

dV 2

00110 }ˆ/ˆ)ˆˆ({)ˆ()ˆ( yYCZNkyzYkkynkYk    

                   2

10

2

0 2/)ˆ()3/ˆ( ndkynCkyYk    



128                             Shikha Singh
 

 

       

    2 2

0 0
ˆˆ( / 3) ( )k Y y k C yz kd z    

 
        

  
  2

020

2

0 )}ˆ(2/ˆ{)ˆˆˆ()3/ˆ( cBLCskycZYNkyYk    

    2

03

2

02

2

02 )2/ˆ()ˆ(/)ˆ(ˆ)ˆ(ˆ)}ˆ(2/ˆ{ bKBrkcbBLBLCsBsCkcBLCsk   
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Choosing 11 k , Yk ˆ/0   and 1/k , we have the following 

inequalities for 
dt

dV
 to be negative definite,  
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(22)                            
BKr

dr
k

ˆ2

2

0
3  .      

         

Choosing BKrdrk ˆ2/)( 2

203  , the inequality (22) is automatically satisfied. 

Thus we can choose 2k  satisfying (21) provided 

(23)    

2

2 2 2 2 2 2 2 2 20
2 0 02
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       

  
                           

is satisfied.    

Hence 5P  is locally stable if (19), (20) and (23) are satisfied.  Hence the 

result. In the following theorem, we will show that 5P  is nonlinearly 

asymptotically stable under certain conditions: 

 

Theorem 3: In addition to assumptions (2) and (3), let )(Bs  and )(BL  

satisfy pBs  )(0  and qBL  )(0  for some positive constants p  and 

q  in sW , then 5P  is nonlinearly asymptotically stable in sW  provided the 

following inequalities are satisfied: 
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 (26)                3/ˆ4ˆ 2222

1 YdCm   .                          

 

We can prove the above theorem by using the following positive definite 

function: 

21
0 2

3

kY k Cˆ ˆˆ ˆ ˆ ˆV k Y Y Y ln (Z Z) (N N) k C C Cln
ˆ ˆ2 2Y C

Bˆ ˆk B B Bln ,
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   

 

 

                   

(where 210 ,,, kkkk  and 3k  are positive constants to be chosen appropriately.) 

 

5. Simulation for Nonlinear Stability Analysis 
 

In this section we analyze the model (4) by using computer simulation 

for appropriate values of parameters to show the nonlinear stability 

behavior of 5P . For numerical simulation, we choose )(Bs  and )(BL  as 

follows:  

                   BssBs 110)(    and  BLLBL 110)(  .                                                   

Firstly, we shall show the existence of the nontrivial equilibrium point and 

then its nonlinear stability behavior by taking the following values of the 

various parameters: 

7103.5   , 0005.0 , 0004.0d , 8101.2  , 10A , 9.00 s , 

6.01 s , 6

11 100.2 s , 1000000 L , 6

11 104 L , 002.01  , 9.00 r , 

7.0r , 5

2 10225.0 r , 26000K . 

The values of Ŷ  and N̂  are determined as the point of intersection of the 

following equations (which are obtained by eliminating Z , C  and B  from 

(5) to (9)):                  
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and   

   

(28)          /)( dNAY  .                                           

Here the point of intersection (using MATLAB) gives 23.2949ˆ Y  and 

45.21313ˆ N  and the values of other variables Ẑ , Ĉ  and  B̂  can be 

obtained from the corresponding expressions. Further, while solving with the 

help of MAPLE, the equations (5) to (9) the numerical values of various 

parameters as given above, we obtain the nontrivial equilibrium point  5P  as 

follows: 

 236608.2949ˆ Y , 45424.21313ˆ N , 18304.14746ˆ Z ,  

05446.38135ˆ C ,              59675.21607ˆ B .   

For equilibrium point 5P , the eigenvalues of  matrix  5T  are: 

.00040.0,3432200029.0,7479999981.0

,590019492422.0370018499988.0,590019492422.0370018499988.0



 ii

Thus it has 3 real eigenvalues which are negative and 2 complex 

eigenvalues, which have negative real parts. Hence 5P  is locally stable. 

It is also pointed out here that for the above set of parameters, the conditions 

for local stability and nonlinear stability have been checked and they are 

satisfied. 

For the above set of parameters, a computer generated graph of Y  vs N  

is shown below which indicates the nonlinear stability of the point )ˆ,ˆ( NY  

in the NY   plane.  
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6. Conclusions 
 

In this paper, I have proposed and analyzed an SIR model for carrier 

dependent infectious diseases by considering ecological effects. I have 

assumed that the cumulative density of ecological factors, which are 

conducive to the growth of density of the carrier population, is governed by 

population density dependent growth rate equation. The equation governing 

the carrier population has been assumed to be a generalized logistic model 

with specific growth rate and carrying capacity which are functions of 

cumulative density of ecological factors. The model has been analyzed 

analytically and by computer simulation. The effects of parameters 

governing the ecological factors conducive to the growth of carrier 

population have been found to increase the density of carrier population, 

leading to fast spread of infectious diseases.It is noted that the ecological 

factors have destabilizing effects on the system. Further it has been found 

that an infectious disease becomes more endemic due to immigration.  
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