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Abstract: A linear stability analysis is performed to investigate the effect 
of small particles on the stability of a suspension of motile gyrotactic 
microorganisms in a horizontal porous fluid layer. Small solid particles 
which are heavier than water are added into the fluid layer when 
bioconvection has already attained its steady state. If bioconvection 
develops, it enhances mixing and slows down the settling of particles. 
This problem may be relevant to a number of applications in bio-
engineering such as microbial enhanced oil Recovery (MEOR), a 
biological based technology used to improve the recovery of oil 
entrapped in porous media. 
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1. Introduction 
 

The phenomena of bioconvection has been refer to a pattern forming 
convective motion of fluid, caused by upwardly swimming microorganisms 
whose average density is slightly larger than that of water1,2. Gyrotaxis is 
behavior typical for algal suspensions. when such organisms are in a flow 
field with a horizontal component of vorticity; their swimming is direction  
determined by the balance between the torques due to viscous drag arising 
from shear flow and gravitational toque acting on the microorganisms 3-5. 
Experimental studies about the development of bioconvection plumes in 
algal suspensions have been investigated by Kessler6. Ghorai and Hill7-10 
examined the stability and structure of a single plume in a chamber with 
either stress-free side walls or periodic side walls. Geng & Kuznetsov11 
investigated the effect of small particles on the developments of 
bioconvection plumes and found that particles affect the system and is the 
origin of transition of bioconvection plume to a different steady state. In the 
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present article we analyze the effect of porous medium on the problem 
studied by Kuznetsov and Avramenko12, in which the effect of small solid 
particles on the stability of gyrotactic microorganisms in a horizontal fluid 
layer was investigated. The particles we considered in the present problem 
are assumed to be heavier then ambient water having diameter about 1 
micrometer or less so that compete between gravitational settling and 
Brownian diffusion may take place. It is reported that due to porous medium 
the system becomes less stable and smaller particles have the strong 
destabilizing effect on the system as compare to the larger particles.  

  
2. Mathematical formulation and Solution of the problem 

An infinite horizontal shallow fluid layer of thickness H is considered. 
Cartesian axes coordinate system with z -axis in vertical direction is utilized. 
For developing a model of bioconvection in a porous medium, it suggested 
that the medium is sufficiently porous to allow the swimming and falling 
microorganisms to penetrate throw it. Also, it is assumed that porous matrix 
does not absorb microorganisms; so that, their gyrotactic behavior is not 
affected by the presence of the porous matrix1. Governing equations for this 
system can be obtained by the volume-averaged equations for a horizontal 
fluid layer in a suspension of gyrotactic microorganisms in the presence of 
small particles developed in Kuznetsov and Avramenko12. Whitaker13 has 
given a detailed description about the volume- averaging procedure. This 
scheme results in the replacement of the Laplacian viscous term with the 
Darcian terms that describe the viscous resistance in porous medium. The 
linearized governing equations are: 
Equation of continuity  

(2.1)         . 0. q         

Equation of momentum balance  

(2.2)             w ac .p p pt p K n n                q q g   

Equation of Cell conservation for microorganisms 

(2.3)              c
ˆ, q .n t div n n D n       j j q p    

Equation of Cell conservation for small particles 

(2.4)          p, q ,p p p p pn t div n n D n       p pj j q g g    
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where D is the diffusivity of microorganisms (it is assumed that all random 
aspects of swimming of the microorganisms can be utilized by a diffusive 
process); ac is the acceleration coefficient introduced by Nield and Bejan14; 

its value depends upon the porous medium, K is the permeability of porous 
medium; pD is the diffusivity of the small particles due to the Brownian 

motion; n  is the number density of the microorganisms; pn  is the number 

density of small solid particles; p is the excess pressure over hydrostatic; p̂ is 

the unit vector indicating the direction of swimming of gyrotactic 
microorganisms;  1 2 3, ,u u uq is the fluid filtration velocity vector; w is the 

density of water; c
ˆq p is the vector of microorganisms’ average swimming 

velocity relative to the fluid ( cq is assumed to be constant);  pq g g is the 

vector of particles’ settling velocity relative to the fluid ( q p is assumed to be 

constant, the particles move straight downward); g is the gravitational 

acceleration; t is the time;  is the volume of microorganisms; p is the 

volume of small particles;  is the dynamic viscosity, assumed to be 

approximately the same as that of water; cell w     , is the density 

difference between cell and water; wp p     , is the density difference 

between particles and water. It suggested that particles do not interact with 
each other or with microorganisms. According to Stokes law15 the settling 
velocity for spherical particles can be found as given by following 
expression 

(2.5)         3
pq 6 3 4 .p p pg       

Equations (2.1)-(2.4) have to be solved subject to following boundary 
conditions. At the bottom as well as top surface of the layer, the following 
no-slip boundary conditions are satisfied: 

(2.6)      ˆ ˆ0, 0, 0, at   0,  .z H   pq j.k j .k    

The basic state is considered to be quiescent state and is given as follows: 

(2.7)         

     

 

     

0b p

p

0 c c

0,0,0 , exp q

q H
exp 1, ,

exp q exp 1, q H .

p p p

p p p p p

p

n z z D

n Q Q Q
D

n z z D nQ Q Q D





 

   



   


     

q
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   The subscript 'b'  denotes the basic state. The integration constants, 
 and p , represents the value of basic number densities of the 

microorganisms and particles, respectively, at the bottom of the layer. The 
parameters Q and pQ , are the bioconvection Peclet numbers for 

microorganisms and particles respectively and defined by. We introduce the 
following perturbations to the basic state: 

(2.8)        
00

ˆˆ ˆ, , , , 0, ( ), ( ), ( ), , , , ,p b p pp n n p z n z n z p n n          q p k q p        

where the bar denote the perturbation quantities and  is small perturbation 
amplitude. Substituting Eq. (2.8) into the system of Eqs. (2.1)-(2.4), 
linearizing the results, we obtain the following equations for perturbation 
quantities: 

(2.9)   . 0. q     

(2.10)      w ac .p p pt p K n n               q q g     

(2.11)     0 c c
ˆˆq q .n t div n n D n        

 
q p k  

(2.12)    0 pq .p p p p pn t div n n D n        q g g  

It is suggested that gyrotaxis nature of the microorganisms remains 
unaffected to the imposed small particles across the porous fluid layer3. 
Therefore, the perturbation to the unit vector indicating the cell swimming 
direction: 

(2.13)    ˆ B , , 0 ,  p                              
 where  

 

(2.14)             
   

   

2 2 2 2
0 3 0 2 0

0 3 0 1 1 w

1 1 , ,

1 1 , 2

u y u z a b a b

u x u z h g

   

     

           


          
  

 

where a and b are the semi-major and semi-minor axes of the spheroidal cell, 
therefore 0 is a measure of cell eccentricity:   is the “gyrotactic orientation 

parameter” introduced by Pedley and Kessler2 and has dimensions of time; 

1 is dimensionless constant relating viscous torques to the relative angular 

velocity of the cell; and h  is the displacement of centre of mass of the cell 
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from the centre of buoyancy. Taking operator curlcurl on Eq. (2.10) and 

considering 3rd component only 

(2.15)    
      

 

2 2 2 2 2 2
w a 3 3

2 2 2 2

c

.p p p p

u t K u g n x n y

g n x n y

   

 

            

      
 

Using (2.13) and (2.14) into (2.11) and (2.12), we have 

(2.16)        
     2 2 2 2 2 2

c 0 0 3 3 0 3

2
3 0 c

q 1 1

q ,

n t n u x u y u z

D n u n z n z

              

       
 

(2.17)       
0

' 2
3 pq .p p p p pn t u n z n z D n              

  

A normal mode expansion is introduced as follows: 

(2.18)           3 3, , , , , exp ,p pu n n U z N z N z g x y t        

where  2 2 2 2 2 0x y g m g       , ' 'm  is the horizontal wave number 

(used as a separation constant). In the numerical monograph4 of the 
suspension of gyrotactic microorganisms (with no small particles), the 
regions of overstability has been investigated and it is established that small 
gyrotactic number always corresponds to the monotonic instability. 
Therefore, it is concluded that the principal of exchange of stabilities16 is 
valid for the present problem. Therefore   is set to zero and using Eq. 
(2.18), the linearized dimensionless perturbation equations for the 
amplitudes

 
   ,W z N z and  pN z are 

(2.19)               2 2 2 2
3 3 pU U Rb N N 0,d z dz a z a z z      
          

(2.20) 
            

          

2 ' 2 '' 2
3 0

2 2 2
0 0 3 0 3

N N N U

1 U 1 U 0

a z Q d z dz d z dz z dn z dz

n z GQ d z dz a z 

    

      

           

     
  

(2.21)             
0

2 ' 2 " 2
3N N N U 0,p p p p pa z Q d z dz d z dz z D dn z dz     

                        

where the following dimensionless variables and parameter are introduced: 
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(2.22)    

0 0

3 3

2 3
0 0

2

H , H, U H , N , N ,

H , , Rb= H , ,

, , Da H .

p p p

p

p p p p

z z a m U D N N

G BD D D D g D n n

n n K

  

   

    

     


   


     

  

 



 

Here, Rb is the bioconvection Rayleigh number, Da is the Darcy number and 
G is the gyrotaxis number. Also we introduce the modified bioconvection 

Rayleigh-Darcy number as Rb RbDa . Equations (2.19)-(2.21) must be 
solved subject to the following non-dimensionalized boundary conditions: 

(2.23) at 0,1z             3U 0, N N , N Np p pz Q z d z dz Q z d z dz             

  To solve the above dimensionless system of equations (2.19)-(2.21), we 
employ single term Galerkin scheme17.  The trail solutions satisfying the 
boundary conditions (2.23) are assumed as follows: 

(2.24)  
       
     

2 2 2
3

2 2

U ,   N 2 1 2

N 2 1 2 .p p p

z z z z Q z Q z z

z Q z Q z z

       


    

       

    
 

Using (2.24) into (2.19)-(2.21) and utilizing the standard Galerkin 
procedure17, we get the system of equations involving the coefficients of 

   3U , Nz z   and  N p z  . The determinant of the coefficients of    3U , Nz z  
 and 

 N p z  must vanish for the existence of non-trivial solutions and this 

determinant can be simplified in the following equation for the stability 
boundary 

(2.25)    

      

     

     

2 2 4 4 2 2 4 4 2

cr
0 2 2 4 4 2

1

2 2 4 4 2
2

120 10 10 120 10 10 10
Rb = min

120 10 10 10

120 10 10 10

p p p

a
p p

p p p

a Q Q Q a Q Q Q a

Q a Q Q Q Q

Q a Q Q Q Q



 
 
             
 
        

  
        

  

 

where          1 30 8 1 1 16 ,p pQ Q

p p p pQ e e Q Q Dn        
    

             2
2 0 030 4 1 8 1 1 16 1 1 .Q QQ n QG e e Q Q a G               
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For the case 0pn  , i.e., in the absence of small particles, equation (2.25) 

gives the following expression for the critical bioconvection Rayleigh 
number 

(2.26)          2 2 2 4 4 2 2
cr 2

0
Rb = min 10 120 10 10 10

a
a a Q Q Q a Q Q



      
 

  

3. Results and Discussions 
 

In this section we are discussing the numerical interpretation, different 
parameters have following values 010, 5, 0.3n      . Along with the 

different pairs of the values of , , ,pD Q Q G and n
 , has been shown in Figs. (1-

3). The dependence of critical modified bioconvection Rayleigh-Darcy 
number crRb on the relative average number density ( pn n n ) of small 

particles has been analyzed numerically and the results have been plotted 
graphically. In the absence of small particles ( 0pn  ), from Eq. (2.26), it is 

predicted that suspension is most stable and the critical bioconvection 
Rayleigh number crRb takes on its greatest value (92.02 approximately). 

Figure 1 depicts the dependence of crRb  on the relative average number 

density n , for different fixed values of gyrotaxis number. It is found that 
increasing G  the Raleigh number crRb , decreases rapidly which shows that, 

G destabilizes the suspension. Figure 2 illustrates the effect of n  on the 
critical values of crRb  for various fixed values of bioconvection Peclet 

number Q  and it is observed that increasing Q  the modified bio-convection 

Rayleigh-Darcy number crRb  increases rapidly which shows that, Q  
stabilizes the suspension. On adding the small particles to the suspension the 
decrease of Rbcr  with increase of nmeans that increasing the relative average 

number density across the porous layer containing small particles 
destabilizes the suspension and helps the development of bioconvection. An 
important conclusion is the effect of the diffusivity of small particles pD . 

From equation (2.22), it is clear that if we increase pD by a factor of two then 

it results in decrease in D and pQ by a factor of two. According to Einstein’s 

relation that determines the diffusivity of small particles because of the 
Brownian motion, the diffusivity is inversely proportional to particle’s 
radius, which means that the larger particles have smaller diffusivity. 
Therefore the smaller particles will destabilize the suspension better than 
larger particles. On adding the small particles having the larger diffusivity 
results in a faster decrease of the critical Rayleigh number. This analysis is 
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valid when suspension is taken as dilute and particles are small so that 
gravitational settling and diffusion competes, otherwise the interaction 
between particles as well as particles and microorganisms must be 
considered. An interesting phenomenon occurs when values of n changes 
from 0.1 to 0.2. It is observed that the convection develops in a suspension 
of buoyancy-neutral micro-organisms containing small particles due to 
unstable density stratification. Since physically negative values of crRb is not 

possible, therefore for n [0.1,0.2], the values of crRb considered in Figs. 1, 2 

and 3 shows the mathematical features of solutions only. When n exceeds 
0.2 the suspension is destabilized asymptotically. 

 
Figure 1: Effect of relative average number density of small particles  pn n n  on the 

critical bioconvection Rayleigh number, crRb  for different values of gyrotaxis number G  

 

 

Figure 2: Effect of relative average number density of small particles  pn n n  on the 

critical bioconvection Rayleigh number, crRb  for different values of gyrotaxis number Q . 
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Figure 3: Effect of relative average number density of small particles  pn n n  on the 

critical bioconvection Rayleigh number, crRb  for the different modes of D and pQ . 

 

4. Conclusions 

A linear stability analysis is applied to study the onset of bioconvection 
in a dilute suspension of gyrotactic microorganisms in a horizontal fluid 
layer saturating a porous medium in the presence of small particles. The 
system is solved analytically using Galerkin technique and the stability 
criterion depends upon the values of cell eccentricity, Gyrotactic number, 
measure of average diffusivity of small particles, bioconvection Peclet 
numbers for microorganisms and small particles respectively. The major 
conclusions of the present problem are listed as follows: 

(i) The gyrotaxis number stands for the deviation of cell swimming 
direction strictly form vertical therefore the utilization of more 
gyrotactic species of microorganisms makes the suspension more 
unstable. 

(ii) Since Q represents the ratio of the swimming speed of micro-
organisms to the speed of bulk fluid flow therefore larger of 
Q corresponds to the rapid species of cells and it is reported that the 
suspension containing faster swimmers is more stable than a 
suspension of slower swimmers.  

(iii) It found that the smaller particles will destabilize the suspension 
better than larger particles because the larger particles with small 
diffusivity concentrate near the bottom of the layer creating more 
stable density stratification and small particles with large diffusivity 
have almost uniform distribution across the layer. 
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