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Abstract: In Astrophysics, kinetic equations designate a system of 

differential equations describing the rate of change of chemical 

composition of a star for each species in terms of the reaction rates for 

destruction and production of that species. Methods for modeling 

processes of destruction and production of stars have been developed for 

bio-chemical reactions and their unstable equilibrium states and for 

chemical reaction networks with unstable states, oscillations and 

hysteresis. The present paper aims at extending the solution of fractional 

kinetic equation obtained by Haubold and Mathai
2
 neglecting spatial 

fluctuations in any arbitrary reaction to a case incorporating such 

inhomogenieties.  
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1.  Introduction   

 

Let us consider an arbitrary reaction characterized by a time dependent 

quantity N=N(t). It is possible to equate the rate of change dN/dt to a balance 

between the destruction rate d and the production rate p of N, that is dN/dt=-

d + p. It is generally presumed that destruction rate d and production rate p 

depend directly on the quantity N on account of interaction mechanisms. 

Thus d = d (N) and p = p (N). This dependence is complicated since the 

destruction or production at time t depends not only on N(t) but also on the 

past history N(t1), t1<t, of the variable N. This may be formally represented 

by  

(1.1)       dN / dt = -d (Nt) + p (Nt), 
 

where Nt denotes the function defined by Nt(t*) = N(t - t*), t*>0. Here d and 

p are functionals and. Equation (1.1) represents a functional-differential 

equation. Haubold and Mathai
1
 studied a special case of equation (1.1) 

which is given by  
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(1.2)            d N / dt =  N (t), 
 

with a constant 0 .  In the present work we consider the general 

fractional - differential equation as follows: 

(1.3)               dN / dt = - c N (t – t*). 

Here c > 0 is a constant and t* > 0. 

 

2. Standard Kinetic Equation 
 

The production and destruction of species is described by kinetic 

equations governing the change of the number density Ni of species i over 

time, i.e.  

(2.1)            
kl

k

lk

ijj

ji
i vNNvNN

dt

dN
  

il,

 


 , 

where v  mn denotes the reaction probability for an interaction involving 

species m and n, and the summation is taken over all reactions which either 

produce or destroy the species i (Haubold and Mathai
2
). Proceeding with 

equation (2.1), the first sum in equation (2.1) can also be written as  

(2.2)         ii
j

ijji

ijj
ji aNvNNvNN 








     , 

where ai is the statistically expected number of reactions per unit volume per 

unit time destroying the species i. It is also a measure of the speed in which 

the reaction proceeds. In the following we are assuming that there are Nj (j = 

1, ..., i, ... ) species j per unit volume and that for a fixed Ni the number of 

other reacting species that interact with the i-th species is constant in a unit 

volume. Following the same argument for the second sum in equation (2.1), 

we get 
 

(2.3)                         iikl
k

lk bNvNN  


 
il,

 . 

Here Nibi is the statistically expected number of the i-th species produced per 

unit volume per unit time for a fixed Ni. The number density of species i, Ni 

= Ni (t), is a function of time while v  mn containing the thermonuclear 

functions. The equation (1.1) implies that  

(2.4)               ).(N )(
)(

i tba
dt

tdN
ii

i    



                     The Fractional Kinetic Equation                                    103 

 

Above equation (2.3) has three distinct cases. ci = ai - bi >0. ci <0 and ci = 0 

of which the last case means that Ni does not vary over time, which means 

that the forward and reverse reactions involving species i are in equilibrium, 

such a value for Ni is called a fixed point and corresponds to a steady-state 

behavior. The first two cases exhibit that either the destruction (ci > 0) of 

species i or production (ci < 0) of species i dominates.  

For the case ci > 0 equation (2.1) becomes  

(2.5)                    )(
)(

tNc
dt

tdN
ii

i  , 

with the initial condition that Ni (t =0) = N0 is the number density of species i 

at time t = 0, and it follows that 

(2.6)                   Ni (t) dt = N0
t-cie . 

 

The exponential function in equation (2.6) represents the solution of the 

linear one-dimensional differential equation (2.5) in which the rate of 

destruction of the variable is proportional to the value of the variable
2
. 

 

3. Mathematical Prerequisites 
 
 

The Mellin transform
3
 f(s) of f(x) is defined as follows: 

(3.1)            


 
0

1 C,s  ,)()(*});({ dxxfxsfsxfM s
 

provided the integral exists. Then, under suitable conditions  

(3.2)               )(
)1(

)1(
)( 

 



 sF

s

s
xfRM . 

The inverse Mellin transform f(x) of f(s) defined as follows. 

(3.3)        
i

1 s

i

1
M {f *(s);x} f (x) x f *(s)ds,   x C,

2 i

 

 

 

  
   

where 1i and   is a real number in the strip of analyticity  

of f*(s). When f*(s) is analytic in the relevant strip, f(x) is  

uniquely determined by f*(s) by the formula (3.3). The convolution for 

Mellin transform
3 

is given by the relation. 
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The I-function
7
 can also be represented as  
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where ,1i   0z  is a complex variable and 
zizss ez

arg)(log[ 
 , in 

which log z  denotes the natural logarithm and arg z is not necessarily 

principal value. An empty product is interpreted as unity. Also  
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where Pi (i= 1, 2, …, R) , Qi (i= 1, 2, …, R), M, N are integers satisfying 

0 , 1 ( 1, 2, ..., )i iN P M Q i R     , R is finite, j j, ,  ji ,  ji ,  

are real and positive numbers and aj, aji, bji are complex numbers such that 

none of the points ( ) / , ( 1,2,..., ; 0,1,2,...),j js b j M      which are 

the poles of ( ),j jb s   (j= 1, 2, …, M) and the points ( 1) / ,j js a      

( 1,2,..., ; 0,1,2,...)j N   , which are the poles of (1 ),j ja s   coincide 

with one another i.e. j h h j(b ) (a 1 k)       for , 0,1,2,...k   h=1, 

2,…M,  J= 1,2,…R. 

   

4. Fractional Kinetic Equation 

 

If we integrate the kinetic equation (1.3), with replacing t* > 0 by  >0, 

we obtain  

(4.1)              Ni (t) – N0 = - ci
1

0 t i i D  N (t ), (c 0,  0).      

Here 
1

0



tD  is the standard Riemann integral operator. Haubold and Mathai
1
 

described as the number density of the species i, Ni = Ni (t) is a function of 

time and Ni (t = 0) = N0 is the number density of species i at time t = 0. If the 
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index i is dropped and  1

0 tD  is replaced by 
0 tD   , then we can written as 

follows 

          N (t) – N0 = - c
0  N ( ).tD t    

Now we prove the following theorem . 

Theorem 1. If c > 0, 0 , then  the solution of the integral equation 

(4.2)                      N (t) – N0 f(t) = - c
0  N ( ),tD t    

where f(t) is any integrable function on the finite interval [0, b], is given by 

the formula in the form of I-function. 

(4.3)      2,1

0 3,4:1

0
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 
 , 

where I is the I-function defined in (3.5). 
 

Proof . Applying Mellin Transform defined in (3.1) to the equation (4.2) 

we obtain  

(4.4)    N(s) – N0f*(s) = - c N(s) 
)1(

)1(

s

s



 
, 

where f*(s) is the Mellin transform of f(s). This gives  
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We have 
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(4.8)                         )()}(*{1 tfsfM 
. 

Applying the inverse Mellin transform defined by (3.3), with equation (4.7) 

and (4.8) and also using convolution theorem (3.4) for Mellin transform in 

equation (4.6), we obtain  
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Corollary 1. If c >0, 0  and f(t) = E1 (-t) then for the solution of the 

integral equation 
 

(4.9)              N(t) – N0E1(-t) = -cN( t -  ), 

  
 

there holds the formula  
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





 


)}1,(),1,0{()},0,(),1,0{(
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 )( I
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Proof: Applying Mellin Transform defined in (3.2) to the equation (4.9), 

we obtain 

(4.11)               N(s) - No 
(1 ) N(s)
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c s
s

s
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Applying the inverse Mellin transform defined by (3.3) in equation (4.14), 

we obtain 

 (4.15)     dst
scsc

scs
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From above equation we obtain desired result (4.10). 

Corollary 2.  If c >0, 0  and f (t) = 
2te
then for the solution of the 

integral equation 

(4.16)                     N(t) – N0

2te
= -c N( t -  ), 

 

there holds the formula  
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Proof: Applying Mellin Transform defined in (3.2) to the equation (4.16) 

we obtain 
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2 2 (1 )

N s s
N s c N s

s

  
   

 
, 

(4.19)         
0N ( )

( 1) (1 ) 2( ) 1   
( )  (1 ) 2

s
c s

N s
c s




     
  

   
, 

(4.20)          0

( ) ( ) (1 )
2( )

2 ( ) (1 ) ( 1) (1 )

s
c s

N
N s

c s c s

   
 

  
        

. 

 

Applying the inverse Mellin transform defined by (3.3) to the equation 

(4.20). We obtain the desired result of (4.17).  

This paper underlines the significance of fractional integral operators. 

Since the delay is arbitrary, we can use the fractional integral operator of 

arbitrary order to arrive at the solution of given integral equation. This 

completes the analysis. 
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