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Abstract: In this paper, we study the properties of Q* open sets. In
particular, we investigate the properties and theorems in affine spaces
and irreducible spaces. Also we define Gd set, contra Q* closure and
study some of these properties.

1. Introduction

We defined Q* closed sets and Q* open sets in an affine space’ in the
year 2010. Affine space is a topological space which characterizes most of
the geometrical objects.

We need the following definitions:

Definition 1.1. Let (X,7) be a topological space. Let A < X. A is said
to be Q*closed if A is closed and int A = ®@. Then the complement of Q*
closed set is Q* open.

Definition 1.2%. Let C" be a complex n — space. Let | be a collection of
some complex polynomials of C". Let V,={x eC"/ f(x) =0 forall f €l}.
That is common zero set of I. Then V, is called affine algebraic variety.

Definition 1.3%. The set of all complements of affine algebraic varieties
satisfies the four axioms defining a topology on C". This topology is called
Zariski topology on C".

Definition 1.4%. The set C" considered as a topological space with its
Zariski topology is called affine n—space. We denote this affine n- space by
A"

2. Q* Open Sets in VVarious Spaces

In this section we discuss the properties of Q* open sets in some
particular spaces namely affine spaces and irreducible spaces.
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Theorem 2.1. In A", every non-empty open set is Q* open set.

Proof. Let U be any non-empty open set with respect to Zariski
topology. Let U # X. The U = V,.%, for some I, where I; has at least one
non-zero polynomial. Let G be any open set. Let G # X. Then G = V.zc, for
some I, where I, has at least one nonzero polynomial.

Now U 1G = V;°NV,,S. Then UNG = (VirU Vi)© . Therefore U NG =
(Vi )¢ Sincelyl, has at least one nonzero polynomial, (V12 )¢ # ®.
Therefore U (1G # ®@. U intersects every nonempty open set. Therefore U is
dense. Hence every nonempty open set is Q* open set in A"

Definition 2.2°. A topological space X is called irreducible if for any
decomposition X = A;UA; with closed subsets A; < X (i = 1,2) then we
have X = Ay or X = Ao.

A subset X’ of a topological space X is called irreducible if X’ is irreducible
as a subspace.

Example 1. Let X ={1, 2, 3}and 7= {®, {1},{1,2}, X}.
Closed sets are @, {2,3},{3}, X. Then X is irreducible.

Example 2.Let X=Nand 7= {®, {1}, {1,2 },.... X}
Then X is irreducible.

Example 3. Let X =[1,100]. Let Uy =[1l,a] and T={ U,/ a € X}.
Then X is irreducible.

Lemma 2.3. The topological space X is irreducible if and only if every
nonempty open set is Q* open.

Proof. Let X be irreducible. Let U be any nonempty open set. If U = X
then nothing to prove. Let U # X. Then cl U # X. If possible suppose that U

is not Q* open. Then there exits an open set V such that U [1V = ®. This
implies U® _V® = X, where U® and V° are proper closed sets. This is a
contradiction to X is irreducible.

Conversely, suppose that every open set is Q* open. We claim that X is
irreducible. Suppose X is reducible. Then X = AUB, where A and B are

proper nonempty closed sets. This implies A (B¢ = ®. Then A® is not
dense. Then A® is an open set but not Q* open, a contradiction. Hence X is
irreducible.

Theorem 2.4. Let (X,7) be a topological space. Let W< X. Every
nonempty open set of W is Q* open in W if and only if every nonempty open
set of cl W is Q* open in cl W.
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Proof. Let every nonempty open set of W be Q* open set in W. We

claim that every nonempty open set of cl W is Q* open in cl W.
Let A be any nonempty open set in ¢l W. Then A [1W is open in W. By
hypothesis A (W is dense in W. It is enough to prove that every open set
intersects A. Let U be any open set of cl W. Take x € U. Now xe cl W.
Therefore every open set of x intersects W.

Also UNW is a nonempty open set in W. Since A (\W is dense in W, (A
W) N(U NW) # ®. This implies A (1U # ®. Hence A is dense in cl W and
hence A is Q* open in cl W.

Conversely, suppose that every nonempty open set of cl W is Q* open in
cl W. We claim that every nonempty open set of W is Q* open in W.

Let U be any nonempty open set of W. Then there exists an open set G in
cl W such that U = G[1W. By hypothesis G is Q* open in W. That implies
GNW is Q* open in W. Therefore U is Q* open in W. Hence the theorem.

Theorem 2.5. Letf: C"—» C. Let A =C". Then xo € cl A, for any X, if
and only if f is identically zero in A implies f(x,) = 0.

Proof. Let xo € cl A and f be identically zero in A.
Let I = {f}. Since f is identically zero in A, A < V,. Since V, is closed, cl A
< V,. Since xo € ¢l A < V|, f(xg) = 0. Conversely, let V| be any closed set
containing A. We claim that xo €V, We have V|, = { x eC"/ f(x) =0, V f e
I}. Since A < V, f(x) =0 Vx €A, V f el. Therefore f(xo) =0 V f el.
Hence Xoe V). But cl A is the smallest closed set containing A. Therefore
Xoecl A. Thus the Lemma.

Theorem 2.6. If A is Q* open then there exists | such that f (A%) =0 V f
eland f(4) = 0 implies f = 0.

Proof. Let A be Q* open. Then AC is closed and cl A = X. Then there
exists I such that V, = Aand clA=X.Ifx e V, = A® thenf(x) =0 Vv f
el, x e A® Therefore f (A®) =0 V f el. Let us take f (A) = 0. We claim that
f=0. Let xo ecl A. Since f (A) =0 V xe A and by Lemma (2.5), f(xo) = 0.
Therefore f(x) =0 V x e cl A. But cl A = X. Therefore f(x) =0 V x e X.
Hence f=0.

3. General Properties

Let (X,7) be a topological space. We have proved that the collection of
all Q* open sets together with @ is a topology”. Let 7, = 7o We find (7)o

which is denoted by 7, and so on.
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Theorem 3.1. Let (X,7) be a topological space. Then the union of all
proper open sets is Q* open.

Proof. Let A = UA; where A; is proper open set (with respect to 7).
Clearly A'is open. Always cl A < X. We claim that X < cl A. Let X € X.
Let U be any open set containing xo, Therefore Uc A. Then U A — {Xo} #
®. Therefore xg € ¢l A. Then cl A =X. Hence A is Q*open.

Result 3.2. Let (X,7) be a topological space. Let A be union of all
proper open subsets of X. (Let 7 o« denote the collection of all Q*open sets
with respect to 7). If T1 = Tqx, Ty = (T1) g~ ...etc, then A €Ti Vi =
1,2,...

Proof. By Theorem 3.1, A is Q*open. Let 71 = Tq~ Clearly A € 7 4. If
Be 74(B is Q*open with respect to 7') then B is open in 7. Then Bc A.
Then union of all proper open sets with respect to 71 is A. Therefore A is
Q*open with respect to 7 ;. Hence Ae T ,. Similarly Ae T for all i.

Converse is not true. Consider the example

Let X={a,b,c,d} and 7= {®,{a,b},{a,b,c}, X}. AlsoT o~ = 7. Let B = {a,b}.
clB=X. Also T = Ty~ B 7, for all i. But B # union of all proper open
subsets of X.

Result 3.3. If A and B are open sets with A(\B = &, then A and B are not
Q*open.

Proof: Since A(1B = @, the points of B can’t be limit points of A. Then
cl A #X. Hence A is not Q*open. Similarly B is not Q*open.

Theorem 3.4. Let (X,7) be a topological space. If T1= Tgo~and 7T, =
(T1)o~ then T,1=T,.

Proof: Clearly 7, is finer than 7,. We have to prove that 7, is finer
than 7. Let A e T4. Since T, 7 and A is dense with respect to7, A is
dense with respect to7; Then A is Q* open with respect to 7; thatis, A e
T,. Therefore 7, is finer than 7 ;.Hence 7= 7.

Theorem 3.5. Let (X,7) be a topological space. (Let (7 ) denote the
subspace topology on A). If B cAcX , where A is open with respect to 7
and B is Q*open in X then B is Q*open in A.

Proof: Given B is open in X and cl B =X. Then BA is open in A. Also
B A =B is open in A. Claim cl B with respect to 7 4 is A. Let U be open in
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A. Since A is open in X, U is open in X. Then Ue 7. SincecI B=X, U(1B
# @. Hence every open set U in A intersects B. Therefore B is Q*open in A.

Theorem 3.6. Let (X,7) be a topological space. If BcAcX, where A is
Q* open and B is Q*open in A then B is Q*open in X.

Proof: Since B is open in A and A is open in X, B is open in X. We
claim cl B with respect to 7Tis X. Let U be any open set with respect to7 .
Since ¢l A = X, U (1A # ®. Therefore U 1A is an open set with respect to
T a. Since ¢l B with respect to 7 is A, (U(NA) (B # ®. Then U N(ANB) #
®. Hence cl B with respect to 7= X and hence B is Q*open in X.

Definition 3.7. Let (X,7) be a topological space. Contra Q*cl A is
defined by the intersection of all Q*open sets containing A.

Theorem 3.8. Let (X,7) be a topological space.Then contra cl
Accontra Q* cl A.

Proof: Let A = X. We have contra cl A = \{B/ B is open, Ac B} and
contra Q*cl A= { B/ B is Q*open, A<= B}. Since every Q* open set is
open, contra cl A < contra Q*cl A.

Example. Let X = { a,b,c}. Let T = { ®, {a,b},{c},X}. Also T~ = {X}.
Let A= {a,b}. Then contra cl A = {a,b}; contra Q*cl A = X.
Therefore contra cl A # contra Q*cl A.

Remark. It directly follows from definitions that if every Q*open set is
Q*closed then Q*cl A= contra Q*cl A.

Definition 3.9. Let (X, 7) be a topological space. Let A = X. A is said to
be Gd set if A = U(V, where U is open and V is proper Q*open.

Example 3.10. Let X=[1,100]. Let U, = [1,a] and 7={ Uj,ae X}. Also
Tqo~=T.Theneveryset U, # X isa Gd set.

Remark 3.10. Every Gd set is Q*open but its converse is not true as is
evident from the following example.

Let X = {ab,c,} and T= {®, {a,b}, X}. Then T~ = {X,{a,b}}. Here
{b,c} is Q* open but not Gd set.

Definition 3.11. Let (X, 7) be a topological space. Let D be any directed
set. Let <x,>, aeD be a net in X. We say that <x,> Q* converges to X if
given any Q* open set U containing X, there exists ape D such that x, eU
Voo > ap.
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Theorem 3.12. Let (X,7) be a topological space. Let AcX. xo e Q* cl A
if and only if there exists a net <x,> in A, such that <x,> Q* converges to
Xo.

Proof. Let <x,> be a net in A such that <x,> Q* converges to X,. We
claim that xo € Q* cl A. Let U be any Q* open set containing Xo. Since
<X,>Q* converges to Xo there exists ape D such that x, eU, V o > op. Also

<X;> is a net in A. Then x, € U [1A. Therefore U (1A # ®. Since U is

arbitary, every Q* open set containing Xo intersects A. Hence xo € Q* cl A.
Conversely suppose Xo € Q* cl A. We claim that there exists a net in A such
that the net Q* converges to Xo. Let D = {U / U is Q* open set containing
Xo}. Define < in D as follows: U; < U, if U,cU;. Clearly (D, <) is a
directed set. Let U be any Q* open set containing Xo. Since Xo € Q* cl A,
there is a point xy in U (A. Therefore <xy> is a net in A. Given a Q* open
set containing Xo, U > G implies UcG. Since xy eU <G, xy eG.
Therefore <xy> is a net in A such that <xy> Q* converges to Xo. Hence the
Theorem.
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