Vol.15(2011) Special Issue 1 Journal of International Academy of Physical Sciences pp. 95-100

Properties of Q* Sets[†]

N. Lalitha and M. Murugalingam

Department of Mathematics, Thiruvalluvar College Papanasam 627425, Tamilnadu, India E-Mail: <u>msu_lalitha@yahoo.com</u>; <u>mmmurugalingam@yahoo.com</u>

(Received June 14, 2011)

Abstract: In this paper, we study the properties of Q^* open sets. In particular, we investigate the properties and theorems in affine spaces and irreducible spaces. Also we define Gd set, contra Q^* closure and study some of these properties.

1. Introduction

We defined Q^* closed sets and Q^* open sets in an affine space¹ in the year 2010. Affine space is a topological space which characterizes most of the geometrical objects.

We need the following definitions:

Definition 1.1. Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. A is said to be Q*closed if A is closed and int $A = \Phi$. Then the complement of Q* closed set is Q* open.

Definition 1.2². Let C^n be a complex n – space. Let I be a collection of some complex polynomials of C^n . Let $V_I = \{x \in C^n / f(x) = 0 \text{ for all } f \in I\}$. That is common zero set of I. Then V_I is called affine algebraic variety.

Definition 1.3². The set of all complements of affine algebraic varieties satisfies the four axioms defining a topology on C^n . This topology is called Zariski topology on C^n .

Definition 1.4². The set C^n considered as a topological space with its Zariski topology is called affine n-space. We denote this affine n- space by A^n .

2. Q* Open Sets in Various Spaces

In this section we discuss the properties of Q^* open sets in some particular spaces namely affine spaces and irreducible spaces.

[†]Paper presented in CONIAPS XIII at UPES, Dehradun during June 14-16, 2011.

Theorem 2.1. In A^n , every non-empty open set is Q^* open set.

Proof. Let U be any non-empty open set with respect to Zariski topology. Let $U \neq X$. The $U = V_{I1}^{C}$, for some I₁, where I₁ has at least one non-zero polynomial. Let G be any open set. Let $G \neq X$. Then $G = V_{I2}^{C}$, for some I₂ where I₂ has at least one nonzero polynomial.

Now $U \cap G = V_{I1}{}^C \cap V_{I2}{}^C$. Then $U \cap G = (V_{I1} \cup V_{I2})^C$. Therefore $U \cap G = (V_{I1,I2})^C$ Since I_1I_2 has at least one nonzero polynomial, $(V_{I1,I2})^C \neq \Phi$. Therefore $U \cap G \neq \Phi$. U intersects every nonempty open set. Therefore U is dense. Hence every nonempty open set is Q* open set in Aⁿ.

Definition 2.2³. A topological space X is called irreducible if for any decomposition $X = A_1 \cup A_2$ with closed subsets $A_i \subseteq X$ (i = 1,2) then we have $X = A_1$ or $X = A_2$.

A subset X' of a topological space X is called irreducible if X' is irreducible as a subspace.

Example 1. Let $X = \{1, 2, 3\}$ and $\mathcal{T} = \{\Phi, \{1\}, \{1, 2\}, X\}$. Closed sets are Φ , $\{2,3\}, \{3\}, X$. Then X is irreducible.

Example 2. Let X = N and $T = \{\Phi, \{1\}, \{1,2\}, ..., X\}$ Then X is irreducible.

Example 3. Let X = [1,100]. Let $U_a = [1,a]$ and $\mathcal{T} = \{ U_a / a \in X \}$. Then X is irreducible.

Lemma 2.3. The topological space X is irreducible if and only if every nonempty open set is Q^* open.

Proof. Let X be irreducible. Let U be any nonempty open set. If U = X then nothing to prove. Let $U \neq X$. Then cl $U \neq X$. If possible suppose that U is not Q^{*} open. Then there exits an open set V such that $U \cap V = \Phi$. This implies $U^{C} \cup V^{C} = X$, where U^{C} and V^{C} are proper closed sets. This is a contradiction to X is irreducible.

Conversely, suppose that every open set is Q^{*} open. We claim that X is irreducible. Suppose X is reducible. Then $X = A \cup B$, where A and B are proper nonempty closed sets. This implies $A^C \cap B^C = \Phi$. Then A^C is not dense. Then A^C is an open set but not Q^{*} open, a contradiction. Hence X is irreducible.

Theorem 2.4. Let (X, \mathcal{T}) be a topological space. Let $W \subset X$. Every nonempty open set of W is Q^* open in W if and only if every nonempty open set of cl W is Q^* open in cl W.

Proof. Let every nonempty open set of W be Q^* open set in W. We claim that every nonempty open set of cl W is Q^* open in cl W.

Let A be any nonempty open set in cl W. Then A $\bigcap W$ is open in W. By hypothesis A $\bigcap W$ is dense in W. It is enough to prove that every open set intersects A. Let U be any open set of cl W. Take $x \in U$. Now $x \in cl$ W. Therefore every open set of x intersects W.

Also U \cap W is a nonempty open set in W. Since A \cap W is dense in W, (A \cap W) \cap (U \cap W) $\neq \Phi$. This implies A \cap U $\neq \Phi$. Hence A is dense in cl W and hence A is Q* open in cl W.

Conversely, suppose that every nonempty open set of cl W is Q^* open in cl W. We claim that every nonempty open set of W is Q^* open in W.

Let U be any nonempty open set of W. Then there exists an open set G in cl W such that $U = G \cap W$. By hypothesis G is Q* open in W. That implies $G \cap W$ is Q* open in W. Therefore U is Q* open in W. Hence the theorem.

Theorem 2.5. Let $f: C^n \longrightarrow C$. Let $A \subset C^n$. Then $x_0 \in cl A$, for any x_0 if and only if f is identically zero in A implies $f(x_0) = 0$.

Proof. Let $x_0 \in cl A$ and f be identically zero in A.

Let I = {f}. Since f is identically zero in A, A \subset V_I. Since V_I is closed, cl A \subset V_I. Since $x_0 \in$ cl A \subset V_I, $f(x_0) = 0$. Conversely, let V_I be any closed set containing A. We claim that $x_0 \in$ V_I. We have V_I = { $x \in C^n/f(x) = 0$, $\forall f \in$ I}. Since A \subset V_I, f(x) = 0 $\forall x \in$ A, $\forall f \in$ I. Therefore $f(x_0) = 0$ $\forall f \in$ I. Hence $x_0 \in$ V_I. But cl A is the smallest closed set containing A. Therefore $x_0 \in$ cl A. Thus the Lemma.

Theorem 2.6. If A is Q^* open then there exists I such that $f(A^C) = 0 \forall f \in I$ and f(A) = 0 implies $f \equiv 0$.

Proof. Let A be Q* open. Then A^C is closed and cl A = X. Then there exists I such that $V_I = A^C$ and cl A = X. If $x \in V_I = A^C$, then $f(x) = 0 \forall f \in I$, $x \in A^C$. Therefore $f(A^C) = 0 \forall f \in I$. Let us take f(A) = 0. We claim that $f \equiv 0$. Let $x_0 \in cl$ A. Since $f(A) = 0 \forall x \in A$ and by Lemma (2.5), $f(x_0) = 0$. Therefore $f(x) = 0 \forall x \in cl$ A. But cl A = X. Therefore $f(x) = 0 \forall x \in X$. Hence $f \equiv 0$.

3. General Properties

Let (X, \mathcal{T}) be a topological space. We have proved that the collection of all Q* open sets together with Φ is a topology¹. Let $\tau_1 = \tau_{Q^*}$. We find $(\mathcal{T}_1)_{Q^*}$ which is denoted by \mathcal{T}_2 and so on.

Theorem 3.1. Let (X, \mathcal{T}) be a topological space. Then the union of all proper open sets is Q^* open.

Proof. Let $A = \bigcup A_i$, where A_i is proper open set (with respect to \mathcal{T}). Clearly A is open. Always cl $A \subset X$. We claim that $X \subset$ cl A. Let $x_0 \in X$. Let U be any open set containing x_0 . Therefore $U \subset A$. Then $U \cap A - \{x_0\} \neq \Phi$. Therefore $x_0 \in$ cl A. Then cl A =X. Hence A is Q*open.

Result 3.2. Let (X, \mathcal{T}) be a topological space. Let A be union of all proper open subsets of X. (Let \mathcal{T}_{Q^*} denote the collection of all Q^* open sets with respect to \mathcal{T}). If $\mathcal{T}_1 = \mathcal{T}_{Q^*}$, $\mathcal{T}_2 = (\mathcal{T}_1)_{Q^*}$... etc, then $A \in \mathcal{T}_i$, $\forall i = 1, 2, ...$

Proof. By Theorem 3.1, A is Q*open. Let $\mathcal{T}_1 = \mathcal{T}_{Q^*}$. Clearly $A \in \mathcal{T}_1$. If $B \in \mathcal{T}_1(B \text{ is } Q^* \text{ open with respect to } \mathcal{T})$ then B is open in \mathcal{T} . Then $B \subset A$. Then union of all proper open sets with respect to \mathcal{T}_1 is A. Therefore A is Q*open with respect to \mathcal{T}_1 . Hence $A \in \mathcal{T}_2$. Similarly $A \in \mathcal{T}_I$, for all i.

Converse is not true. Consider the example

Let X= {a,b,c,d} and $\mathcal{T} = \{\Phi, \{a,b\}, \{a,b,c\}, X\}$. Also $\mathcal{T}_{Q^*} = \mathcal{T}$. Let B = {a,b}. cl B = X. Also $\mathcal{T} = \mathcal{T}_{Q^*}$. B $\in \mathcal{T}_I$ for all i. But B \neq union of all proper open subsets of X.

Result 3.3. If A and B are open sets with $A \cap B = \Phi$, then A and B are not Q^* open.

Proof: Since $A \cap B = \Phi$, the points of B can't be limit points of A. Then cl $A \neq X$. Hence A is not Q*open. Similarly B is not Q*open.

Theorem 3.4. Let (X, \mathcal{T}) be a topological space. If $\mathcal{T}_1 = \mathcal{T}_{Q^*}$ and $\mathcal{T}_2 = (\mathcal{T}_1)_{Q^*}$ then $\mathcal{T}_1 = \mathcal{T}_2$.

Proof: Clearly \mathcal{T}_1 is finer than \mathcal{T}_2 . We have to prove that \mathcal{T}_2 is finer than \mathcal{T}_1 . Let $A \in \mathcal{T}_1$. Since $\mathcal{T}_1 \subset \mathcal{T}$ and A is dense with respect to \mathcal{T} , A is dense with respect to \mathcal{T}_1 . Then A is Q* open with respect to \mathcal{T}_1 , that is, $A \in \mathcal{T}_2$. Therefore \mathcal{T}_2 is finer than \mathcal{T}_1 .Hence $\mathcal{T}_1 = \mathcal{T}_2$.

Theorem 3.5. Let (X, \mathcal{T}) be a topological space. (Let (\mathcal{T}_A) denote the subspace topology on A). If $B \subset A \subset X$, where A is open with respect to \mathcal{T} and B is Q*open in X then B is Q*open in A.

Proof: Given B is open in X and cl B =X. Then B \cap A is open in A. Also B \cap A = B is open in A. Claim cl B with respect to τ_A is A. Let U be open in

A. Since A is open in X, U is open in X. Then $U \in \mathcal{T}$. Since cl B = X, $U \cap B \neq \Phi$. Hence every open set U in A intersects B. Therefore B is Q*open in A.

Theorem 3.6. Let (X, \mathcal{T}) be a topological space. If $B \subset A \subset X$, where A is Q^* open and B is Q^* open in A then B is Q^* open in X.

Proof: Since B is open in A and A is open in X, B is open in X. We claim cl B with respect to τ is X. Let U be any open set with respect to τ . Since cl A = X, U $\cap A \neq \Phi$. Therefore U $\cap A$ is an open set with respect to τ_A . Since cl B with respect to τ_A is A, (U $\cap A$) $\cap B \neq \Phi$. Then U $\cap (A \cap B) \neq \Phi$. Hence cl B with respect to $\tau = X$ and hence B is Q*open in X.

Definition 3.7. Let (X, \mathcal{T}) be a topological space. Contra Q*cl A is defined by the intersection of all Q*open sets containing A.

Theorem 3.8. Let (X, \mathcal{T}) be a topological space. Then contra $cl A \subset contra Q^* cl A$.

Proof: Let $A \subset X$. We have contra cl $A = \bigcap \{B | B \text{ is open, } A \subset B\}$ and contra Q*cl $A = \bigcap \{B | B \text{ is } Q^{*} \text{open, } A \subset B\}$. Since every Q* open set is open, contra cl $A \subset$ contra Q*cl A.

Example. Let $X = \{a,b,c\}$. Let $T = \{\Phi, \{a,b\}, \{c\},X\}$. Also $\mathcal{T}_{Q^*} = \{X\}$. Let $A = \{a,b\}$. Then contra cl $A = \{a,b\}$; contra Q^* cl A = X. Therefore contra cl $A \neq$ contra Q^* cl A.

Remark. It directly follows from definitions that if every Q^* open set is Q^* closed then Q^* cl A= contra Q^* cl A.

Definition 3.9. Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. A is said to be Gd set if $A = U \cap V$, where U is open and V is proper Q*open.

Example 3.10. Let X= [1,100]. Let U_a = [1,a] and $\mathcal{T} = \{ U_a/a \in X \}$. Also $\mathcal{T}_{Q^*} = \mathcal{T}$. Then every set $U_a \neq X$ is a Gd set.

Remark 3.10. Every Gd set is Q^* open but its converse is not true as is evident from the following example.

Let X = {a,b,c,} and $\mathcal{T} = \{\Phi, \{a,b\}, X\}$. Then $\mathcal{T}_{Q^*} = \{X, \{a,b\}\}$. Here {b,c} is Q* open but not Gd set.

Definition 3.11. Let (X, \mathcal{T}) be a topological space. Let D be any directed set. Let $\langle x_{\alpha} \rangle$, $\alpha \in D$ be a net in X. We say that $\langle x_{\alpha} \rangle = Q^*$ converges to x_0 if given any Q* open set U containing x_0 there exists $\alpha_0 \in D$ such that $x_{\alpha} \in U$ $\forall \alpha \geq \alpha_0$.

Theorem 3.12. Let (X, \mathcal{T}) be a topological space. Let $A \subset X$. $x_0 \in Q^*$ cl A if and only if there exists a net $\langle x_a \rangle$ in A, such that $\langle x_a \rangle Q^*$ converges to x_0 .

Proof. Let $\langle x_{\alpha} \rangle$ be a net in A such that $\langle x_{\alpha} \rangle Q^*$ converges to x_0 . We claim that $x_0 \in Q^*$ cl A. Let U be any Q* open set containing x_0 . Since $\langle x_{\alpha} \rangle Q^*$ converges to x_0 there exists $\alpha_0 \in D$ such that $x_{\alpha} \in U$, $\forall \alpha \ge \alpha_0$. Also $\langle x_{\alpha} \rangle$ is a net in A. Then $x_{\alpha_0} \in U \cap A$. Therefore $U \cap A \ne \Phi$. Since U is arbitrary, every Q* open set containing x_0 intersects A. Hence $x_0 \in Q^*$ cl A. Conversely suppose $x_0 \in Q^*$ cl A. We claim that there exists a net in A such that the net Q* converges to x_0 . Let $D = \{U / U \text{ is } Q^* \text{ open set containing } x_0\}$. Define \leq in D as follows: $U_1 \leq U_2$ if $U_2 \subset U_1$. Clearly (D, \leq) is a directed set. Let U be any Q* open set containing x_0 . Since $x_0 \in Q^*$ cl A, there is a point x_U in $U \cap A$. Therefore $\langle x_U \rangle$ is a net in A. Given a Q* open set containing x_0 , $U \geq G$ implies $U \subset G$. Since $x_U \in U \subset G$, $x_U \in G$. Therefore $\langle x_U \rangle$ is a net in A such that $\langle x_U \rangle Q^*$ converges to x_0 . Hence the Theorem.

Reference

- M. Murugalingam and N. Lalitha, Q star sets, *Bulletin of pure and Applied Sciences*, 29 (2010) 369 376.
- 2. Karen E. Smith, Lauri Kahanpaa, Pekka Kekalainen, William Traves, Algebraic Geometry, Springer Verlag., Inc., New York, 2000.
- 3. David, Eisenvud, Commutative Algebra view towards Algebraic Geometry, *Springer-Verlag, Inc.*, New York, 1995.