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Abstract: In this paper, we study the properties of Q* open sets. In 

particular, we investigate the   properties and theorems in affine spaces 

and irreducible spaces. Also we define Gd set, contra Q* closure and 

study some of these properties. 

 

1. Introduction 
 

We defined Q* closed sets and Q* open sets in an affine space
1
 in the 

year 2010. Affine space is a topological space which characterizes most of 

the geometrical objects.  

We need the following definitions: 
 

Definition 1.1.  Let (X, ) be a topological space. Let A   X. A is said 

to be Q*closed if A is closed and int A = Φ. Then the complement of Q* 

closed set is Q* open. 
 

Definition 1.2
2
. Let C

n 
 be a complex n – space. Let I be a collection of 

some complex polynomials of  C
n
. Let VI = {x C

n
/ f (x) = 0 for all f I}. 

That is common zero set of I. Then VI is called affine algebraic variety. 
 

Definition 1.3
2
. The set of all complements of affine algebraic varieties 

satisfies the four axioms defining a topology on C
n
. This topology is called 

Zariski topology on C
n
. 

 

Definition 1.4
2
. The set C

n
 considered as a topological space with its 

Zariski topology is called affine n–space. We denote this affine n- space by 

A
n
. 

 

2. Q* Open Sets in Various Spaces 
 

In this section we discuss the properties of Q* open sets in some 

particular spaces namely affine spaces and irreducible spaces. 
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Theorem 2.1. In A
n
, every non-empty open set is Q* open set. 

 

Proof. Let U be any non-empty open set with respect to Zariski 

topology. Let U ≠ X. The U = VI1
C
, for some I1, where I1 has at least one 

non-zero polynomial. Let G be any open set.  Let G ≠ X. Then G = VI2
C
, for 

some I2 where I2 has at least one nonzero polynomial.                                 

Now U G = VI1
CVI2

C
. Then U G = (VI1  VI2)

C
 . Therefore U G = 

(VI1.I2 )
C
 SinceI1I2 has at least one nonzero polynomial, (VI1.I2 )

C
 ≠ Φ. 

Therefore U G ≠ Φ. U intersects every nonempty open set.  Therefore U is 

dense. Hence every nonempty open set is Q* open set in A
n
. 

 

Definition 2.2
3
. A topological space X is called irreducible if for any 

decomposition X = A1A2 with closed subsets Ai   X (i = 1,2) then we 

have X = A1 or X = A2. 

A subset X’ of a topological space X is called irreducible if X’ is irreducible 

as a subspace. 
 

Example 1. Let X = {1, 2, 3} and  = {Φ, {1},{1,2}, X}. 

Closed sets are Φ, {2,3},{3}, X. Then X is irreducible. 
 

Example 2. Let X = N and  = {Φ, {1}, {1,2 },…. X} 

   Then X is irreducible. 
 

Example 3. Let X = [1,100]. Let Ua = [1,a] and  = { Ua / a   X}.  

Then X is irreducible. 
 

Lemma 2.3. The topological space X is irreducible if and only if every 

nonempty open set is Q* open. 
 

Proof. Let X be irreducible. Let U be any nonempty open set. If U = X 

then nothing to prove. Let U ≠ X. Then cl U ≠ X. If possible suppose that U 

is not Q* open. Then there exits an open set V such that U V = Φ. This 

implies U
C

 V
C
 = X, where U

C
 and V

C
 are proper closed sets. This is a 

contradiction to X is irreducible. 

Conversely, suppose that every open set is Q* open. We claim that X is 

irreducible. Suppose X is reducible. Then X = AB, where A and B are 

proper nonempty closed sets. This implies A
C

 B
C
 = Φ. Then A

C
 is not 

dense. Then A
C
 is an open set but not Q* open, a contradiction. Hence X is 

irreducible. 

Theorem 2.4. Let (X, ) be a topological space. Let WX. Every 

nonempty open set of W is Q* open in W if and only if every nonempty open 

set of cl W is Q* open in cl W. 
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Proof. Let every nonempty open set of W be Q* open set in W. We 

claim that every nonempty open set of cl W is Q* open in cl W. 

Let A be any nonempty open set in cl W. Then A W is open in W. By 

hypothesis A W is dense in W. It is enough to prove that every open set 

intersects A. Let U be any open set of cl W. Take x  U. Now x  cl W. 

Therefore every open set of x intersects W.  

 Also UW is a nonempty open set in W. Since A W is dense in W, (A 

W) (U W) ≠ Φ.  This implies A U ≠ Φ. Hence A is dense in cl W and 

hence A is Q* open in cl W. 

Conversely, suppose that every nonempty open set of cl W is Q* open in 

cl W. We claim that every nonempty open set of W is Q* open in W. 

Let U be any nonempty open set of W. Then there exists an open set G in 

cl W such that U = GW. By hypothesis G is Q* open in W. That implies 

GW is Q* open in W. Therefore U is Q* open in W. Hence the theorem. 
 

Theorem 2.5.  Let f: C
n
        C. Let A C

n
. Then x0  cl A, for any x0 if 

and only if f is identically zero in A implies f(xo) = 0. 
 

Proof. Let x0  cl A and f be identically zero in A. 

Let I = {f}. Since f is identically zero in A, A VI. Since VI is closed, cl A 

  VI. Since x0  cl A   VI, f(x0) = 0. Conversely, let VI be any closed set 

containing A. We claim that x0 VI. We have VI = { x C
n
/ f(x) =0,  f   

I}. Since A   VI, f(x) = 0 x A,  f I. Therefore f(x0) = 0  f I. 

Hence x0VI. But cl A is the smallest closed set containing A. Therefore 

x0cl A. Thus the Lemma. 
 

Theorem 2.6. If A is Q* open then there exists I such that  f (A
C
) = 0  f 

I and f (A) = 0 implies f ≡ 0. 
 

Proof. Let A be Q* open. Then A
C 

is closed and cl A = X. Then there 

exists I such that VI = A
C
 and    cl A = X. If x  VI = A

C
, then f(x) = 0  f 

I, x A
C
. Therefore f (A

C
) = 0  f I. Let us take f (A) = 0. We claim that 

f ≡ 0. Let x0 cl A. Since f (A) = 0  xA and by Lemma (2.5), f(x0) = 0. 

Therefore f(x) = 0  x  cl A. But cl A = X. Therefore f(x) = 0  x X. 

Hence f ≡ 0. 

 
 

3. General Properties 
 

Let (X, ) be a topological space. We have proved that the collection of 

all Q* open sets together with Φ is a topology
1
. Let 1 *Q  . We find ( 1)Q*  

which is denoted by   2 and so on. 
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Theorem 3.1. Let (X, ) be a topological space. Then the union of all 

proper open sets is Q* open. 

Proof. Let A = Ai, where Ai is proper open set (with respect to  ). 

Clearly A is open. Always cl A   X. We claim that X   cl A. Let x0   X. 

Let U be any open set containing x0. Therefore UA. Then U A – {x0} ≠ 

Φ. Therefore x0  cl A. Then cl A =X.  Hence A is Q*open. 

 

Result 3.2. Let (X, ) be a topological space. Let A be union of all 

proper open subsets of X.  (Let  Q* denote the collection of all Q*open sets 

with respect to  ). If  1 =  Q*,  2 = ( 1) Q* …etc, then A  i ,  i = 

1,2,… 

 

Proof. By Theorem 3.1, A is Q*open. Let  1 =  Q*. Clearly A  1. If 

B 1(B is Q*open with respect to  ) then B is open in  . Then B  A. 

Then union of all proper open sets with respect to  1 is A. Therefore A is 

Q*open with respect to  1. Hence A 2. Similarly A I, for all i.  

 

Converse is not true. Consider the example 

Let X= {a,b,c,d} and  = {Φ,{a,b},{a,b,c}, X}. Also Q* =  . Let B = {a,b}. 

cl B = X. Also   =  Q*. B  I for all i. But B  ≠ union of all proper open 

subsets of X. 

 

Result 3.3. If A and B are open sets with AB = Φ, then A and B are not 

Q*open. 
 

Proof: Since AB = Φ, the points of B can’t be limit points of A. Then 

cl A ≠ X.  Hence A is not Q*open. Similarly B is not Q*open. 
 

Theorem 3.4. Let (X, ) be a topological space. If  1=  Q* and  2 = 

( 1)Q*  then    1 =  2. 
 

Proof: Clearly  1 is finer than  2. We have to prove that  2 is finer 

than  1. Let A  1. Since  1  and A is dense with respect to , A is 

dense with respect to 1. Then A is Q* open with respect to  1, that is, A   

 2. Therefore  2 is finer than  1.Hence  1=  2. 
 

Theorem 3.5. Let (X, ) be a topological space. (Let ( A) denote the 

subspace topology on A). If B AX , where A is open with respect to   

and B is Q*open in X then B is Q*open in A. 

Proof: Given B is open in X and cl B =X. Then B A is open in A. Also 

B A = B is open in A. Claim cl B with respect to  A is A. Let U be open in 
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A. Since A is open in X, U is open in X. Then U . Since cl B = X, U B 

≠ Φ. Hence every open set U in A intersects B. Therefore B is Q*open in A. 
 

Theorem 3.6. Let (X, ) be a topological space. If BAX, where A is 

Q* open and B is Q*open in A then B is Q*open in X. 
 

Proof: Since B is open in A and A is open in X, B is open in X. We 

claim cl B with respect to  is X. Let U be any open set with respect to . 

Since cl A = X, U A ≠ Φ. Therefore U A is an open set with respect to 

 A. Since cl B with respect to  A is A, (U A) B ≠ Φ. Then U (AB) ≠ 

Φ. Hence cl B with respect to  = X and hence B is Q*open in X. 
 

Definition 3.7. Let (X, ) be a topological space. Contra Q*cl A is 

defined by the intersection of all Q*open sets containing A. 
 

Theorem 3.8. Let (X, ) be a topological space.Then contra cl 

A contra Q* cl A. 
 

Proof: Let A X. We have contra cl A = {B/ B is open, AB} and  

contra Q*cl A= { B/ B is Q*open, AB}. Since every Q* open set is 

open, contra cl A   contra Q*cl A. 
 

Example. Let X = { a,b,c}. Let T = { Φ, {a,b},{c},X}. Also  Q* = {X}. 

Let A= {a,b}. Then contra cl A = {a,b};  contra Q*cl A = X. 

Therefore contra cl A  ≠ contra Q*cl A. 
 

Remark. It directly follows from definitions that if every Q*open set is 

Q*closed then Q*cl A= contra Q*cl A. 
 

 

Definition 3.9. Let (X, ) be a topological space. Let A X. A is said to 

be Gd set if A = U V, where U is open and V is proper Q*open. 
 

Example 3.10. Let X= [1,100]. Let Ua = [1,a] and  ={ Ua/aX}. Also 

 Q* = . Then every set aU X  is a Gd set. 
 

Remark 3.10. Every Gd set is Q*open but its converse is not true as is 

evident from the following example. 
 

Let X = {a,b,c,} and  = {Φ, {a,b}, X}. Then  Q* = {X,{a,b}}.  Here 

{b,c} is Q* open  but not Gd set. 

 

Definition 3.11. Let (X, ) be a topological space. Let D be any directed 

set. Let <xα> , αD be a net in X. We say that <xα>  Q* converges to x0 if 

given any Q* open set U containing x0 there exists α0D such that  xα U 
 α ≥ α0. 
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Theorem 3.12. Let (X, ) be a topological space. Let AX. x0 Q* cl A 

if and only if there exists a net <xα> in A, such that <xα> Q* converges to 

x0. 
 

Proof. Let <xα> be a net in A such that <xα> Q* converges to x0. We 

claim that x0  Q* cl A. Let U be any Q* open set containing x0. Since 

<xα>Q* converges to x0 there exists α0D such that xα U,  α ≥ α0. Also 

<xα> is a net in A. Then 
0

x  U A. Therefore  U A ≠ Φ. Since U is 

arbitary, every Q* open set containing x0 intersects A. Hence x0 Q* cl A.  

Conversely suppose x0 Q* cl A. We claim that there exists a net in A such 

that the net Q* converges to x0. Let D = {U / U is Q* open set containing 

x0}. Define ≤ in D as follows:  U1 ≤ U2 if  U2U1. Clearly (D, ≤) is a 

directed set. Let U be any Q* open set containing x0. Since x0 Q* cl A, 

there is a point xU in U A. Therefore <xU> is a net in A. Given a Q* open 

set containing x0, U ≥ G implies UG. Since xU U G, xU G. 

Therefore <xU> is a net in A such that  <xU> Q* converges to x0. Hence the 

Theorem. 
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