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Abstract: Shyam Lal and Prem Narain Singh

1
 defined (C, 1) (E, 1) 

Summability of Fourier series and obtained approximation of Lip(ξ(t),p) 

function using it. Extending the above result. Shyam Lal and J. K.  

Kushwaha, obtained the degree of approximation of function of Lip α 

class by product summability mean of the form (C, 1) (E, q). It is known 

that (e, c) mean includes (E, 1) and (E, q) mean. In the present paper, we 

have defined (C, 1) (e, c) mean of Fourier series and generalizing the 

above two results, obtained the degree of approximation of function of 

Lipα class by (C, 1) (e, c) means. 
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1. Definition and Notations 
 

Let f(t) be a periodic function with period - 2  and integrable in the 

sense of Lebesgue over  ,  . Let the Fourier series of f(t) be given by 
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exists, where it is to be understood that 0k rS   , when 0k r  .   

A function f Lip  if 
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     for  0< 1  .  

We shall write 
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   ,  

where  ;c

ne f x  is n
th

 (e, c) mean of the Fourier series of f at x. 

 
 

2. Inequalities  
 

In the proof of our theorem, we shall use the following inequalities: 
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The inequality (2.2) follows from (2.1) which is due to Shrivastava and 

Verma
3
, (2.3) may be obtained by using Abel's Lemma and (2.4) may be 

obtained by the classical formula for theta function (see Siddiqui
2
) 

We have 
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  is said to be (C, 1) summable to s if   
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The (C, 1) transform of the (e, c) transform is defined as the (C, 1) (e,c) 

transform of the partial sum sn, of the series 
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  is said to be 

summable (C, 1) (e, c) means or simply summable (C, 1) (e, c) to s. Shyam 

Lal and Prem Narain Singh
4
 obtained approximation of   ,Lip t p  

function by (C, 1) (E, 1) means of its Fourier series.  They proved the 

following theorem: 

Theorem. 1: If :f R R is 2 –periodic and   ,Lip t p  function  

belonging to   ,Lip t p , then the degree of approximation of f by (C, 1) 

(E, 1) means of Fourier series satisfies 
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provided  t satisfy the following conditions 
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where   is an arbitrary number such that  1 1 0q    , conditions (2.9) 

and (2.10) hold uniformly in x and  
1

n
CE are (C, 1) (E, 1) means of Fourier 

series (1.1).  
 

      Generalizing the above result Shyam Lal and J.K. Kushwaha
5
 obtained 

the degree of approximation of function of Lip  class by product 

summability mean of the form (C, 1) (E, q). Their theorem is as follows: 
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Theorem. 2: If :f  is 2 –periodic Lebesgue integrable on 

 ,   and belonging to the Lipschitz class, then the degree of 

approximation of f by the (C, 1) (E, q) product means of its Fourier series 

satisfies for n =0, 1, 2,  

(2.11)               1
q

n
CE x f x n





     for 0 1  . 

Since (e, c) method includes (E, q) method, it is natural to ask what will 

be the result if we apply product summability mean of the form (C, 1) (e, c) to 

obtain the degree of approximation for Lipschitz class? 

We shall prove the following theorem: 
 

Theorem: If :f   is 2 –periodic Lebesgue integrable on 

 ,  and belonging to the Lipschitz class then the degree of approximation 

of f by the (C, 1) (e,c ) product means of its Fourier series satisfies for n= 0, 
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       For the proof of our theorem following lemmas are required: 
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3. Proof of  the Theorem 

 

Following Titchmarsh
1
, we have 
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 (3.3)     
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 (3.11)                     
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This completes the proof of the theorem. 
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