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Abstract: The present paper is devoted to the study of hypersurfaces 
immersed in a recurrent Finsler space. U. P. Singh and G. C. Chaubey1

obtained some results on hypersurfaces of a recurrent Finsler space under 
certain conditions. In this paper, a more general definition of a recurrent 
space has been adopted and several properties of an umbilical 
hypersurface immersed in such space have been investigated. Results of 
Singh and Chaubey1 have been generalized and extended to a larger class 
of recurrent spaces.
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1. Introduction

U. P. Singh and G. C. Chaubey 1 obtained Gauss characteristic equations 
of an umbilical hypersurface immersed in a Finsler space from the 
standpoint of Berwald connection. They defined a recurrent Finsler space 
which is not equivalent to the definition of several authors such as Kumar2, 
Misra3, Pandey4 and others. Singh and Chaubey1 considered two cases: (i) 
The recurrence vector field of the embedding space is not normal to a non-
totally geodesic hypersurface, (ii) The recurrence vector field is normal to 
the hypersurface. For the first case, they investigated the conditions for the 
hypersurface immersed in a recurrent space to be recurrent in accordance 
with their definition of a recurrent space. For the second case, with an 
additional condition that the embedding space is affinely connected, they 
derived several properties of the hypersurface. It has been shown by Pandey 
and Dikshit5 that a recurrent Finsler space is a Landsberg space if and only if

det( ) 0i
jH  . In the present paper, we have adopted the definition of a 

recurrent space of Kumar2, Misra3, Pandey4 and others. For case (i) 
discussed above, we have established some conditions for the hypersurface 
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immersed in a recurrent Finsler space satisfying det( ) 0i
jH  to be recurrent. 

The same conditions have been obtained for a hypersurface immersed in a 
recurrent Landsberg space to be recurrent, as corollaries. For case (ii), we 
have investigated several properties of a hypersurface immersed in a 

recurrent space satisfying det( ) 0i
jH  . The same properties have been 

derived, as corollaries, for a Landsberg recurrent space whose class is larger 
than that of affinely connected recurrent spaces.

Let ( , )nF L be an n-dimensional Finsler space equipped with metric 

function ( , )L x x and corresponding metric tensor ( ( , ))ijg g x x  . The relation 

between Berwald connection parameters and Cartan connection parameters 
is given by

(1.1)                  | ,i i i h
jk jk jk hG C x                                                                  

where  i ip
jk jpkC g C and 

1

2
j p

jpk k

g
C

x





are symmetric tensors and the 

symbol ‘|’ stands for the Cartan process of covariant differentiation.
A Finsler space is said to be a Landsberg space if Berwald connection is 

metrical therein6, i.e. ( ) 0i j kg  , ( )i j kg denotes the Berwald covariant 

derivative of i jg with respect to kx . This space is characterized by6

|(1.2) 0,

or, alternatively by

(1.3) 0,

where .

h
i j k h

r
r j k h

r
i i r

C x

y G

y g x











Let 1nF  be a hypersurface of nF , represented parametrically by the 
equations* ( ).i ix x u The fundamental metric tensors of nF and 1nF  are 
related by
(1.4)    ( , ) ( , ) ,i j

i jg u u g x x B B                                                                    

where 
i

i x
B

u 





are the projection factors.

*Throughout the discussion Latin indices run from 1 to n and Greek indices from 1 to n-1.
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The unit normal iN to the hypersurface 1nF  , at a point, satisfies the 

following:

( ) 0,
(1.5)

( ) 1,

where .

i
i

i j
i j

i i j
j

a N B

b g N N

N g N

 





Cartan’s induced and intrinsic connection parameters 
 
 and / 

 
 (vide 

Rund7) are related by8

(1.6) / , 
     
                                                                                                   

where

(1.7) ( )

( ) ,

g M M M u

M C M C M C u u

 
                 

    
            

        

   



 

n-1, and are second fundamental quantities of F .i j k
i j i j i j kM M B M C N       

The normal curvature of 1,nF  in the direction of ,u is given by

(1.8) 2( , ) ( ) / ( , ),n u u u u F u u 
                                                                    

which, in view of the normalizing condition 2 ( , ) 1,F u u  becomes

(1.9) ( , ) .n u u u u 
                                                                                        

From (1.7) and (1.9) we obtain

( ) ,

( ) ,

where

(1.10) .

n

n

a u M

b g u M

M g M

  
  

 
     

  
  





 

  







The mixed covariant derivative of an arbitrary vector field iT is given by

                             ( ) ( ) ,i i i i p i h
p hT T T G T G T G B 
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where ,
u u

  
 

   
 




and G
  are Berwald’s induced connection 

parameters. In view of the above equation, the mixed covariant derivative of 

projection factors is given by

(1.11) ( ) .h ki i i i i
h kB V B B G G B

                                                               

Equation (1.11) can be put in the following form (vide Sinha and Singh9) 

| |(1.12) ( ) ,i i i i r h k
h k rV N B C u C x B  

                 

Sinha and Singh9 obtained the following form of Gauss equation:

| [ ] [ ]

[ ( )] | ( ) [ ]

| [ ]

| [

(1.13) ( )

2 ( )

2 2

2 2

2( )

2

hl k j
h l k j

h l l
l h

h p k l l i
h l k p i l

r h l k j
h l k r j

r h l k j
j h l k r

h l k
h l k r

H H B

M B V V u

N C x B B g V

g C x B

C x B V u

C B V

               


        


        


        


    

   

     

  

   

  

 









  

] | [ ]2 ,r r l k h
hl k ru C x B V

     

where h l k jH and H    are Berwald’s associate curvature tensors in nF

and 1nF  , square brackets denote the skew-symmetric part with respect to 

the indices enclosed therein and .j jx


 






2. Umbilical Hypersurfaces

An umbilical hypersurface 1nF  , immersed in a Finsler space ,nF    is 
characterized by

(2.1) ( , ) ( , ).nu u g u u                                                                                         

The mean curvature vector iM  of the hypersurface 1nF  is given by

(2.2)
1

.
1

i iM g N
n
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From equations (2.1) and (2.2), we obtain

(2.3)     2 .i j j
i j j ng M M M M                                                         

In view of equations (2.1) and (2.3) and the facts

                     ( ) |, 0, 0, 0 and 0,l h h i r
l h r h rM N B M x C x u C u  

          

equation (1.13) takes the form

(2.4)         
2

( ) ( )

2 ( ) ,

hl k j i
h l k j i

n

H H B M M g g g g

M g g g g u P

               


            

   

  

where

| [ ]

[ ] [ ( )] | ( ) [ ]

| [ ] | [ ]

| [ ]

(2.5) 2 ( ) 2

2 2 2

2( ) 2

2 .

hl h r k l
l h h l k r

l i r h l k j
i l h l k r j

r h l k j h l k r
j h l k r h l k r

r l k h
hl k r

P M B u N C x B

B g V g C x B

C x B V u C B V u

C x B V

  
                

 
             

 
         

   

      

    

  



 



   



Differentiating (2.4) covariantly with respect to u and using (1.11), we 
have

( ) ( )

2
( )

(2.6)

[ ( ) ( )

2 ( ) ] .

h l k j l k j h h k j l
h l k j h l k j h l k j

h l j k h l k j
h l k j h l k j

i
i

n

H H B H B V H B V

H B V H B V

M M g g g g

M g g g g u P

                   

         

       


             

 

  

 

 

  

The mixed covariant derivative of h l k jH with respect to u is, by definition, 

given by

(2.7)      ( )

( ) .

hl k j h l k j
h l k j

r r r r m
r l k j h m h r k j l m hl r j k m hl k r j m

H H G
H

u u u

H G H G H G H G B



   



  
 

  
   

     

The following is obvious

(2.8)         .
h l k j hl k j h l k jm m

m m

H H H
B B u

u x x
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Using (2.8) in (2.7), we have

( )(2.9) [ ( )

( )]

( ) ( ),

i
h l k j m hl k j i h l k j m

r r r r m
r l k j h m h r k j l m hl r j k m hl k r j m

i m i i
i h l k j m

H H H G

H G H G H G H G B

H G B B u G B





 
    

   

   

   



 

where j jx


 


and .j jx


 






In view of (1.11), (2.9) takes the following form

(2.10)     ( ) ( ) ( ) .m r
hl k j h l k j m r h l k jH H B H V u

                                                                             

Using (2.10) in (2.6), we obtain the following form of Gauss characteristic 
equations of an umbilical hypersurface immersed in a Finsler space (vide U. 
P. Singh and G. C. Chaubey 1) 

( ) ( )

2
( )

(2.11) [ ( ) ]

[ ( ) ( )

2 ( ) ]

.

m r hl k j
h l k j m r h l k j

i
i

n

l k j h h k j l
h l k j h l k j

h l j k h l k j
h l k j h l k j

H H B H V u B

M M g g g g

M g g g g u P

H B V H B V

H B V H B V


           

       


             

         

         



 

  

 

  

 

 

 



3. Recurrent Finsler spaces

A non-flat Finsler space nF is called a recurrent space if the curvature 
tensor satisfies the relation2, 3, 4

(3.1) ( ) ,i i
j k h m m j k hH a H                                                                           

where ma is a non-zero vector, called the recurrence vector. Pandey4 proved 

that the recurrence vector ma is independent of directional arguments.

Using (3.1) in 

                                      ( ) ( ) ( ) ,
i i

j l k h m i l m j k h i l j k h mH g H g H 

we have
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(3.2) ( ) ( ) .i
j l k h m i l m j k h m j l k hH g H a H                                                               

In view of (2.4) and (3.2), (2.11) becomes

( ) ( )

2

2
( )

(3.3) [

( ) ( )

2 ( ) ]

[ ( ) ( )

2 ( ) ]

( )

(

p m hl k j m
p l m h k j m

i
i

n

i
i

n

r h l k j
r hl k j

h l k j

H g H B B a B H

M M g g g g

M g g g g P

M M g g g g

M g g g g u P

H V u B

H B

              

       

            

       


             


     

  





 

 

 

 

  

 

  

 





 

).l k j h h k j l h l j k h l k jV B V B V B V                  

Pandey and Dikshit5 proved the following:

Theorem 3.1. (P. N. Pandey and Shalini Dikshit5):  A recurrent space 
nF is a Landsberg space if and only if ( ) 0i

jdet H  .

Let us consider two cases:
(a) The recurrence vector field ma is not normal to the hypersurface 1nF  , 

i.e.

                            0,m
ma B a  

(b) The recurrence vector field ma is normal to the hypersurface 1nF  , i.e.

                              0.m
ma B a  

We assume that the hypersurface is non-totally geodesic.
Define

2

(3.4) ( ) ( )

2 ( ) .

i
i

n

T H M M g g g g

M g g g g u P

               


            

   

  

In view of case (a) and equation (3.4), (3.3) becomes

( ) ( )(3.5) ( )

( ).

p m hl k j r h l k j
p l m h k j r h l k j

l k j h h k j l h l j k h l k j
h l k j

T g H B B a T H V u B

H B V B V B V B V


                    

                   

   

   

 

Now, if
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( )(3.6) ( )

( ) 0,

p m hl k j r h l k j
p l m h k j r h l k j

l k j h h k j l h l j k h l k j
h l k j

g H B B H V u B

H B V B V B V B V


          

                   

 

    

 

then it follows from (3.5) that
                                     ( ) .T a T         
Thus, we have:

Theorem 3.2. If 1nF  is a non-totally geodesic umbilical hypersurface 
immersed in a recurrent Finsler space nF and the recurrence vector field

ma is not normal to the hypersurface, then the tensor T    , defined by 

(3.4), is recurrent with recurrence vector m
ma a B  if and only if (3.6) 

holds.

Suppose that det( ) 0i
jH  . Then the embedding space nF is a Landsberg 

space by Theorem 3.1 and hence ( ) 0.p l mg  In this case, from equation 

(3.2), we have

(3.7) ( ) .j l k h m m j l k hH a H                                                                                   

Thus, in case of det( ) 0i
jH  , our characterization of a recurrent space 

coincides with that of U. P. Singh and G. C. Chaubey 1.
From (3.6), we deduce the following:

Theorem 3.3. Let 1nF  be a non-totally geodesic umbilical hypersurface 
immersed in a recurrent Finsler space nF . If the recurrence vector field ma

is not normal to the hypersurface 1nF  and ( ) 0i
jdet H  , then the tensor 

T    , defined by (3.4), is recurrent with recurrence vector m
ma a B  if 

and only if 

(3.8) ( ) ( ) 0.r h l k j l k j h h k j l h l j k h l k j
r h l k j hl k jH V u B H B V B V B V B V

                                                  

From Theorem 3.1 and Theorem 3.3, we have the following result:

Corollary 3.4. If 1nF  is a non-totally geodesic umbilical hypersurface 
immersed in a recurrent Landsberg space nF and the recurrence vector
field ma is not normal to the hypersurface 1nF  , then the tensor T    , 

defined by (3.4), is recurrent with recurrence vector m
ma a B  if and only 

if (3.8) holds.

If we define
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(3.9)             
2

( ) ( )

2 ( ) ,

i
i

n

J M M g g g g

M g g g g u P

           


            

  

  

it follows from (3.4) that

(3.10) .H T J                                                                                  

Let det( ) 0i
jH  . Then, in the light of equation (3.7), equation (3.10) implies 

that if T    and J    are recurrent with the recurrence vector a , then 

H    is also recurrent with the same recurrence vector.

In view of the above fact and Theorem 3.3, we have the following result:

Theorem 3.5. Let 1nF  be a non-totally geodesic umbilical hypersurface 
immersed in a recurrent Finsler space nF . If the recurrence vector field ma

is not normal to the hypersurface 1nF  and ( ) 0i
jdet H  , then the 

hypersurface 1nF    is recurrent with recurrence vector  a if  (3.8) holds 

and J    , defined by (3.9) is recurrent with recurrence vector a .

From Theorem 3.1 and Theorem 3.5, we may state:

Corollary 3.6. If 1nF  is a non-totally geodesic umbilical hypersurface 
immersed in a recurrent Landsberg space nF and the recurrence vector 
field ma is not normal to the hypersurface 1nF  , then the hypersurface 1nF    

is recurrent with recurrence vector a if (3.8) holds and J    , defined by 

(3.9), is recurrent with recurrence vector a .

Case (b):
Let the recurrence vector field ma is normal to the hypersurface 1nF  , i.e. 

0.m
ma B a   The Bianchi identities for nF are given by7

(3.11)     ( ) ( ) ( ) 0.i i i m i m i m i
h k j r h r k j h j r k k j m h r r k m h j j r m h kH H H H G H G H G                            

For a recurrent space, Pandey4 proved that the Bianchi identities (3.11) split 
into the following two identities:
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(3.12) 0,

and

(3.13) 0.

i i i
r h k j j h r k k h j r

m i m i m i
k j m h r r k m h j j r m h k

a H a H a H

H G H G H G

  

  

Transvecting (3.12) by i lg , we have

(3.14) 0.r h l k j j h l r k k h l j ra H a H a H                                                                         

If we transvect (3.14) by hl k jB    , it follows from case (b) that

(3.15) 0.hl k j
h l k jH B                                                                                                                      

Equation (2.4), in view of (3.15), takes the form

(3.16)              
2

( ) ( )

2 ( ) .

i
i

n

H M M g g g g

M g g g g u P

           


            

  

  
             

Using (3.16) in (3.4), we obtain

                             0.T    

Thus, we have the following result:
Theorem 3.7. If 1nF  is an umbilical hypersurface immersed in a 

recurrent Finsler space nF and the recurrence vector field ma is normal to 
1nF  , then the tensor T    , defined by (3.4), vanishes.

For a Minkowskian hypersurface, 0.H     Using this in (3.16), we get

(3.17)               
2

( ) ( )

2 ( ) 0.

i
i

n

M M g g g g

M g g g g u P

       


            

  

   
              

Thus, we have the following result:

Theorem 3.8. If 1nF  is an umbilical hypersurface immersed in a 
recurrent Finsler space nF and the recurrence vector field ma is normal to 

1nF  , then the hypersurface 1nF  is Minkowskian if and only if (3.17) holds.
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If det ( ) 0i
jH  , then embedding space is a Landsberg space by Theorem 

3.1 and hence | 0.r
i j k rC x  Equation (2.5), in view of this fact, takes the 

form

[ ( )]

[ ] ] |

(3.18) 2 ( ) 2

2 ( ).

hl
l hP M B u g

g C u

   
                 

   
        

      

   




                            

Thus, we have:
Theorem 3.9. Let 1nF  be an umbilical hypersurface immersed in a 

recurrent Finsler space nF . If the recurrence vector field ma is normal to 
1nF  and ( ) 0i

jdet H  , then the hypersurface 1nF  is Minkowskian if and 

only if 

2

[ ( )]

[ ] ] |

(3.19) ( ) ( ) 2 ( )

2 ( ) 2

2 ( ) 0.

i
i n

hl
l h

M M g g g g M g g g g u

M B u g

g C u


                

   
             

   
        

    

      

    







From Theorem 3.1 and Theorem 3.9, we have:

Corollary 3.10. If 1nF  is an umbilical hypersurface immersed in a 
recurrent Landsberg space nF and the recurrence vector field ma is normal 

to 1nF  , then the hypersurface 1nF  is Minkowskian if and only if (3.19) 
holds.

If the hypersurface 1nF  is of minimal variety, then the mean 

curvature vector iM  vanishes. By virtue of this fact and equations (2.1) and 
(2.3), it follows that

(3.20)          0, 0.n                                                                       

From equations (1.7) and (3.21), we have

(3.21)       0.
                                                                                   

From Theorem 3.9, equations (3.20) and (3.21), we have the following 
result:

Theorem 3.11. Let 1nF  be an umbilical hypersurface of minimal variety 
immersed in a recurrent Finsler space nF . If the recurrence vector field ma
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is normal to 1nF  and ( ) 0i
jdet H  , then the hypersurface 1nF  is 

Minkowskian.

From Theorem 3.1 and Theorem 3.11, we deduce that:

Corollary 3.12. If 1nF  is an umbilical hypersurface of minimal variety 
immersed in a recurrent Landsberg space and the recurrence vector field 

ma is normal to 1nF  , then 1nF  is Minkowskian.

Transvecting (3.16) by u and using (3.18) and the fact 0,h
l hM x  we 

obtain

[ ( )]

[ ] ] |

(3.22) ( ) ( ) 2

2 ( ).

i
iH u M M g g g g u g u

g u C u

   
                

    
        

    

   

  

 

We characterize a hypersurface 1nF  of constant curvature by

(3.23) ( ) .H u K g g g g u 
                                                                           

Thus, we may state:
Theorem 3.13. Let 1nF  be an umbilical hypersurface immersed in a 

recurrent Finsler space nF . If the recurrence vector field ma is normal to 
1nF  and ( ) 0i

jdet H  , then the hypersurface 1nF  is of constant curvature if 

and only if

(3.24) [ ( )] [ ] ] |( ) 0.C u    
                                                                             

From Theorem 3.1 and Theorem 3.13, we conclude:
Corollary 3.14. If 1nF  is an umbilical hypersurface immersed in a 

recurrent Landsberg Finsler space nF and the recurrence vector field ma is 

normal to 1nF  , then the hypersurface 1nF  is of constant curvature if and 
only if  (3.24) holds.
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1. Introduction
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A Finsler space is said to be a Landsberg space if Berwald connection is metrical therein6, i.e. 

[image: image11.wmf]()


0


ijk


g


=


, 

[image: image12.wmf]()


ijk


g


 denotes the Berwald covariant derivative of 

[image: image13.wmf]ij


g


 with respect to 

[image: image14.wmf]k


x


. This space is characterized by6



[image: image15.wmf]|


(1.2)0,


or,alternativelyby


(1.3)0,


where.


h


ijkh


r


rjkh


r


iir


Cx


yG


ygx


=


=


=


&


&




Let 
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*Throughout the discussion Latin indices run from 1 to n and Greek indices from 1 to n-1.

The unit normal 
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Cartan’s induced and intrinsic connection parameters 
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From (1.7) and (1.9) we obtain
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The mixed covariant derivative of an arbitrary vector field 

[image: image41.wmf]i


T


a


 is given by


                             

[image: image42.wmf]()


(),


iiiipih


ph


TTTGTGTGB


ee


aggaeageagag


=¶-¶¶-+


&&




where

[image: image43.wmf],


uu


ge


ge


¶¶


¶º¶º


¶¶


&


&


 and 

[image: image44.wmf]G


e


ag


 are Berwald’s induced connection parameters. In view of the above equation, the mixed covariant derivative of 
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Equation (1.11) can be put in the following form (vide Sinha and Singh9) 
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Sinha and Singh9 obtained the following form of Gauss equation:
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where 
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2. Umbilical Hypersurfaces


An umbilical hypersurface
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The mean curvature vector 
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From equations (2.1) and (2.2), we obtain
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In view of equations (2.1) and (2.3) and the facts
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equation (1.13) takes the form
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Differentiating (2.4) covariantly with respect to 
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The mixed covariant derivative of 
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The following is obvious
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Using (2.8) in (2.7), we have
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where 
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In view of (1.11), (2.9) takes the following form
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Using (2.10) in (2.6), we obtain the following form of Gauss characteristic equations of an umbilical hypersurface immersed in a Finsler space (vide U. P. Singh and G. C. Chaubey 1) 
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3. Recurrent Finsler spaces


A non-flat Finsler space 

[image: image82.wmf]n


F


 is called a recurrent space if the curvature tensor satisfies the relation2, 3, 4
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where 
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 is a non-zero vector, called the recurrence vector. Pandey4  proved that the recurrence vector 
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In view of (2.4) and (3.2), (2.11) becomes
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Pandey and Dikshit5 proved the following:


Theorem 3.1. (P. N. Pandey and Shalini Dikshit5):  A recurrent space 
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Let us consider two cases:


(a) The recurrence vector field 
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(b) The recurrence vector field 
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We assume that the hypersurface is non-totally geodesic.


Define
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In view of case (a) and equation (3.4), (3.3) becomes




[image: image100.wmf]()()


(3.5)()


().


pmhlkjrhlkj


plmhkjrhlkj


lkjhhkjlhljkhlkj


hlkj


TgHBBaTHVuB


HBVBVBVBV


s


edbgqqedbgqedbgsqedbg


dbgeqebgdqedgbqedbgq


=++¶


++++


&


&




Now, if
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then it follows from (3.5) that
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Thus, we have:


Theorem 3.2. If 
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Thus, in case of
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, our characterization of a recurrent space coincides with that of U. P. Singh and G. C. Chaubey 1.


From (3.6), we deduce the following:


Theorem 3.3. Let 
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From Theorem 3.1 and Theorem 3.3, we have the following result:


Corollary 3.4. If 
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Let
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In view of the above fact and Theorem 3.3, we have the following result:
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From Theorem 3.1 and Theorem 3.5, we may state:
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The Bianchi identities for 
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For a recurrent space, Pandey4 proved that the Bianchi identities (3.11) split into the following two identities:
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Transvecting (3.12) by
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If we transvect (3.14) by
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Equation (2.4), in view of (3.15), takes the form
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Using (3.16) in (3.4), we obtain
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Thus, we have the following result:


Theorem 3.7. If 
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Thus, we have the following result:


Theorem 3.8. If 
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 Equation (2.5), in view of this fact, takes the form
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Thus, we have:


Theorem 3.9. Let 
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From Theorem 3.1 and Theorem 3.9, we have:


Corollary 3.10. If 
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If the hypersurface 
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 is of minimal variety, then the mean curvature vector
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 vanishes. By virtue of this fact and equations (2.1) and (2.3), it follows that
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From equations (1.7) and (3.21), we have
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From Theorem 3.9, equations (3.20) and (3.21), we have the following result:


Theorem 3.11. Let 
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, then the hypersurface 

[image: image210.wmf]1


n


F


-


 is Minkowskian.

From Theorem 3.1 and Theorem 3.11, we deduce that:


Corollary 3.12. If 
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We characterize a hypersurface 
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Thus, we may state:


Theorem 3.13. Let 
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From Theorem 3.1 and Theorem 3.13, we conclude:

Corollary 3.14. If 
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 is of constant curvature if and only if  (3.24) holds.
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