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Abstract: In the present paper, we solve a non-linear time-fractional 

and a linear space-time fractional Fokker–Planck equation (FPE) using 

Adomian decomposition method. The space and time fractional 

derivatives are considered in Caputo sense and the solutions are 

obtained in closed form, in terms of Mittag-Leffler functions. 
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1. Introduction 
 

The Fokker–Planck equation (FPE), first applied to investigate Brownian 

motion
1
 and the diffusion mode of chemical reactions

2
, is now largely 

employed, in various generalized forms, in physics, chemistry, engineering 

and biology
3
. The FPE arises in kinetic theory

4
, where it describes the 

evolution of the one-particle distribution function of a dilute gas with long-

range collisions, such as a Coulomb gas. For some applications of this 

equation one can refer the works of He and Wu
5
, Jumarie

6
, Kamitani and 

Matsuba
7
, Xu et al.

8
, and Zak

9
. The general FPE for the motion of a 

concentration field  ,u x t  of one space variable x  at time t  has the form
3
 

(1.1)                     
2

2
, ,

u
A x B x u x t

t x x

   
   

   
 

with the initial condition given by 

(1.2)          ,0 ,u x f x x  , 
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where   0B x   is called the diffusion coefficient and  A x  is the drift 

coefficient. The drift and diffusion coefficients may also depend on time. 

Mathematically, this equation is a linear second-order partial differential 

equation of parabolic type. Roughly speaking, it is a diffusion equation with 

an additional first-order derivative with respect to x. 

There is a more general form of Fokker–Planck equation which is called 

the non-linear Fokker–Planck equation. The nonlinear Fokker–Planck 

equation has important applications in various areas such as plasma physics; 

surface physics, population dynamics, biophysics, engineering, 

neurosciences, nonlinear hydrodynamics, polymer physics, laser physics, 

pattern formation, psychology and marketing (see Frank
10

 and references 

therein). In the case of one variable, the nonlinear FPE is written in the 

following form 

(1.3)              
2

2
, , , , , ,

u
A x t u B x t u u x t

t x x

   
   

   
 

with the initial condition given by 

(1.4)             ,0 ,u x f x x  . 

Due to the vast range of applications of the FPE, a lot of work has been 

done to find the numerical solution of this equation. In this context, the 

works of Buet et al.
11

, Harrison
12

, Palleschi et al.
13

 (1990), Vanaja
14

, and 

Zorzano
15

 are worth mentioning. 

It has been observed that diffusion processes where the diffusion takes 

place in a highly nonhomogeneous medium, the traditional FPE may not be 

adequate
16,17

. The nonhomogeneities of the medium may alter the laws of 

Markov diffusion in a fundamental way. In particular, the corresponding 

probability density of the concentration field may have a heavier tail than the 

Gaussian density, and its correlation function may decay to zero at a much 

slower rate than the usual exponential rate of Markov diffusion, resulting in 

long-range dependence. This phenomenon is known as anomalous 

diffusion
18

. Fractional derivatives play key role in modeling particle 

transport in anomalous diffusion including the space fractional Fokker-

Planck (advection-dispersion) equation describing Levy flights, the time 

fractional Fokker-Planck equation depicting traps, and the time-space 

fractional equation characterizing the competition between Levy flights and 

traps
19,20

. Different assumptions on this probability density function lead to a 

variety of space-time fractional Fokker-Planck equations. 
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The non-linear space-time fractional FPE can be written in the following 

general form 

(1.5)          
     2, , , , , , 0, 0,

0 , 1,1 2 2

t x xD u D A x t u D B x t u u x t t x  

 

      

   
 

It can be obtained from the general Fokker-Planck equation by replacing the 

space and time derivatives by Caputo fractional derivatives tD  and xD  

defined by (2.1). The function  ,u x t  is assumed to be a causal function of 

time and space, i.e., vanishing for 0t   and 0x  . Particularly for 1   and 

1  , the fractional FPE (1.5) reduces to the classical nonlinear FPE given 

by (1.3). 

Recently several numerical methods have been proposed for solutions of 

space and/or time fractional Fokker-Planck equations
21-24

. In this paper we 

obtain closed form solutions of a linear space-time fractional and a non-

linear time-fractional FPE using Adomian decomposition method. The 

Adomian decomposition method has been introduced and developed by 

Adomian
25,26

. It is useful for obtaining closed form or numerical 

approximation for a wide class of stochastic and deterministic problems in 

science and engineering. This method has further been modified by 

Wazwaz
27

 and more recently by Luo
28

 and Zhang and Luo
29

. A considerable 

amount of research work has been done recently in applying this method to a 

wide class of linear and nonlinear ordinary differential equations, partial 

differential equations, and integro-differential equations. For more details we 

refer Adomian
25, 26

, Fokker
4
, Frank

10
, Mittal and Nigam

30
, Wazwaz

31, 32
, and 

the references there in. 
 

2. Preliminaries 
 

Caputo fractional derivative of order   for a function  f x  with 

x   is defined as
33

 

(2.1)  
 

   

 
1

0

1
,( 1 ), ,

mx

x m

f
D f x d m m m

m x






 

 
 

    
  

  

                 .m m

xJ D f x   

Here 
m

m

m

d
D

dx
  and xJ   stands for the Riemann-Liouville fractional 

integral operator of order 0  defined as
34 
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(2.2)  
 

     
1

0

1
, 0, 1 , .

x

xJ f x x t f t dt t m m m
 




      
   

Clearly from the definition(2.1), we have 

(2.3)  
 

 

1
, 1.

1
xD x x   


 


 

  
  

 

For Riemann-Liouville fractional integral and Caputo fractional derivative, 

we have the following relation 

(2.4)         
1

0

0 .
!

km
k

x x

k

x
J D f x f x f

k

 






   

The Mittag-Leffler function which is a generalization of exponential 

function is defined as
35

: 

(2.5)   
 

 
0

,Re( ) 0
1

n

n

z
E z

n
  







  
 

 , 

Adomian decomposition method for nonlinear fractional partial 

differential equations
36

: We consider the nonlinear fractional partial 

differential equation written in an operator form as 

(2.6)         , , , , , 0tD u x t Lu x t Nu x t g x t x     , 

where tD  is Caputo fractional derivative of order , 1m m    , defined 

by equation (2.1), L  is a linear operator which might include other fractional 

derivatives of order less than  , N  is a non-linear operator which also 

might include other fractional derivatives of order less than  and  ,g x t  is 

source term.  

We, apply the operator tJ   to both sides of equation (2.6), use result 

(2.4) to obtain 

(2.7)        
1

0 0

, , , , ,
!

k km

t tk
k t

u t
u x t J g x t J Lu x t Nu x t

t k

 


 

 
        
   

Next, we decompose the unknown function u  into sum of an infinite number 

of components given by the decomposition series 

(2.8)   
0

n

n

u u




 , 
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and the nonlinear term is decomposed as follows 

(2.9)   
0

,n

n

Nu A




  

where nA  are Adomian polynomials given by  

(2.10)  
0 0

1
, 0,1,2,....

!

n n
i

n in
i

d
A N u n

n d



  

  
   

  
  

The components 0 1 2, , ,....u u u are determined recursively by substituting (2.8)  

(2.9) into (2.7) leads to 

(2.11)   
1

0 0 0 00

, ,
!

k km

n t t n nk
n k n nt

u t
u J g x t J L u A

t k

 
   

   

    
       

     
     

This can be written as 

(2.12)             
 

   

1

0 1 2

0 0

0 1 2 0 1 2

... ,
!

... ... ,

k km

tk
k t

t

u t
u u u J g x t

t k

J L u u u A A A







 

 
      

 

        


 

Adomian method uses the formal recursive relations as 

(2.13)   
1

0

0 0

, ,
!

k km

tk
k t

u t
u J g x t

t k




 

 
  

 
  

                               1 , 0.n t n nu J L u A n

       

 

3. Solutions of Fractional Fokker-Planck Equations 
 

Example.1 We consider the non-linear time fractional FPE
23

: 

(3.1)              
2

2

4
, , ,

3

0, 0,0 1

t

u x
D u x t u u x t

x x x

t x





   
     

   

   

, 

where tD  is Caputo fractional derivative defined by (2.1) and initial 

condition is 

(3.2)    2,0u x x . 

Applying tJ   to both sides of equation (3.1), using result (2.4), we have 
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(3.3)               

1 1

0
0

2
2

2

! 3

4
.

k
k

t t tt
k

t xu
u D u J J

k x

u
x x x

 





   
          

    
    
    


 

This gives the following recursive relations using equation (2.13), 

(3.4)  
0

0 0
0

,
!

k
k

t t
k

t
u D u

k 


     

(3.5)   1 , 0,1,2,...
3

n
n t t n

xu
u J J A n

x

 



   
    

   
 

where 

(3.6)  
22

2
0

0

1 4
, 0,1,2,....

!

n n
i

n in
i

d
A u n

n x x x d



 



      
       

       
  

Which using results (2.3), (2.2) and (3.2) gives 

(3.7)  2

0u x , 

(3.8)  0 0A  , 

(3.9)  
 

2

1
1

t
u x





 
     

, 

(3.10)  1 0A  , 

(3.11)  
 

2
2

2
1 2

t
u x





 
     

, 

(3.12)  2 0A  , 

(3.13)  
 

3
2

3
1 3

t
u x





 
     

, 

and so on for other components.  

Substituting 0 1 2, , ,.....u u u  in equation (2.8) and making use of definition(2.5)

, the solution of problem (3.1) is obtained as 

(3.14)     2, .u x t x E t  

Remark 1. Setting 1  , equation (3.1) reduces to non-linear FPE
23

: 
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(3.15)     
2

2

4
, ,

3

0, 0,0 1

u u x
u u x t

t x x x

t x 

    
     

    

   

, 

with solution  

(3.16)    2, tu x t x e . 

Example 2. Consider the linear space-time fractional FPE: 

(3.17)    
       2 2, , , 0, 0,

0 1,1 2 2, , ,

t x xD u x t D px D qx u x t t x

p q

    

 

     
 

    

 

where ,t xD D   are Caputo fractional derivatives defined by (2.1) and initial 

condition is 

(3.18)    1,0 au x x  . 

Applying tJ   to both sides of equation (3.17), using result (2.4), we have  

(3.19)           
1 1

2 2

0
0

, , , .
!

k
k

t t x xt
k

t
u x t D u x t J D px D qx u x t

k

    





          

This gives the following recursive relations using equation (2.13) 

(3.20)    
0

0 0
0

, ,
!

k
k

t t
k

t
u D u x t

k 


     

(3.21)          2 2

1 , 0,1,2,...n t x x nu J D px D qx u n    


    
 

 

Which using results (2.3), (2.2) and (3.18), gives 

(3.22)  1

0

au x  , 

(3.23)  
 

1

1
1

at
u bx






 

     

, 

(3.24)  
 

2
2 1

2
1 2

at
u b x






 

     

, 

and so on for other components, where    
2

b q a p a
 

  , where  a


 

denotes the well known pochhammer symbol. 
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Substituting (3.22)-(3.24) in equation (2.8) and making use of definition 

(2.5), the solution of problem (3.17) is given by 

(3.25)         1

2
, ,au x t x E bt b q a p a

  

   .  

Remark 1. Setting 1,   equation (3.17) reduces to linear space fractional 

FPE: 

(3.26)       2 2 , ,

0, 0,1 2 2,

x x

u
D px D px u x t

t

t x

   




   
 

   

 

with solution  

(3.27)       1

2
, ,a btu x t x e b q a p a

 

   . 

Remark 2. Setting 1  , equation (3.17) reduces to linear time fractional 

FPE: 

(3.28)         
2

2

2
, , ,

0, 0,0 1, ,

tD u x t px qx u x t
x x

t x p q





  
   

  

    

, 

with solution  

(3.29)       1 2, , .au x t x E bt b qa a q p



     

Remark 3. Setting 1, 1   , equation (3.17) reduces to linear FPE: 

(3.30)      
2

2

2
, , 0, 0, , ,

u
px qx u x t t x p q

t x x

   
      

   

 

with solution  

(3.31)     1 2, ,a btu x t x e b qa a q p    . 

Remark 4. Setting 1, 1, 2, 1, 1/ 2a p q      , equation (3.17) reduces 

to linear FPE
23

: 

(3.32)     
2 2

2
, , 0, 0

2

u x
x u x t t x

t x x

    
      

     
, 

with solution  

(3.33)   , tu x t xe . 
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Remark 5. Setting 1, 1, 3, 1/ 6, 1/12a p q      , equation (3.17) 

reduces to linear FPE
23

: 

(3.34)   
2 2

2
, , 0, 0,

6 12

u x x
u x t t x

t x x

     
       

      

 

with solution   2 /2, tu x t x e . 
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