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Abstract: In this paper, a spatial predator-prey system with Beddington - 

DeAngelis functional response and the modified Leslie - Gower type 

dynamics under homogeneous Neumann boundary condition is 

considered. The local and global asymptotic stability of the unique 

positive homogeneous steady state of the corresponding temporal model 

are discussed. Moreover, the local stability of the unique constant steady 

state of the spatiotemporal model is investigated and it is pointed out that 

spatial patterns cannot occur in the vicinity of this stable steady state. 
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1. Introduction 
 

The dynamical relationship between a predator and a prey has long been 

the dominant themes in mathematical ecology due to its universal existence 

and importance.  One of the key components of the predator - prey system is 

the predator’s functional response. The prey dependent functional response 

fail to model the interference among predators, and have been facing 

criticism from a section of  biological and physiological communities. A 

more suitable general predator-prey theory should be based on the so called 

ratio-dependent theory, which asserts that the per capita predator growth rate 

should be a function of the ratio of prey to predator abundance.  

On the other hand, in reality, prey and predator species are 

inhomogeneously distributed in different location of space at any given 

time. This consideration involve diffusion process which can be quite 

intricate as different concentration levels of prey and predator cause 

different population movements
1
. Thus, this movement or diffusion process 
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must be incorporated in temporal ecological models that do not represent 

space explicitly. 

The authors
2-5

 have considered a diffusive prey-predator system with 

Leslie-Gower functional response with homogeneous Neumann boundary 

conditions and studied the local and global stability of the constant positive 

steady state, existence and non- existence of non-constant positive steady 

states. 

The main aim of this paper is to study the stability behavior of the 

coexistence equilibrium point in the presence and absence of diffusion. 

The organization of the paper is as follows. Section two devotes to the 

local and global asymptotical stability of the unique positive constant 

equilibrium point in the absence of diffusion. In section 3, the local stability 

of the unique constant positive equilibrium point in the presence of diffusion 

is presented. 
 

2. Temporal Model 
 

A prey - predator model with Beddington-DeAngelis functional 

response  and modified Leslie-Gower dynamics  in homogeneous 

environment is governed by the following system of non-linear ordinary 

differential equations  

 

(2.1) 
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2
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subject to initial conditions  0 0U   and  0 0V  .  U U   and 

 V V  represents the prey and predator densities respectively. The 

reaction parameters 1 , , ,r K c
 2 1, , , ,B r s s are positive constants which stand 

for the intrinsic growth rate of the prey, the environmental carrying capacity 

of prey population, a maximum consumption rate, a saturation constant, 

predator interference, maximum per capita growth rate of the predator, the 

conversion factor of prey into predator, normalization constant respectively.  

Using the following scaling: 

 
1, , ,
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and the parameters 
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system (2.1) takes the non-dimensional form  

(2.2)    
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It is easy to see that system (2.2) has four equilibrium points:
 

     0,0 , 1,0 , 0, ,b  and  ,E u v where v b u   and u  is the positive  

 root of the quadratic equation 

       
2

1 0; 1 , ,u B u C B b C b                  
 

which exists uniquely if  

 (2.3)   b     . 

Theorem2.1: The unique positive equilibrium point  ,E u v  is 

locally asymptotically stable if one of the following conditions is satisfied. 

(2.4)
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Proof: The Jacobian matrix at  ,E u v
 
is 
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is negative for  
1

b





  

and the determinant of  EuG  
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Theorem 2.2: If   then the local stability of system (2.2) ensures its 

global stability around the unique positive interior equilibrium point 

 ,E u v  .  

Proof: Let     ,u t v t  be a positive solution of (2.2) and define a 

Dulac function  
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From system (2.2), we have 
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Therefore by Dulac criterion, we see that if   then system has no non-

trivial positive periodic solutions. Thus the boundedness of the solutions of 

the system together with the assumption of local stability yields the global 

stability. 

 

3. The spatiotemporal Model 

 

In the predator-prey model (2.2), the prey and predator species are 

assumed to be spatially independent and dispersion of either population is 

not taken in to account. However, in reality, prey and predator populations 

are heterogeneously distributed over their habitat. Taking into account the 

mobility of the prey and predator population within a bounded habitat, the 

governing model (2.2) is modified as the following system of reaction-

diffusion equations, after an appropriate scaling of spatial coordinates: 
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(3.1)     

 1 ,

1

u u v
u u u

t u v

v v
v v

t b u



 

 


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  

  

subject to the homogeneous Neumann boundary condition and non-negative 

initial condition. The operator   represents the Laplacian operator in two 

spatial domains and  is the ratio of the diffusion coefficient of predator to 

prey. 

It is straight forward to see that the positive unique equilibrium point 

 ,E u v of the temporal model (2.2) is the constant positive unique 

equilibrium point of the spatiotemporal model (3.1).  The local stability of 

this constant positive steady state  ,E u v is discussed here.  

Let 0 1 2 30 . . .        be the eigen values of the operator 

on   with the homogeneous Neumann boundary condition and i  
be 

the i -th eigen function corresponding to the eigen value i . The linearized 

system of (1.2) about E is  

(3.2)                           tu Lu,   (3.2) 

where    1, , .diag G E   
u

D L D   

Now, expanding the solution u  via    
0

,i i

i

t x 




u where   2

i t  , 

substituting it in to (3.2) and equating the coefficients of each i  gives   

  ,i

i i i i

d
E

dt


     uL L D G  

Theorem 3.1: If 11 0a  then the constant positive steady state 

 ,E u v  of system (3.1) is uniformly asymptotically stable. 

Proof: The steady state E is stable if and only if iL has two eigenvalues 

with negative real parts. The characteristics polynomial of iL  is given by 

       2 det ,i i itr     L L  

where
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      

      2

22 11

1 tr ,
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If 11 0a  then    0 anddet 0i itr  L L . Thus, for each 0i  , both the 

roots 
,1 ,2, ofi i    0i   have negative real parts. Thus there exist some 

positive numbers
i  such that     ,1 ,2Re , Re .i i i i    

 

 
Let  min ,i

i
  then, 0  and    ,1 ,2Re , Re .i i i      

Hence, there exists a positive constant  which is independent of i , such that 

   ,1 ,2Re , Re .i i i      consequently, the spectrum of L , which 

consists of eigen values, lies in  Re    . Thus theorem 5.1.1 of Dan 

Henry
6
 concludes the uniform asymptotical stability of E . 

Remark 3.1. As a consequence of theorem 3.1, if  11a  is negative then 

diffusion cannot destabilize the stable constant coexistence steady state E of 

system (2.2) and hence Turing instability cannot occur in the vicinity of E .  
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