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Abstract: In this note we obtain some fixed point theorems on G -metric 
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1. Introduction 
 

Metric fixed point theory is an important mathematical discipline 

because of its applications in areas such as variational and linear inequalities, 

optimization, and approximation theory. The fixed point theorems in metric 

spaces are playing a major role to construct methods in mathematics to solve 

problems in applied mathematics and sciences. So the attraction of metric 

spaces to a large numbers of mathematicians is understandable. Some 

generalizations of the notion of a metric space have been proposed by some 

authors. To overcome fundamental flaws in Dhage’s theory of Generalized 

metric spaces
2
, Mustafa and Sims

3
 introduced a more appropriate 

generalization of metric spaces, that of G -metric spaces. Afterwards, 

Mustafa et. Al
4
 obtained several fixed point theorems for mappings 

satisfying different contractive conditions in G -metric spaces. In fact, 

Mustafa, Braliy and others studied many fixed point results for a self mapp- 

ing in G -metric space under certain conditions see 
5-7

. In this paper, we 

study some fixed point results for self mapping in a complete G -metric 
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space X  under some contractive conditions related to a non-decreasing map 

[0 ) [0 )ϕ : , +∞ → , +∞  with lim ( ) 0
n

n
tϕ

→∞
=  for all (0 ).t ∈ , +∞   

 

2. Preliminaries 
 

We recall some definitions and properties for G -metric spaces given by 

Mustafa and Sims. 

Definition 2.1.
 3

   Let X  be a nonempty set, and let G X X X R
+: × × → be a 

function satisfying the following axioms:  
 

(G1)  ( ) 0 if ,G x y z x y z, , = = =  
 

(G2)  0 ( )G x x y< , ,  for all x y X, ∈  with ,x y≠  
 

(G3)  ( ) ( )G x x y G x y z, , ≤ , ,  for all x y z X, , ∈  with ,z y≠  
 

(G4)  ( ) ( ) ( ) ,G x y z G x z y G y z x, , = , , = , , = ... , symmetry in all three variables 
 

(G5)  ( ) ( ) ( )G x y z G x a a G a y z, , ≤ , , + , ,  for all x y z a X, , , ∈ .  
 

Then the function G  is called a generalized metric, or, more specifically, 

a G -metric on X , and the pair ( )X G,  is called a G -metric space. 

Definition 2.2.
3
  Let ( )X G,  be a G -metric space, and let { }nx a 

sequence of points in X , a point ‘x’  in X  is said to be the limit of the 

sequence { }nx if 
,
lim ( ) 0,

n m
m n

G x x x
→∞

, , =

 
and one says that sequence  { }nx is G -convergent to x . 

Proposition 1. 
3
  Let ( )X G,  be a G -metric space. Then the following 

are equivalent:  
 

(i)  n{x }  is G -convergent to x , 
 

(ii)  ( ) 0n nG x x x, , →  as ,n → ∞  
 

(iii)  ( ) 0nG x x x, , =  as ,n → ∞  

(iv)  ( ) 0m nG x x x, , =  as ,m n, → ∞  
Definition 2.3.

3
  Let ( )X G,  be a G -metric space. A sequence n{x }  is 

called G -Cauchy if, for each 0ε > , there exist a positive integer N  such 

that ( ) ,m n lG x x x ε, , < for all .n m l N, , ≥  
 

Proposition 2.
3
 Let ( )X G,  be a G -metric space. Then the function 

( )G x y z, ,  is jointly continuous in all three of its variables. 
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Definition 2.4. 
3
  A G -metric space ( )X G,  is said to be G -complete if 

every G -Cauchy Sequence in ( )X G,  is G -convergent in X . 
 

Proposition 3. 
3
  Let ( )X G,  be a G -metric space. Then for x y z X, , ∈  

it follows that: 
 

(i) If ( ) 0G x y z, , =  then ,x y z= =   
 

(ii)  ( ) ( ) ( ),G x y z G x x y G x x z, , ≤ , , + , ,  
 

(iii)  ( ) 2 ( ),G x y y G y x x, , ≤ , ,  
 

(iv)  ( ) ( ) ( ),G x y z G x a z G a y z, , ≤ , , + , ,  
 

(v)  2
3

( ) ( ( ) ( ) ( )),G x y z G x y a G x a z G a y z, , ≤ , , + , , + , ,  
 

(vi)  ( ) ( ( ) ( ) ( )).G x y z G x a a G y a a G z a a, , ≤ , , + , , + , ,   

Example 
3
 Let ( )R d,  be the usual metric space. Define sG  by 

 

( ) ( ) ( ) ( ),sG x y z d x y d y z d x z, , = , + , + ,
 

 

for all x y z R, , ∈ . Then it is clear that ( )sR G,  is a G -metric space. 
 

Definition 2.5.  Let f g X X, : →  Then the pair ( )f g,  is said to be (IT)-

commuting at z X∈ , if .fgz gfz=   
 

3. Main Result 
 
 

Following Matkowski 
8
, let Φ  be the set of all functions ϕ  such that 

[0 ) [0 )ϕ : ,+∞ → ,+∞  be a non-decreasing function with lim ( ) 0n

n
tϕ→+∞ =  

for all (0 )t ∈ ,+∞ . If ϕ ∈Φ , then ϕ  is called Φ -map. If ϕ  is Φ -map, then 

it is easy to show that: 

1. ( )t tϕ <  for all (0 ).t ∈ ,+∞  

2. (0) 0.ϕ =  

From now unless otherwise stated we mean by ϕ  is Φ -map. Now, we 

introduce and prove our first result. 
 

Theorem 3.1. Let ( )X G,  be a complete G -metric space, suppose 

f g X X, : →  be a Φ -pair, there exist a ϕ -map satisfy,  

   (3.1)               ( ) ( ( )) for all .G fx fy fz G gx gy gz x y z Xϕ, , ≤ , , , , ∈  
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Suppose that f  and g  are (IT)-commuting with ( ) ( )f X g X⊂ . If ( )f X  or 

( )g X  is a complete subspace of X , then the mappings f  and g  have a 

unique common fixed point in X . Moreover for any 0x X∈ , every f - g -

sequence  { }nfx with initial point 0x  converges to the common fixed point. 
 

    Proof:  Let 0x  be an arbitrary point in X . Choose a point 1x  in X  such 

that 0 1( ) ( )f x g x= . This can be done, since the range of g  contains the range 

of f . Continuing this process, having chosen nx X∈ , we obtain 1nx X+ ∈  

such that 1( ) ( )n nf x g x += . Then 

           1 1 1 1( ) ( ( )) ( ( )).n n n n n n n n nG fx fx fx G gx gx gx G fx fx fxϕ ϕ+ + − −, , ≤ , , = , ,  

Consequently 1 1 0 0( ) ( ( )).n

n n n
G fx fx fx G fx fx fxϕ+ , , ≤ , ,

 
Given 0ε > , since 

1 0 0lim ( ( )) 0n

n
G fx fx fxϕ

→∞
, , =  and ( ) ,ϕ ε ε<   

there is an integer δ  such that 
  

1 0 0( ( )) ( )n
G fx fx fxϕ ε ϕ ε, , < −  for all .n δ≥  

Hence  
 

(3.2)  1( ) ( )n n nG fx fx fx ε ϕ ε+ , , ≤ − for all .n δ≥
 

For m n N, ∈  with m n> , we claim:  

(3.3)  ( ) for allm n nG fx fx fx m nε δ, , < ≥ ≥ .
 

We prove Inequality (3.3) by induction on m . Inequality (3.3) holds for 

1m n= +  by using Inequality (3.2). Assume Inequality (3.3) holds for 

m k= .  

For 1m k= + , we have 

1 1 1 1 1( ) ( ) ( ),k n n n n n k n nG fx fx fx G fx fx fx G fx fx fx+ + + + +, , ≤ , , + , ,  
 

              1 1 1( ) ( ( )),k n nG gx gx gxε ϕ ε ϕ + + +< − + , ,   
 

           
( ) ( ( )) ,k n nG fx gx gxε ϕ ε ϕ< − + , ,

 
 

( ) ( ) .ε ϕ ε ϕ ε ε< − + =  

By induction on m , we conclude that Inequality (3.3) holds for all 

m n δ≥ ≥ . So n{fx }  is G -Cauchy sequence. Suppose that ( )f X  is a 

complete subspace of X , then there exists ( ) ( )y f X g X∈ ⊂  such that 
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( )nf x y→  and also ( ) .ng x y→  (This holds also if ( )g X  is complete with 

( )y g X∈ .) Let z X∈  be such that ( )g z y= . We show that fz gz= .  

Fix 0ε ≫  and we choose a natural number N  such that ( ) 2nG y y fx ε, , /≪  

and ( ) 2n nG gx gx gz ε, , /≪ .  
 

Then  

( ) ( ) ( ),n n nG y y fz G y y fx G fx fx fz, , ≤ , , + , ,
 

         
( ) ( ( )),n n nG y y fx G gx gx gzϕ≤ , , + , ,

 

              
( ) ( ),n n nG y y fx G gx gx gz< , , + , ,  

                                            2 2 ,ε ε ε/ + / =≪  
 

Thus,  ( )G y y fz mε, , /≪  for all natural number m . 

From ( ( ))m G y y f z Xε/ − , , ∈ , for all m , as m → +∞  we obtain ( )G y y fz X, , ∈ . 

Therefore ( )) 0G y y fz, , =  which implies y fz gz= = , that is z  is a 

coincidence point of f  and g  and y  a point of coincidence of f and g . 

Now, we use the hypothesis that f  and g  are (IT)-commuting to deduce 

that y  is a common fixed point. From fz gz= , by the definition (2.5), it 

follows that  
 

,fy fgz ggz gy= = =  
 

We show that ( ) ( )f y g y y= = . If ( )g y y≠ , in virtue of (3.1), we obtain 

           ( ) ( ( )) ( ) ( ),G fy fy fz G gy gy gz G gy gy gz G fy fy fzϕ, , ≤ , , < , , = , ,   

 

which gives ( ) ( )f y y g y= = . Then y  is a common fixed point for the 

mappings f  and g . The uniqueness follows from the hypothesis that f  and 

g  are a Φ -pair.  

From the proof of Theorem 3.1 we deduce the following result on points 

of coincidence.  
 

Corollary 3.1. Let ( )X G,  be a G -metric space, and f g X X, : ∈  be a 

Φ -pair. Suppose that ( ) ( )f X g X⊂ . If ( )f X  or ( )g X  is a complete 

subspace of X , then the mappings f  and g  have a unique point of 

coincidence in X . Moreover for any 0x X∈ , every f - g -sequence ( )n{f x }  

with initial point 0x  converges to the point of coincidence.  

If in Theorem 3.1 we choose the Φ -map defined by ( ) kϕ ω ω= , where 

[0 1)k ∈ ,  is a constant, we obtain the following theorem.  
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Theorem 3.2. Let ( )X G,  be a G -metric space, suppose f g X X, : ∈  

satisfies  
 

( ) ( )G fx fy fz k G gx gy gz, , ≤ , ,  for every ,x y z X, , ∈  
 

where [0 1)k ∈ ,  is a constant. If ( ) ( )f X g X⊂ , and ( )f X  or ( )g X  is a 

complete subspace of X , then f  and g  have a unique point of coincidence 

in X . Moreover if f  and g  are (IT)-commuting then f  and g  have a 

unique common fixed point.  
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