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Abstract: The symmetric/asymmetric planar slab waveguide is simplest 

waveguide structure to be analyzed. These waveguides are used in optical 

communication systems. In this paper we have derived the Eigen value 

equations by using the transmission line (TL) method for the case of 

symmetric/asymmetric planar slab waveguide structure. Earlier also the 

equations have been derived but no where the intermediate steps of 

solution found by author knowledge. The derived results have been 

exactly matched with the existing results found into the literatures.   

 

1. Introduction 
 

The symmetric/asymmetric planar waveguide structures have impact on 

WDM optical communication systems. The transmission line (TL) method 

has great application to analyze waveguide structure having arbitrary 

refractive index profile 
1-2

. There is large number of current research papers 

on application of TL method of waveguide analysis 
3-11

.  The asymmetric 

waveguide is somewhat tough to analyze due to their asymmetric mode field 

profile. The asymmetric waveguide have found certain advantage over the 

symmetric waveguide structure due to their easiness 
4
. In section-2, we have 

shown the calculation of Eigen value equation for symmetric planar slab 

waveguide followed with asymmetric waveguide structure in section-3.  
 

Maxwell Equations 

Let consider the planar slab optical waveguide as shown in Fig.1 having 

refractive index variation in -direction and direction of wave propagation in 
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z+  direction. Consider the following Maxwell equations 
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Fig 1: A thin wave guiding element with coordinate 
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2. Derivation of Eigen Value equation for Symmetric Planar  

Slab Dielectric Waveguide 
 

In this section the derivation of Eigen value equations have been done for 

odd/even TE modes by Equivalent T L method.  Let us define new variables 

as follows 
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z

v Hβ=  
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Equation (1.4) can be written as 
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and equation (1.3) can be written as 
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The characteristics impedance in equations (2.3) and (2.4) is given by 
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The planar layer of thickness  can be represented by an equivalent T-circuit 

as shown in Fig. 2, with series and parallel elements given by 
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Fig 2: Equivalent T-circuit of TE modes of planar waveguide layer of thickness . 

 

If the layer is homogeneous and infinite of thickness and by using the 

following relations 
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Then layer may be represented by its characteristics impedance  eq. 

(2.6). At the center of the film region where thickness , 
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This condition will lead 
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s
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.
p

Z = ∞  
 

It means that at the center of waveguide the layer may be represented by 

an open circuit. Thin waveguide shown in Fig. 1 can be represented in 

equivalent form for a region  as shown in Fig. 3. 

 
Fig 3: Equivalent T network representation of symmetric slab waveguide  

( 0)x ≥  as shown in Fig. 1 

 

In the Fig. 3 the impedance of the various branches are shown as follows 
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(2.15) ,s sZ Z=  
 

Here subscripts  and superscripts  represent the series, parallel, 

film, substrate respectively.  Where, 
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2.1 Derivation of Eigen value equation for Odd Modes 
 

The Eigen value equation for odd modes can be obtained when the 

impedance seen from either side of terminal A B−  in Fig.3 is same as 
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In this equation  is given by 
 

2 2 2
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where 2 2 2

0 ,fk nκ β= −  Simple algebraic manipulation gives 
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Here we have used the following relations 
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and also 2 2 2

0s s
nγ β κ= − . This equation is exactly same for the Eigen value 

equation of odd TE mode of planar slab symmetric waveguide having 

thickness 12.d   
 

2.2 Derivation of Eigen value equation for Even Modes 

To derive the Eigen value equation for even mode, we define the new 

parameters 
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Fig 4: Equivalent T- network representation    

of even mode symmetric slab waveguide. 
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The Eigen value equation can be obtained when the impedance seen 

from either side of terminal A-B in Fig. 4 is same. 
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Substituting the equations (2.2.1)-(2.2.3) into eq. (2.2.4) and after some 

trivial algebra it can shown 
12

, 
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3. Derivation of Eigen Value equation of Asymmetric Planar Slab 

Dielectric Waveguide 
 

In this section we derive the rigorous and exact Eigen value equation for 

the case of asymmetric planar slab waveguide structure having the refractive 

index variation
12

, 
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Fig 5: Equivalent T network representation of asymmetric slab waveguide. 

 

 

 

where  
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After some trivial algebraic manipulation and by using eq. (2.1.3) it can also 

be shown 
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Minus in eq. (3.4) is due to limit . Finally the Eigen value equation 

can be derived from the following expression when the impedance seen from 

either side of terminal A-B in Fig. 5 is same 
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After some trivial mathematical manipulation leads the following results 
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This is exactly same Eigen value equation for the asymmetric planar slab 

waveguide structure 
12

. 

 

4. Conclusion 
 

First time we have derived the exact Eigen value equation for the case of 

symmetric/asymmetric planar slab waveguide. We have shown the 

intermediate step of calculation with substantial assumption. In most of the 

papers being published on TL method, have not clarifies the trivial 

calculation to achieve some specific expression. The derivation presented 

into this paper is useful to the beginners who want to gain inside into TL 

method. One can easily extended these results to simulate the mode field 

profile, mode cutoff condition, dispersion relation of multilayer dielectric 

waveguide structure. 
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