On P-Sasakian Manifolds Satisfying Certain Conditions on the Pseudo-Projective Curvature Tensor

N. V. C. Shukla and R. J. Shah

Department of Mathematics & Astronomy
University of Lucknow-226007 (India)
Email: nvcshukla@yahoo.com; shahriddhijung@yahoo.com

(Received December 10, 2010)

Abstract: In this paper we study the geometry of P-Sasakian manifolds under certain conditions like $R(X,\xi).\overline{P}=0$, $\overline{P}(\xi,X).S=0$ and

 $\overline{P}(X,Y)Z = 0$. It is proved that in each case the manifold is either Einstein or η – Einstein.

Key words: Para-Sasakian manifolds, pseudo-projective curvature tensor, pseudo-projectively flat.

1. Introduction

In 1977 T. Adati and K. Matsumoto¹ introduced the notion of para-Sasakian manifolds or briefly P-Sasakian manifolds, which are considered as special cases of an almost para-contact manifold introduced by I. Sato². The notion of semi-symmetric manifold is defined by R(X,Y).R=0. It is studied by many authors some of them are De and Kamilya³, Perrone⁴ and Szabo⁵. De and Pathak⁷ also have studied R(X,Y).P=0 and R(X,Y).S=0 in P-Sasakian manifolds. In this paper we study some derivation conditions on P-Sasakian manifolds. In preliminaries we give a brief account of P-Sasakian manifolds, pseudo-projective curvature tensor \overline{P} and some basic results on P-Sasakian manifolds. In section 3, we study the condition $R(X,\xi).\overline{P}=0$ and it is proved that the manifold is Einstein. In last section, we study the pseudo-projectively flat P-Sasakian manifold and it is shown that such a manifold is Einstein.

2. Preliminaries

An n-dimensional smooth manifold M is called an almost paracontact Riemannian manifold if it admits an almost paracontact Riemannian structure (ϕ, ξ, η, g) consisting of (1, 1) tensor field ϕ , a contravarient vector field ξ , a 1-form η and an associated Riemannian metric g satisfying

(2.1)
$$\phi^2(X) = X - \eta(X)\xi,$$

$$(2.2) \eta(\xi) = 1,$$

(2.3)
$$\phi \xi = 0, \quad \eta \circ \xi = 0, \quad \text{rank} \quad \phi = n - 1,$$

(2.4)
$$\eta(X) = g(\xi, X), \quad \eta(\phi X) = 0,$$

$$(2.5) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

$$(2.6) g(X, \phi Y) = g(\phi X, Y).$$

In addition, if the structure (ϕ, ξ, η, g) satisfies the equations

$$(2.7) \qquad (\nabla_{X} \eta)(Y) = (\nabla_{Y} \eta)(X) = g(X, \phi Y),$$

(2.8)
$$\nabla_X \xi = \phi X, \quad d\eta = 0,$$

Then M is called a para-Ssasakian manifold or briefly a P-Sasakian manifold 1. In a P-Sasakian manifold the following fundamental relations hold 1,2,6,7,8:

$$(2.9) R(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

(2.10)
$$R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi = -R(X, \xi)Y,$$

(2.11)
$$S(X,\xi) = -(n-1)\eta(X),$$

(2.12)
$$S(\xi,\xi) = -(n-1),$$

$$(2.13) \quad \eta \left(R(X,Y)Z \right) = g\left(R(X,Y)Z,\xi \right) = g\left(X,Z \right) \eta \left(Y \right) - g\left(Y,Z \right) \eta \left(X \right),$$

(2.14)
$$\eta(R(X,Y)\xi) = 0$$

for any vector fields X, Y, Z, where R(X, Y)Z is the Riemannian curvature tensor.

A *P*- Sasakian manifold is said to be an Einstein and an η – Einstein manifold if its Ricci tensor S is of the form

$$(2.15) S(X,Y) = \alpha_g(X,Y) \text{ and } S(X,Y) = \beta_g(X,Y) + \gamma \eta(X) \eta(Y),$$

respectively, where α is a constant and β and γ are smooth functions on M. The pseudo-projective curvature tensor \overline{P} on a manifold M of dimension n is defined by Bhagawat⁹

(2.16)
$$\overline{P}(X,Y)Z = aR(X,Y)Z + b\left[S(Y,Z)X - S(X,Z)Y\right] - \frac{r}{n}\left\{\frac{a}{n-1} + b\right\}\left[g(Y,Z)X - g(X,Z)Y\right]$$

where a, b are constants such that $a, b \neq 0$ and R, S, r are the curvature tensor, Ricci tensor and scalar curvature respectively.

3. P-Sasakian manifolds satisfying $R(X,\xi)$. $\bar{P}=0$

Let us consider a P-Sasakian manifold (M^n, g) satisfying the condition

(3.1)
$$R(X,\xi).\overline{P} = 0.$$

From (2.13) & (2.16) we have

(3.2)
$$\eta(\overline{P}(U,V)W) = \left[a + \frac{\{a + (n-1)b\}r}{n(n-1)}\right] \left[g(U,W)\eta(V) - g(V,W)\eta(U)\right] + b\left[S(V,W)\eta(U) - S(U,W)\eta(V)\right].$$

Putting $W = \xi$ in (3.2) and using (2.4) and (2.11) we get

(3.3)
$$\eta(\overline{P}(U,V)\xi) = 0.$$

Again taking $U = \xi$ in (3.2) and using (2.2) and (2.4) we obtain

(3.4)
$$\eta\left(\overline{P}(\xi,V)W\right) = \left[a + \frac{\left\{a + (n-1)b\right\}r}{n(n-1)}\right] \left[\eta(W)\eta(V) - g(V,W)\right] + b\left[S(V,W) + (n-1)\eta(V)\eta(W)\right].$$

Now

(3.5)
$$(R(X,\xi).\overline{P})(U,V)W = R(X,\xi)\overline{P}(U,V)W - \overline{P}(R(X,\xi)U,V)W - \overline{P}(U,R(X,\xi)V)W - \overline{P}(U,V)R(X,\xi)W.$$

From (3.1) and (3.5), we have

(3.6)
$$R(X,\xi)\overline{P}(U,V)W - \overline{P}(R(X,\xi)U,V)W - \overline{P}(U,R(X,\xi)V)W - \overline{P}(U,V)R(X,\xi)W = 0$$

By virtue of (2.10) and (3.6), we get

$$g(\overline{P}(U,V)W,X) - \eta(X)\eta(\overline{P}(U,V)W) - g(X,U)\eta(\overline{P}(\xi,V)W)$$

$$(3.7) + \eta(U)\eta(\overline{P}(X,V)W) - g(X,V)\eta(\overline{P}(U,\xi)W) + \eta(V)\eta(\overline{P}(U,X)W)$$

$$+ \eta(W)\eta(\overline{P}(U,V)X) = 0,$$

since by (3.3)
$$\eta(\overline{P}(U,V)\xi) = 0.$$

Putting X=U in (3.7), we get

(3.8)
$$g(\overline{P}(U,V)W,U) - g(U,V)\eta(\overline{P}(\xi,V)W) - g(U,V)\eta(\overline{P}(U,\xi)W) + \eta(V)\eta(\overline{P}(U,U)W) + \eta(W)\eta(\overline{P}(U,V)U) = 0.$$

Let $\{e_i : i = 1, 2, ..., n\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $U = e_i$ in (3.8) and taking summation for $1 \le i \le n$ we get

$$(3.9) \quad \sum_{i=1}^{n} g\left(\overline{P}(e_i, V)W, e_i\right) - (n-1)\eta\left(\overline{P}(\xi, V)W\right) + \eta(W)\sum_{i=1}^{n} \eta\left(\overline{P}(e_i, V)e_i\right) = 0.$$

From (2.16) and (3.2), it follows that

(3.10)
$$\sum_{i=1}^{n} g(\bar{P}(e_{i}, V)W, e_{i}) = \left[a + (n-1)b\right]S(V, W) - \left[\left\{\frac{a + (n-1)b}{n}\right\}r\right]g(V, W),$$

(3.11)
$$\sum_{i=1}^{n} \eta(W) \eta(\overline{P}(e_i, V) e_i) = \left[(a-b) \left\{ (n-1) + \frac{r}{n} \right\} \right] \eta(V) \eta(W).$$

Using (3.10) and (3.11) in (3.9) we obtain

(3.12)
$$\eta\left(\overline{P}(\xi,V)W\right) = \left[\frac{a+(n-1)b}{n-1}\right]S(V,W) - \left[\frac{a+(n-1)b}{n(n-1)}\right]g(V,W) + \left[\frac{a-b}{n-1}\left\{(n-1)+\frac{r}{n}\right\}\right]\eta(V)\eta(W).$$

From (3.4) and (3.12), we get

(3.13)
$$S(V,W) = -(n-1)g(V,W) + \left[\frac{b}{a}\{r + n(n-1)\}\right] \eta(V)\eta(W).$$

The relation (3.13) implies that the manifold is an η – Einstein. Hence we can state the following:

Theorem 3.1: A P-Sasakian manifold (M^n, g) satisfying the condition $R(X, \xi).\bar{P}=0$ is an $\eta - Einstein$ manifold provided $a-b \neq 0$.

Taking an orthonormal frame field and contracting (3.13) over V and W we obtain

(3.14)
$$r = -n(n-1)$$
 if $a-b \neq 0$.

Using (3.14) in (3.13), we get

(3.15)
$$S(V,W) = -n(n-1)g(V,W).$$

This leads to the following result:

Theorem 3.2: A P-Sasakian manifold (M^n, g) satisfying the condition $R(X, \xi).\overline{P} = 0$ is an Einstein manifold and is also a manifold of constant negative scalar curvature -n(n-1).

4. P-Sasakian manifold satisfying $\overline{P}(\xi, X).S = 0$

Let M be an n-dimensional P-Sasakian manifold, which satisfies

$$\overline{P}(\xi, X).S = 0,$$

then we have

(4.1)
$$(\bar{P}(\xi, X).S)(Y, \xi) = 0.$$

This implies that

$$(4.2) S(\overline{P}(\xi, X)Y, \xi) + S(Y, \overline{P}(\xi, X)\xi) = 0.$$

In view of (2.4), (2.10), (2.11), (2.12) and (2.16) in (4.2) we obtain

$$\left[a + \frac{\{a + (n-1)b\}r}{n(n-1)}\right] \left[\eta(Y)S(X,\xi) - g(X,Y)S(\xi,\xi)\right]
+bS(X,Y)S(\xi,\xi) + (n-1)b\eta(Y)S(X,\xi)
+ \left[\{a + (n-1)b\}\left\{1 + \frac{r}{n(n-1)}\right\}\right] \left[S(X,Y) - \eta(X)S(Y,\xi)\right] = 0.$$

Using (2.11) and (2.12) in last relation we get

(4.4)
$$\left[a + \frac{\{a + (n-1)b\}r}{n(n-1)} \right] \left[-(n-1)\eta(X)\eta(Y) + (n-1)g(X,Y) \right]$$

$$-(n-1)bS(X,Y) - (n-1)^{2}b\eta(X)\eta(Y)$$

$$+ \left[\{a + (n-1)b\} \left(1 + \frac{r}{n(n-1)} \right) \right] \left[S(X,Y) + (n-1)\eta(X)\eta(Y) \right] = 0.$$

This relation on further simplification yields

(4.5)
$$S(X,Y) = -(n-1)g(X,Y).$$

Hence the manifold is Einstein.

Now, we can state:

Theorem 4.1: A P-Sasakian manifold (M^n, g) satisfying the condition $\overline{P}(\xi, X).S = 0$ is an Einstein manifold.

5. Pseudo-Projectively flat P-Sasakian manifold

Let us consider a P-Sasakian manifold (M^n, g) which is pseudo-projectively flat. Then we have $\overline{P}(X,Y)Z = 0$. Now from (2.16) we have

$$a\overline{R}(X,Y,Z,W) = -b\left[S(Y,Z)g(X,W) - S(X,Z)g(Y,W)\right] + \left[\frac{\{a + (n-1)b\}r}{n(n-1)}\right]\left[g(Y,Z)g(X,W) - g(X,Z)g(Y,W)\right],$$

where

$$\overline{R}(X,Y,Z,W) = g(R(X,Y)Z,W).$$

Setting $W = \xi$ is (5.1) we get

(5.2)
$$\eta(R(X,Y)Z) = -\frac{b}{a} \left[S(Y,Z)\eta(X) - S(X,Z)\eta(Y) \right] + \left[\frac{\{a + (n-1)b\}r}{n(n-1)a} \right] \left[g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \right].$$

By virtue of (2.13) and (5.2) we obtain

(5.3)
$$-S(Y,Z)\eta(X) + S(X,Z)\eta(Y) = \frac{a}{b} \left[1 + \frac{\{a + (n-1)b\}r}{n(n-1)a} \right]$$
$$\left[g(X,Z)\eta(Y) - g(Y,Z)\eta(X) \right].$$

Replacing Y by ξ in (5.3) and using (2.11) and (2.2) we have

$$(n-1)\eta(X)\eta(Z) + S(X,Z) = \left[\frac{a}{b} + \frac{\{a + (n-1)b\}r}{n(n-1)b}\right]g(X,Z)$$
$$-\left[\frac{a}{b} + \frac{\{a + (n-1)b\}r}{n(n-1)b}\right]\eta(X)\eta(Z).$$

From last relation we obtain

(5.4)
$$S(X,Z) = \left[\frac{a}{b} + \frac{\left\{a + (n-1)b\right\}r}{n(n-1)b}\right]g(X,Z) - \left[\left\{\frac{a + (n-1)b}{b}\right\}\left\{1 + \frac{r}{n(n-1)}\right\}\right]\eta(X)\eta(Z).$$

Let $\{e_i : i = 1, 2,, n\}$ be an orthonormal basis of tangent space at any point of the manifold. Setting $X = Z = e_i$ in (5.4) and taking summation for $1 \le i \le n$, we get

(5.5)
$$r = -n(n-1).$$

Using (5.5) in (5.4), we obtain

(5.6)
$$S(X,Z) = -(n-1)g(X,Z).$$

This leads to the following result:

Theorem 5.1: A pseudo-projectively flat P-Sasakian manifold (M^n, g) is an Einstein manifold.

Acknowledgement

The authors are grateful to the referee for his valuable suggestions in the improvement of the paper.

References

- 1. T. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, *TRU Math.* **13** (1977) 25-32.
- 2. I. Sato, On a structure similar to the almost contact structure, *Tensor*, *N. S.*, **30** (1976) 219-224.
- 3. U. C. De and D. Kamilya, Contact Riemannian Manifolds satisfying $R(\xi, X).\overline{C} = 0$, *Instanbul Univ. Fen Fak. Mat. Der.*, **52**(1993) 23-27.
- 4. D. Perrone, Contact Riemannian manifold satisfying $R(X,\xi).R=0$, Yokohama Math J., **39** (1992) 141-149.
- 5. Z. I. Szabo, Structure theorems on Riemannian Spaces satisfying R(X,Y).R = 0, I, The local version, *J. Diff. Geom.*, **17** (1982) 531-582.
- 6. U. C. De, Second order parallel tensors on P-Sasakian manifolds, *Publ. Math. Debrecen*, **49** (1996) 33-37.
- 7. U. C. De, and G. Pathak, On P-Sasakian manifolds satisfying certain conditions, *J. Indian Acad. Math.*, **16** (1994) 72-77.
- 8. C. Ozgur and M. M. Tripathi, On P-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor, *Turk J. Math*, **31** (2007)171-179.
- 9. P. Bhagawat, A pseudo-projective curvature tensor on a Riemannian manifolds, *Bull. Cal. Math. Soc.*, **94** (3), (2002) 163-166.