On P-Sasakian Manifolds Satisfying Certain Conditions on the Pseudo-Projective Curvature Tensor

N. V. C. Shukla and R. J. Shah
Department of Mathematics \& Astronomy
University of Lucknow-226007 (India)
Email: nvcshukla@yahoo.com; shahriddhijung @yahoo.com

(Received December 10, 2010)

Abstract

In this paper we study the geometry of P-Sasakian manifolds under certain conditions like $R(X, \xi) \cdot \bar{P}=0, \quad \bar{P}(\xi, X) \cdot S=0$ and $\bar{P}(X, Y) Z=0$. It is proved that in each case the manifold is either Einstein or η-Einstein.

Key words: Para-Sasakian manifolds, pseudo-projective curvature tensor, pseudo-projectively flat.

1. Introduction

In 1977 T. Adati and K. Matsumoto ${ }^{1}$ introduced the notion of paraSasakian manifolds or briefly P-Sasakian manifolds, which are considered as special cases of an almost para-contact manifold introduced by I. Sato ${ }^{2}$. The notion of semi-symmetric manifold is defined by $R(X, Y) \cdot R=0$. It is studied by many authors some of them are De and Kamilya ${ }^{3}$, Perrone ${ }^{4}$ and Szabo ${ }^{5}$. De and Pathak 7 also have studied $\mathrm{R}(\mathrm{X}, \mathrm{Y}) . P=0$ and $R(X, Y) . S=0$ in P-Sasakian manifolds. In this paper we study some derivation conditions on P-Sasakian manifolds. In preliminaries we give a brief account of P-Sasakian manifolds, pseudo-projective curvature tensor \bar{P} and some basic results on P-Sasakian manifolds. In section 3, we study the condition $R(X, \xi) \cdot \bar{P}=0$ and it is proved that the manifold is η-Einstein. Section 4 deals with the condition $\bar{P}(\xi, X) \cdot S=0$ and it is proved that the manifold is Einstein. In last section, we study the pseudo-projectively flat PSasakian manifold and it is shown that such a manifold is Einstein.

2. Preliminaries

An n-dimensional smooth manifold M is called an almost paracontact Riemannian manifold if it admits an almost paracontact Riemannian structure (ϕ, ξ, η, g) consisting of $(1,1)$ tensor field ϕ, a contravarient vector field ξ, a 1-form η and an associated Riemannian metric g satisfying

$$
\begin{align*}
& \phi^{2}(X)=X-\eta(X) \xi \tag{2.1}\\
& \eta(\xi)=1, \tag{2.2}\\
& \phi \xi=0, \quad \eta \circ \xi=0, \quad \text { rank } \quad \phi=n-1, \tag{2.3}\\
& \eta(X)=g(\xi, X), \quad \eta(\phi X)=0, \tag{2.4}\\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.5}\\
& g(X, \phi Y)=g(\phi X, Y) \tag{2.6}
\end{align*}
$$

In addition, if the structure (ϕ, ξ, η, g) satisfies the equations

$$
\begin{align*}
\left(\nabla_{X} \eta\right)(Y) & =\left(\nabla_{Y} \eta\right)(X)=g(X, \phi Y) \tag{2.7}\\
\nabla_{X} \xi & =\phi X, \quad d \eta=0 \tag{2.8}
\end{align*}
$$

Then M is called a para-Ssasakian manifold or briefly a P-Sasakian manifold ${ }^{1}$. In a P-Sasakian manifold the following fundamental relations hold ${ }^{1,2,6,7,8}$:

$$
\begin{equation*}
\eta(R(X, Y) \xi)=0 \tag{2.13}
\end{equation*}
$$

for any vector fields X, Y, Z, where $R(X, Y) Z$ is the Riemannian curvature tensor.

A P-Sasakian manifold is said to be an Einstein and an η-Einstein manifold if its Ricci tensor S is of the form
(2.15) $S(X, Y)=\alpha g(X, Y)$ and $\quad S(X, Y)=\beta g(X, Y)+\gamma \eta(X) \eta(Y)$,
respectively, where α is a constant and β and γ are smooth functions on M. The pseudo-projective curvature tensor \bar{P} on a manifold M of dimension n is defined by Bhagawat ${ }^{9}$

$$
\begin{align*}
\bar{P}(X, Y) Z & =a R(X, Y) \mathrm{Z}+b[S(Y, Z) X-S(X, Z) Y] \\
& -\frac{r}{n}\left\{\frac{a}{n-1}+b\right\}[g(Y, Z) X-g(X, Z) Y] \tag{2.16}
\end{align*}
$$

where a, b are constants such that $a, b \neq 0$ and R, S, r are the curvature tensor, Ricci tensor and scalar curvature respectively.

3. P-Sasakian manifolds satisfying $\mathbf{R}(X, \xi) \cdot \overline{\mathbf{P}}=0$

Let us consider a P-Sasakian manifold $\left(M^{n}, g\right)$ satisfying the condition

$$
\begin{equation*}
R(X, \xi) \cdot \bar{P}=0 \tag{3.1}
\end{equation*}
$$

From (2.13) \& (2.16) we have

$$
\begin{align*}
\eta(\bar{P}(U, V) W)= & {\left[a+\frac{\{a+(n-1) b\} r}{n(n-1)}\right][g(U, W) \eta(V)-g(V, W) \eta(U)] } \tag{3.2}\\
& +b[S(V, W) \eta(U)-S(U, W) \eta(V)]
\end{align*}
$$

Putting $W=\xi$ in (3.2) and using (2.4) and (2.11) we get

$$
\begin{equation*}
\eta(\bar{P}(U, V) \xi)=0 \tag{3.3}
\end{equation*}
$$

Again taking $U=\xi$ in (3.2) and using (2.2) and (2.4) we obtain

$$
\begin{align*}
\eta(\bar{P}(\xi, V) W) & =\left[a+\frac{\{a+(n-1) b\} r}{n(n-1)}\right][\eta(W) \eta(V)-g(V, W)] \tag{3.4}\\
& +b[S(V, W)+(n-1) \eta(V) \eta(W)]
\end{align*}
$$

Now

$$
\begin{align*}
(R(X, \xi) \cdot \bar{P})(U, V) W & =R(X, \xi) \bar{P}(U, V) W-\bar{P}(R(X, \xi) U, V) W \\
& -\bar{P}(U, R(X, \xi) V) W-\bar{P}(U, V) R(X, \xi) W . \tag{3.5}
\end{align*}
$$

From (3.1) and (3.5), we have

$$
\begin{gather*}
R(X, \xi) \bar{P}(U, V) W-\bar{P}(R(X, \xi) U, V) W-\bar{P}(U, R(X, \xi) V) W \\
-\bar{P}(U, V) R(X, \xi) W=0 \tag{3.6}
\end{gather*}
$$

By virtue of (2.10) and (3.6), we get

$$
\begin{gathered}
g(\bar{P}(U, V) W, X)-\eta(X) \eta(\bar{P}(U, V) W)-g(X, U) \eta(\bar{P}(\xi, V) W) \\
(3.7)+\eta(U) \eta(\bar{P}(X, V) W)-g(X, V) \eta(\bar{P}(U, \xi) W)+\eta(V) \eta(\bar{P}(U, X) W) \\
+\eta(W) \eta(\bar{P}(U, V) X)=0
\end{gathered}
$$

since by (3.3)

$$
\eta(\bar{P}(U, V) \xi)=0
$$

Putting $\mathrm{X}=\mathrm{U}$ in (3.7), we get

$$
\begin{gather*}
g(\bar{P}(U, V) W, U)-g(U, V) \eta(\bar{P}(\xi, V) W)-g(U, V) \eta(\bar{P}(U, \xi) W) \\
+\eta(V) \eta(\bar{P}(U, U) W)+\eta(W) \eta(\bar{P}(U, V) U)=0 \tag{3.8}
\end{gather*}
$$

Let $\left\{e_{i}: i=1,2, \ldots ., n\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $U=e_{i}$ in (3.8) and taking summation for $1 \leq i \leq n$ we get

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(\bar{P}\left(e_{i}, V\right) W, e_{i}\right)-(n-1) \eta(\bar{P}(\xi, V) W)+\eta(W) \sum_{i=1}^{n} \eta\left(\bar{P}\left(e_{i}, V\right) e_{i}\right)=0 . \tag{3.9}
\end{equation*}
$$

From (2.16) and (3.2), it follows that

$$
\begin{gather*}
\sum_{i=1}^{n} g\left(\bar{P}\left(e_{i}, V\right) W, e_{i}\right)=[a+(n-1) b] S(V, W)-\left[\left\{\frac{a+(n-1) b}{n}\right\} r\right] g(V, W), \tag{3.10}\\
\sum_{i=1}^{n} \eta(W) \eta\left(\bar{P}\left(e_{i}, V\right) e_{i}\right)=\left[(a-b)\left\{(n-1)+\frac{r}{n}\right\}\right] \eta(V) \eta(W) . \tag{3.11}
\end{gather*}
$$

Using (3.10) and (3.11) in (3.9) we obtain

$$
\begin{align*}
\eta(\bar{P}(\xi, V) W) & =\left[\frac{a+(n-1) b}{n-1}\right] S(V, W)-\left[\frac{\{a+(n-1) b\} r}{n(n-1)}\right] g(V, W) \tag{3.12}\\
& +\left[\frac{a-b}{n-1}\left\{(n-1)+\frac{r}{n}\right\}\right] \eta(V) \eta(W)
\end{align*}
$$

From (3.4) and (3.12), we get

$$
\begin{equation*}
S(V, W)=-(n-1) g(V, W)+\left[\frac{b}{a}\{r+n(n-1)\}\right] \eta(V) \eta(W) \tag{3.13}
\end{equation*}
$$

The relation (3.13) implies that the manifold is an η-Einstein. Hence we can state the following:

Theorem 3.1: A P-Sasakian manifold $\left(M^{n}, g\right)$ satisfying the condition $R(X, \xi) . \bar{P}=0$ is an η-Einstein manifold provided $a-b \neq 0$.

Taking an orthonormal frame field and contracting (3.13) over V and W we obtain

$$
\begin{equation*}
r=-n(n-1) \text { if } \quad a-b \neq 0 . \tag{3.14}
\end{equation*}
$$

Using (3.14) in (3.13), we get

$$
\begin{equation*}
S(V, W)=-n(n-1) g(V, W) \tag{3.15}
\end{equation*}
$$

This leads to the following result:

Theorem 3.2: A P-Sasakian manifold $\left(M^{n}, g\right)$ satisfying the condition $R(X, \xi) \cdot \bar{P}=0$ is an Einstein manifold and is also a manifold of constant negative scalar curvature $-n(n-1)$.

4. P-Sasakian manifold satisfying $\overline{\mathbf{P}}(\xi, X) . S=0$

Let M be an n-dimensional P-Sasakian manifold, which satisfies

$$
\overline{\mathrm{P}}(\xi, X) \cdot \mathrm{S}=0,
$$

then we have

$$
\begin{equation*}
(\bar{P}(\xi, X) \cdot S)(Y, \xi)=0 \tag{4.1}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
S(\bar{P}(\xi, X) Y, \xi)+S(Y, \bar{P}(\xi, X) \xi)=0 \tag{4.2}
\end{equation*}
$$

In view of (2.4), (2.10), (2.11), (2.12) and (2.16) in (4.2) we obtain

$$
\begin{align*}
& {\left[a+\frac{\{a+(n-1) b\} r}{n(n-1)}\right][\eta(Y) S(X, \xi)-g(X, Y) S(\xi, \xi)] } \\
+ & +b S(X, Y) S(\xi, \xi)+(n-1) b \eta(Y) S(X, \xi) \tag{4.3}\\
& {\left[\{a+(n-1) b\}\left\{1+\frac{r}{n(n-1)}\right\}\right][S(X, Y)-\eta(X) S(Y, \xi)]=0 . }
\end{align*}
$$

Using (2.11) and (2.12) in last relation we get

$$
\begin{array}{r}
{\left[a+\frac{\{a+(n-1) b\} r}{n(n-1)}\right][-(n-1) \eta(X) \eta(Y)+(n-1) g(X, Y)]} \tag{4.4}\\
+\left[\{a+(n-1) b\}\left(1+\frac{r}{n(n-1)}\right)\right][S(X, Y)+(n-1) \eta(X) \eta(Y)]=0 .
\end{array}
$$

This relation on further simplification yields

$$
\begin{equation*}
S(X, Y)=-(n-1) g(X, Y) \tag{4.5}
\end{equation*}
$$

Hence the manifold is Einstein.
Now, we can state:
Theorem 4.1: A P-Sasakian manifold $\left(M^{n}, g\right)$ satisfying the condition $\bar{P}(\xi, X) . S=0$ is an Einstein manifold.

5. Pseudo-Projectively flat P-Sasakian manifold

Let us consider a P-Sasakian manifold $\left(M^{n}, g\right)$ which is pseudoprojectively flat. Then we have $\bar{P}(X, Y) Z=0$. Now from (2.16) we have

$$
\begin{align*}
a \bar{R}(X, Y, Z, W) & =-b[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \\
& +\left[\frac{\{a+(n-1) b\} r}{n(n-1)}\right][g(Y, Z) g(X, W)-g(X, Z) g(Y, W)], \tag{5.1}
\end{align*}
$$

where

$$
\bar{R}(X, Y, Z, W)=g(R(X, Y) Z, W)
$$

Setting $W=\xi$ is (5.1) we get

$$
\begin{align*}
\eta(R(X, Y) Z) & =-\frac{b}{a}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \\
& +\left[\frac{\{a+(n-1) b\} r}{n(n-1) a}\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] . \tag{5.2}
\end{align*}
$$

By virtue of (2.13) and (5.2) we obtain

$$
\begin{align*}
-S(Y, Z) \eta(X)+S(X, Z) \eta(Y)= & \frac{a}{b}\left[1+\frac{\{a+(n-1) b\} r}{n(n-1) a}\right] \tag{5.3}\\
& {[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] }
\end{align*}
$$

Replacing Y by ξ in (5.3) and using (2.11) and (2.2) we have

$$
\begin{aligned}
(n-1) \eta(X) \eta(Z)+S(X, Z) & =\left[\frac{a}{b}+\frac{\{a+(n-1) b\} r}{n(n-1) b}\right] g(X, Z) \\
& -\left[\frac{a}{b}+\frac{\{a+(n-1) b\} r}{n(n-1) b}\right] \eta(X) \eta(Z) .
\end{aligned}
$$

From last relation we obtain

$$
\begin{align*}
S(X, Z)= & {\left[\frac{a}{b}+\frac{\{a+(n-1) b\} r}{n(n-1) b}\right] g(X, Z)-} \\
& {\left[\left\{\frac{a+(n-1) b}{b}\right\}\left\{1+\frac{r}{n(n-1)}\right\}\right] \eta(X) \eta(Z) . } \tag{5.4}
\end{align*}
$$

Let $\left\{e_{i}: i=1,2, \ldots \ldots, n\right\}$ be an orthonormal basis of tangent space at any point of the manifold. Setting $X=Z=e_{i}$ in (5.4) and taking summation for $1 \leq i \leq n$, we get

$$
\begin{equation*}
r=-n(n-1) . \tag{5.5}
\end{equation*}
$$

Using (5.5) in (5.4), we obtain

$$
\begin{equation*}
S(X, Z)=-(n-1) g(X, Z) . \tag{5.6}
\end{equation*}
$$

This leads to the following result:
Theorem 5.1: A pseudo-projectively flat P-Sasakian manifold $\left(M^{n}, g\right)$ is an Einstein manifold .

Acknowledgement

The authors are grateful to the referee for his valuable suggestions in the improvement of the paper.

References

1. T. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math. 13 (1977) 25-32.
2. I. Sato, On a structure similar to the almost contact structure, Tensor, N. S., 30 (1976) 219-224.
3. U. C. De and D. Kamilya, Contact Riemannian Manifolds satisfying $R(\xi, X) . \bar{C}=0$, Instanbul Univ. Fen Fak. Mat. Der., 52(1993) 23-27.
4. D. Perrone, Contact Riemannian manifold satisfying $R(X, \xi) \cdot R=0$, Yokohama Math J., 39 (1992) 141-149.
5. Z. I. Szabo, Structure theorems on Riemannian Spaces satisfying $R(X, Y) . R=0$, I, The local version, J. Diff. Geom., 17 (1982) 531-582.
6. U. C. De, Second order parallel tensors on P-Sasakian manifolds, Publ. Math. Debrecen, 49 (1996) 33-37.
7. U. C. De, and G. Pathak, On P-Sasakian manifolds satisfying certain conditions, J. Indian Acad. Math., 16 (1994) 72-77.
8. C. Ozgur and M. M. Tripathi, On P-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor, Turk J. Math, 31 (2007)171-179.
9. P. Bhagawat, A pseudo-projective curvature tensor on a Riemannian manifolds, Bull. Cal. Math. Soc., 94 (3), (2002) 163-166.
