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Abstract: In this paper we prove that 
p p

,M ,M ,M,a ,M,aH H ,   H Hµ µ µ µ= =  

and 
,p ,b ,b,pH H ,  H H  for 1 p<Ω Ω Ω Ω

µ µ µ µ= = ≤ ∞  by using the theory of 

Hankel transformation.  

Keyword:  L
p
-space, Hankel transform, convex function. 

AMS classification: 46F12. 

 

1. Introduction 
 

The classical Hankel transform of a function 1L (0, )φ∈ ∞ is defined by 

( )
1
2 1

2

0

h (y) (x) (xy)  J (xy)dx,  -

∞

µ µφ = φ µ ≥∫ and was extended to distribution 

by Ziemanian
1
. Motivated from the results given in Gel’f and and Shilov

2
, 

Pathak
3
 and Pathak-Sahoo

4
 introduced the spaces of type Uµ and Hµ and 

studied their Hankel transform and extended the results to distributions by 

adjoint method. Their L
p
(0, )∞ − type spaces was studied by Pathak and 

Upadhyay
5
.  

Now, we recall the definitions of the spaces of type 
p ,b p ,b,p

,M,a ,M,aH ,  H , H , HΩ Ω
µ µ µ µ from Pathak and Sahoo

4
, Pathak and Upadhyay

5
. 

Let M and Ω be the convex functions which are defined by 
 

(1)  

yx

0 0

M(x) ( )d , x 0 and (y)= ( )d ,y 0,= µ ξ ξ ≥ Ω ω η η ≥∫ ∫  

 

  

(2)  ( )1 2 1 2M(x) M( x),M(x ) M(x ) M x x ,= − + ≤ +  
 

and 
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(3)  ( )1 2 1 2(y) ( y), (y ) (y ) y yΩ = Ω − Ω + Ω ≤ Ω + . 
 

Now, the space Hµ,M, is the set of all infinitely differentiable functions φ 

on ( )I 0,= ∞ which satisfy the inequalities 

 

 (4)  [ ]k

,x kS (x) C  exp M[ax]µ φ ≤ . 

 

The space ,bHΩ
µ consists of all even entire functions φ such that for  

every b>0, k ∈N0 there exists kC 0> such that 
 

(5)  [ ]
1
2

2k

k  z (z) C exp [by]
−µ−

φ ≤ Ω . 

 

The function φ is in Hµ,M,a, if and only if, for each a>0, δ>0 there exists 

Ck, δ > 0 such that 
   

(6)  k

,x k,S (x) C  exp[-M[(a- )x].µ δφ ≤ δ  

  

Even entire analytic function 
1

2k
2z (z)

−µ−

φ  is in ,b,pHΩ
µ   if and only if b > 

0, ρ > 0 and Ckρ, > 0 such that 
 

(7)  
1

2k
2

k,| z (z) | C exp[ [(b )y]]
−µ−

ρφ ≤ Ω + ρ  . 
 

Like Pathak and Upadhyay
5
 the spaces of type p p ,b,p

,M ,M,aH , H ,and HΩ
µ µ µ  

are defined as follows: 
 

(i) A complex valued and smooth functions (x), x I (0, )φ= φ ∈ = ∞ is in  
p

,MHµ  if and only if for  Ck,p > 0,  a > 0 such that 
 

(8)  

1/ p

K p

,x k,p

0

| exp[M(ax)]S (x) | dx C

∞

µ

 
φ ≤ 

 
∫ . 

 

A infinitely differentiable smooth function φ is in p

,M,aHµ if it satisfies the 

inequalities 
 

(9)  

1
p

k p

,x k, ,p

0

| exp[M[a )x]] S (x) | dx C .

∞

µ δ

 
− δ φ ≤ 

 
∫    
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for        k>0, δ>0. 
 

Even entire analytic function 
1
2

2k
z (z)

−µ−
φ belongs to ,pHΩ

µ  if and only if 

for  k>0, a>0 and Ck,p>0 such that  
 

(10) 

1
p

1
2

2k p

k,p

0

| exp([ (by)]z (z) | dx C

∞
−µ− 

Ω φ ≤ 
 
∫ . 

 

(iii)        
1
2

2k ,b,pz  (z) H
−µ− Ω

µφ ∈ iff for b>0, ρ>0, Ck, ρ ,p>0 
 

 such that 
 

(11) 

1
p

1
2

2k p

k, ,p

0

| exp( [(b )y]z (z) | dx C .

∞
−µ−

ρ

 
Ω + ρ φ ≤ 

 
∫  

 

Using the aforesaid results we establish that  
 

p p

,M ,M ,M,a ,M,aH H ,  H H  , µ µ µ µ= =  

and 
 

,p ,b ,b,p 1
H H ,  H H  for -  and 1 p< .

2

Ω Ω Ω Ω
µ µ µ µ= = µ ≥ ≤ ∞  

 

2. Characterization of Hµ- type spaces 
 

In this section we study the relation between ,M ,M,aH ,  H ,µ µ H ,Ω
µ  

,b p ,p ,p

,MH  and H ,  H ,  H  for Ω Ω Ω
µ µ µ µ 1 p≤ < ∞  by using the theory of Hankel 

transformation. 

To find this relation, The Young inequality is useful which can be 

defined by the following way:  
 

(12)        xy M(x) (y)≤ + Ω , 
 

where M(x) and (y) Ω are pair of dual in sense of Young. 
 

Theorem 2.1.  Let M(x), Ω(y) be the pair of functions which are dual in 

sense of Young. Then 
 

p

,M,a ,M,aH H  for 1 p< .µ µ= ≤ ∞  
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Proof. Let p

,M,aH .µφ∈ Then Hankel transformation exists in 

1L (0, )∞ sense and 
1
2s  (s)

−µ−
ψ is an even entire analytic function

4
, we can 

write  

          ( ) ( )
1

k 2k k
2

,x

0

1 s (s) S (x) xs J (xs)dx

∞

µ µ− ψ = φ∫ , 

for s = u+it. Therefore, from [3, p. 138], we have  

 
1
2

2k -x|t|

0

s (s)   e (xs) J (xs)

∞
−µ− −µ

µψ ≤ ∫  

       k

,xexp[M[(a )x]]S (x)µ− δ φ  

       
1
2x exp[x | t | M[(a )x]] dx

µ+
− − δ  

         k

,x p
 A exp[M[(a )x] S (x)µ µ≤ − δ φ  

        
1
2

 

q

x exp[x | t | M[(a )x]]
µ+

− − δ , 

 

for 
 

1 1
1 and 1 p,q< .

p q
+ = ≤ ∞  

 

Now, using the technique of Gel’fand and Shilov
2
, Pathak and Sahoo

4
 we 

have  
 

 
1
2

2k

k, , ,p

1
s  (s)   D  exp 

a

−µ−

µ ρ

  
ψ ≤ Ω + ρ  

  
 

    ( )
1
2

q

x exp M x .
µ+

δ    

 

Therefore  
 

1
a

,
(s) H .

Ω

µψ ∈  
 

This implies that  
 

1
a,p

,M,ah H H
µ

µ µ  ⊂  . 

 

By property of inverse Hankel transform, we have 
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1
a

,p 1

,M,a ,M,aH h H H
Ω−

µ µ µ µ
 ⊆ ⊆
 

. 

 

Hence  
 

(13)    p

,M,a ,M,aH  H .µ µ⊆  
 

 

From Pathak and Sahoo’s
4 

Theorem 4.1 
 

                          
1
a

,

,M,ah [H ]  H .
Ω

µ µ µ⊂  
 

From the definition of inverse Hankel transform, we have  
 

(14)   
1
a

,-1

,M,aH   h H .
Ω

µ µ µ
 ⊆
 

  

 

Now, we take 
1
a

,
H

Ω

µφ∈  then from Pathak and Sahoo’s
4
 

 

                       k 2q q

,u

0

S (u) x  (-1)  (x) (xu)dx.

∞

µ φ = ψ∫  

 

By Young inequality (12) and the technique
4
, we find that  

 

           ( ) ( )k 3 2

,u q,S  (u)   C  exp -M a- u M a u .µ δ
φ ≤ δ − ρ     

 

Therefore,  
 

              ( ) ( )k 3 2

,u q, ,p
p p

exp M a u  S  (u)   C exp M a u .µ δ
  − δ φ ≤ − ρ       

 

This implies that  
 

(15)   
1
a

,1 p

,M,ah H   H .
Ω−

µ µ
  ⊆
 

 

 

From (14) and (15), we have 
 

(16)   p

,M,a ,M,aH  Hµ µ⊆ . 

 

So that, (13) and (16) gives 

  

p

,M,a ,M,aH Hµ µ= . 
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Theorem 2.2.  Let M and Ω� be the functions which are dual in sense 

of Young. Then for 
1

2
µ ≥ −  

 

,b ,b,pH H .Ω Ω
µ µ=  

 

Proof. Let ,b,pH .Ω
µφ∈  Then we can write

4
  

 

 ( ) ( )
1
2

1
k q 2q 2 2

,u

0

S (u) (x) (-1)  x (1 x ) 1+x  xu J (xu)d (u)

∞
−

µ µψ = φ + σ∫ . 

 

Therefore  
 

 ( ) ( )
1

k 2 2q 2

,u
p q

S (u)   A 1 x x  (x)   1+x
−

µ µψ ≤ + φ  

  ( )2 2q

q
p

 A  A  1+x x (x)µ≤ φ  

  ( )
1 1
2 2

2q+ + - -2

q,p
p

A 1 x  x  x   (x)
µ µ

= + φ  

  ( )
1
2

r 1
2

q,p
p

 A  exp[- |y|] 1+z z (z)
+ −µ−

≤ σ φ  

 

for 
1

r 2q .
2

> + µ +  

 

This implies that  
 

 ( )
11

2n
k 1 2

,u q,p n p

n 0

S (u) A exp[ | y |] || z (z) ||
γ+

−µ−
γ+

µ
=

φ ≤ −σ φ∑  

    
1

q,p n

n 0

A exp[ | y | [(b )y]] C
γ+

=

≤ −σ +Ω + ρ ∑  

    q, 1,pC exp[ | y | [(b )y].γ+≤ −σ +Ω + ρ  
 

From Pathak and Sahoo
4
, we have 

  

k

,u q,r 1,p

1
| S (u) | C exp M u .

b
µ +

   
φ ≤ − − δ   

   
 

 

Hence 
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,b,p

1
,M,

b

h H H .Ω
µ

µ
 ⊆   

 

Therefore 
 

,b,p 1 ,b

1
,M,

b

H h H H .Ω − Ω
µ

µ

 
⊆ ⊆ 

 
 

 

This implies that 
 

(17)   ,b,p ,bH H ,Ω Ω⊆  
  

Now, we have to prove that 
 

   ,b ,b,pH H .Ω Ω
µ ⊆  

 

We take  1
,M,

b

H
µ

φ∈  and using the arguments
4
  

 
1

2k
"'2
k, 3

1 u
s (s) C exp t M .

b b

−µ−

δ

    ρ   
ψ ≤ Ω + ρ −      

      
 

 

Therefore 
 

 
1

2k
"'2
k, ,r

r

1
s (s) C exp t ,

b

−µ−

δ

   
ψ ≤ Ω + ρ   

   
 

      
3

r

u
exp M .

b

 ρ  
−   

  
 

 

Then 
 

 ,b,p

1
,M,

b

h H H .Ω
µ µ

µ

 
⊆ 

 
 

 

Since, from Pathak and Sahoo’s
4 

Theorem 4.1, we have 
 

 ,b

1
,M,

b

h H H .Ω
µ µ

µ

 
⊆ 

 
 

 

Hence 
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(18)   ,b ,b,pH H .Ω Ω
µ µ⊆  

 

Thus, from (17) and (18), we can prove that 
 

   ,b ,b,pH H .Ω Ω
µ =   

 

Theorem 2.3.   
p ,p

,M ,M

1
H H , H H , .

2

Ω Ω
µ µ µ µ= = µ ≥ −  

 

Proof. From Theorem 2.1, we have 
 

                   p

,M,a ,M,aH H a 0.µ µ= ∀ >  
 

Since the spaces  ,b ,p,p

,MH , H , HΩ Ω
µ µ µ  can be regarded as union of normed 

linear spaces p ,b ,b,p

,M,a ,M,aH , H , H , HΩ Ω
µ µ µ µ . Therefore, from Theorem 2.1 and 

Theorem 2.2, we can write 
 

          p

,M,a ,M,a

a a

H H .µ µ=∪ ∪  

 

and 
 

         ,b ,b,p

a a

H H .Ω Ω
µ µ=∪ ∪  

 

This implies that 
 

 p ,p

,M ,MH H and H H .Ω Ω
µ µ µ µ= =  
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