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Abstract: Thomson-Haskell matrix method is used to study the
propagation of Rayleigh waves in prestressed multilayered elastic solid
with incremental elastic coefficients possessing orthotropic symmetry.
The dispersion equations are derived for one and two prestressed layered
half space.
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1. Introduction

In fact the velocity of waves depends on the material properties (elastic
moduli and density) allows us to use seismic wave observations to
investigate the interior structure of the planet. We can look at the travel
times and the amplitudes of waves to infer the existence of features within
the planet, and this is an active area of seismological research. To
understand how we “see” into Earth using vibrations, we must study how
waves interact with the rocks that make up Earth. Surface waves carry the
greatest amount of energy from shallow shocks and are of primary cause of
destruction that can result from earthquakes .Surface waves propagating
over the surface of homogeneous and inhomogeneous elastic half space are
a well- known and prominent features of waves theory.

The Early attempts were made, to drive the dispersion equations for
surface waves of Rayleigh types on a layered medium by Sezawa', Fu® and
others. But the methods used by them, were so formidable that no attempt
appears to have been made to treat cases of more than two layers. A straight
forward matrix method was investigated by Thomson®. Haskell (1953)
followed the same technique to study the dispersion equations for Love and
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Rayleigh waves in homogeneous isotropic media .This method has been
adopted by several investigators e.g. Anderson®,Hannon® and Saini®.

All these study ignore the initial stresses present in the medium. Adopting
the basic theory of Biot’ on prestressed solids in last three decades ,the
propagation of elastic waves in prestressed solids of infinite extent has been
discussed by Dahlen® Walton® Tolstoy'®, Dey and Chakraborty", Sidhu and
Singh™, Singh and Singh".

Recently Addy and Chakraborty™ showed the effect of temperature and
initial hydrostatic stress on the propagation of Rayleigh waves in
viscoelastic half space .Sharma and Garg"” have derived Modified
Christoffel equations for three dimensional wave propagation in general
anisotropic medium under initial stress. Gupta et al.'® found out the effect of
initial stress on propagation of Love waves in an anisotropic porous layer.

The model of the Earth is supposed to be composed of several layers of
different thickness and inner layers of the Earth are under immense stress
owing to different physical causes i.e. variation in temperature ,slow
process of creep and gravitational field. Therefore, the study of propagation
of elastic waves in the prestressed elastic multilayered media is of great
importance in seismology.

Keeping in view, the above aspects, study of propagation of Rayleigh
waves in layered prestressed elastic media have been dealt in the present
paper following Thomson-Haskell matrix method. Dispersion equations of
Rayleigh waves are derived for one and two layers respectively .The results
obtained in this analysis are compared with those for an initially stress free
medium.

2. Basic Theory

The general form of Biot’s field equations for prestressed solids in the
absence of external forces is (Tolstoy'’)

(2.1) S S @i+ Su @ = €Sy = Pl -
Here u; are the displacement components, p is density and
1 1
(2.2) e, :E(ui,j-l_uj,i)’ o, :E(ui’j_uj’j ,
_ Ou, _ Ou,

u =—,u B =— elc.
i, > it >
Ox; ot

The S;; are the components of prestress which are assumed to be satisfy the
equilibrium equations
(2.3) S =0.
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The s; are the incremental stresses and are assumed to be linearly related to the
incremental strains e

s, =Bu +B, (vy +w,),
Sy, = (B12 — P)ux + Bzzvy +B,w,,
24) s, = (B12 - P)ux + Bva +B,,w,,
s, =0, (uy +vx), s; =0, (uz +wx),
Sy = Ql(vz +wy),
where we have put

(x1,x2,x3) =(xy,2),

(2:5) (ut0) = v, w, =2 et
T X

1
) :,U'*‘(,U‘*‘l)gzz +5(/1—2,u)811,

1 1
O, :,U‘*‘E(,u"'l)(gn +822)+5(/1—2,u)822

In deriving (2.6), we have taken S,, = S,, .Futher, A, uare Lame’s constants

and g; are the initial strains.

We now consider the two dimensional problem for which aiz 0 .We
o4
further assume that

(2'7) S, =8,;=8,=0,
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and S§,,,S,; are constants. Equation (2.2) shows that

(2.8) e, =U_,6;=W, e, :%(uz +wx),
1 1
€ :vaaem :Evz’eZZ =0.
1
(2.9) Was :Eva )

O, =0y, =0y =0.

On taking i=1,2,3 in equation (2.1) and using equations (2.4), (2.7) - (2.9), we
get

o’u 1 _\o*w 1 _\ou
B, ¥+(B12+Q2—5Pj +(Q2+—Pj—

Ox0z 2 ozt

1 0%y 0%y o*v

2.10 ——P|—+Q —=p—0,
(2.10) (Qz 2 j@xz QFF=Po

o*w 1 0*u 1 ow o’w
B,—+|B,+0,——P + -—=P = .
2 5 (” 0.5 j@x@z (Q2 2 j@x P o

If we restrict our analysis to xz- plane ,put v =0 from first and last member of
equation (2.10), we get
o’u o’w o’u o’u
B + A4 + A = ,
"o Pz o Lar

@2.11)

62W+A o*u 4 62w_ O*w
25072 Sae e Pt

where 4, :(Q2+%PjaA2 :(Qz_%Pj and 4, :(BIZJ'_QZ _%Pj-

We assume the solution of equation (2.11) in the form as

u =Ul.€(i8),
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(2.12) w= W™
where U, and W, are the amplitude factors and
(2.13) P, =k{ct—(xsin0-zcos0)|,

where

k = wave number,
¢ = phase velocity,
B, = Phase factor.

Substituting equations (2.12) & (2.13) in equation (2.11), we have

(2.14) —(Dl—pCZ)Ui+A3 sin & cos OW,,
A, sin @ cos OU, —(D2 —pcz)VK,

where

(2.15) D,(0)= B, sin’ 0+ 4 cos’ 0,

D, (6)=B,, cos’ 6+ 4,sin” 6.

The set of homogeneous equations (2.14) in U,,W, has a non-trivial solution

—(D1 —pcz) A, sin@cosd
only if =0.

A;sinfcos®  —(D,-pc’)
It is biquadratic in ¢,

]

(2.16)  2pc*(6)=(D,+D,)F| (D~ D,)’ +44"sin’ g cos’ 9}/2

Thus, in general, in this two dimensional model of the prestressed solid, there
are two types of plane waves i.e. quasi P waves and quasi SV waves whose
velocities depend on the initial stresses and direction of propagation .

3. Formulation of The Problem

Consider a homogeneous prestressed elastic half-space composed of n
parallel ,homogeneous, prestressed plane layers. The nth layer being a
homogeneous, prestressed elastic half-space, various layers and interfaces
are numbered away from free surface, as shown in (Fig.1). Let the material
is either isotropic in finite strain or anisotropic with orthotropic symmetry.
The principal directions of initial stress are chosen to coincide with the
directions of elastic symmetry and the co-ordinate axes. The state of initial
stress is, therefore, defined by principal components S,,,S,,andS;; of the
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initial stress. We assume plane strain parallel to the xz- plane and z-axis is
taken as directed into the medium. The equations of motion for m™ layer
are given as in equation (3.1)

0u o*w o0u 0u

3.1 B, —"4+4 m 4 A m m
B) Bun i+ A ot 2= P
o*w 0*u o*w o*w

B, —*+A4 "+ A Z = '”

where p, is the density and (u,,,w,, ) are displacement components in x and

z directions, respectively and

P P
(32) Al,m = Qz,m +7maA2,m = Qz,m - ; ?

P
A3,m :Bl2,m +Q2,m _Tm’Pm :S3 o)

3,m 11,m*

B

the initial state is unstressed, the medium is isotropic, and the first order
theory of classical elasticity is assumed, them it can be shown that

B,, ,, are the incremental elastic coefficients in the mth layer. When

11,m>

(3.3) B, =By, =4, +2u,
BlZ,m = j"m 4

QZ,m = Il’lm’ Al,m = AZ,m = lum’
A3,m = j"m + /’lm’

where 1, and i, are the usual Lame parameters.

For plane waves of circular frequency . wavenumber k and phase
velocity ¢ ,propagating in the x-direction, are incident at the free boundary
7z=0 of a semi-infinite prestressed medium, both quasi-P and quasi-SV
waves will be generated. we may assume the total displacement field to be
of the form

3.4) u, =U,, exp(R,)+U,, exp(P,,)
+ Url,m exp(llel,m ) + Ur2,m exp(lRZ,m )9
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where
w, =W, exp(IB,,)+W,,, exp(il)
+W,, ., exp (lRl,m ) W, exp(le,m ) ,
(3.5) R,=P,(xz)= A {C,t—(xsine, —zcose, )},

cl,m
B, =h,x2) ZCL{CZ,mt—(xsin f, —zcos f, )},
2

.,m

R, =R, (x,z)= i{Cl,mt —(xsine, +zcose, )},

1,m

1,m

R,,=R,,(x,z)= v {Cz,mt —(xsin f,, +zcos f, )} ,

2,m

P, and R, are the phase factors associated with incident and the reflected
quasi-P waves, respectively, e, being the angle which these waves make
with z-axis.?;,, and R;., are the phase factors associated with the incident
and the reflected quasi-S waves, respectively, f, beings the angle which

) and (U,,,.W, ,)are the

amplitude factors associated with the incident and reflected P-waves,
Uy, tW,,) and (U, +W,, ) are amplitude factors associated with the

i2,m i2,m

these waves make with z-axis.(U. W,

ilom?>" " il,m rl,m?

incident and the reflected S-waves.

We find that the displacements given in equation (3.4) must satisfy the
equation of motion (3.1), we have

3.6 v, =KW, U, =F W, .
il,m 1,m"" il,m i2,m 2.m" " i2,m
Uil,m = _Fi,mW;l,m’ Uil,m = _E,mWZ,m’
here
B - 4;,sine, cose,
b Dl,m (em ) - f)mcl,m2 (em) ’
(3 7) - 4, sin f, cos f,

e Dl,m (f;n ) - pmc2,m2 (f;n) '
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4. Boundary Conditions

Let plane waves be incident from the prestressed isotropic elastic half-
space at the (n-1)th interface at an angle 8,. Let the plane of incident be
taken as xz-plane, we solve the problem subject to the following conditions:

(1) The free surface is stress free, that is,
(4.1) Af.=0,Af. =0, at z=0.4f, = 0.

(2) The displacements and incremental boundary forces are continuous
at an interface. This implies

(4'2) ui(zi):uma

w,(z,)=w

i i+1°

(Afx )1‘ (Zi) = (Afx )i+l (Zi )’
(A1), (z)=(81.),,,(2),

i=1,23,....(n+1).
(Afx ),- =813, 533, (Wy)- -8, (ezx ),- 5

1

(43) (M), =53, + Sy, (en),-

are the incremental boundary forces per unit initial area. syq; and sq59; are
incremental stresses,e_.,e . are incremental strains and (wy)_ is the
1

> ¥zx,id T xx,i

incremental rotation component parallel to xz- plane. Explicit expressions
for these quantities in terms of u; and w; are

ou, ow,
S5, =0, | —L+—1|,
13,i Q2,1 ( 82 axj
ou, ow.
. =(B,. —P)—+B,.—,
833,i ( 12.i 1) Py 2i 5
1{0u ow.
4.4 e ) =—| —L+—11,
(44) (xx)’ 2(82 8xj

1({0u ow,
(w,) :5%*@—?)'

We temporarily shift the origin to the (m-1)th interface as shown in
(Fig.2). Then, at the (m-1) th interface we have =z =0. We denote
displacements and incremental stresses at the mth interface by
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u,,w,,(Af,) and(Af.) respectively. Then for (m-1) th interface equation
(3.4) together with the boundary condition (4.2) and equations (4.3) - (4.4),
give

iR, (x,0 iR, , (x,0 iR, (x,0 iR, (x,0
45 u,  =U, """y, 0y S0y o0

il,m i2,m rl,m r2,m

iR ,0 iR, ,, (x,0 iR, ,, (x,0 iR, ,, (x,0
wo =W, ey O MO Ly g (0

i2,m rl,m r2,m

(Afx )nH _ L (2Q2,m +F, )(Url,m - Uil,m )cos'em eiRlJn(x’o) 4
Cim +(2Q2,m —Rm)(Wer —VKLM)Sln e,
L (2Q2m + Pm )(Urz,m - UiZ,m ) cos fm eiRM (x,0)
¢ |+(20,,, R, )Wy, ~W,,.,)sin £, ’
(o), = 1| (Baw 81U = Ui )sine, e,
Cim +(B22,m )(erm Wi )COS €
L (BIZ,m + Sll,m )(UrZ,m - UiZ,m )Sin S e
Cam +(Bzz,m)(VVr2,m _VViZ,m)COS S .
where

(4.6) Cim =G (e,)s Com =6 (e,), R, = Sll,m + S33,m )
and we have made use of the results
R,(x,0)=R,(x,0),
4.7) P, (x,0)= R,, (x,0).

Since equation (4.5) must be satisfied for all values of x, we have

(4.8) R, (x,0)=R,, (x,0)

Which, on using equation (3.2) implies

(4.9) sine, _ sinf,
' cn(e) c,(f)

This is the form of Snell’s law for initially stressed media. Using equations
(3.5), (4.8) in equation (4.5) and suppressing the common factor

10) .,
—[cz’mt—xsm]‘m }
CZ,m

e 5
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we get
um—l = E,mW

il,m

(4.10) w, =W, +W, +W, . +W,

i2,m rl,m r2,m?2

-h,

w.,, —F.

rl,m 2,m

/4

r2,m?2

+F

2,m

w

i2,m

(Af;c )m—l = al,mVVil,m + a2,mVV;2,m + al,mVVrl,m
(Afz )m—l = bl,mW;l,m + b2,mVVi2,m - bl,mW

rl,m

+ a2,n1VV;2,n1 ’
-b,, W,

r2,m?

Where
4.11) ¢ a, = —(Pm +20,, )F

1,m

cZ,maZ,m = _(])m + 2Q2,m )F;,m Cos m +(2Q2,m _Rm )E,m sm m?

cose, + (2Q2’m -R, )F

1,m

sine,,

cl,mbl,m = (BIZ,m + Sll,m ) E,m sm em - BZZ,m COs em b

cZ,me,m = (BlZ,m + Sll,m )F;,m sm fm - B22,m COs fm

Equation (4.10) can be written in te matrix form as

U, VVrl,m + Wn,m
4 12) m—1 - E VVrl,m _VVil,m
% (Afx )m_1 S Wiam = Wiom
(Afx )m_1 Woam T Wizm
here
0 -f, -F, O
1 0 0 1
(4.13) E, = 0w 0 —
0 _bl,m _bZ,m 0

Similarly, from equation (3.1).We find the values of the displacements and
stresses at the m™ interface by putting z =dm
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m Weim T W
414 W er,m - Wil,m
e (), 5] -
(Afz )am Wram +W12m
where
K, sin@, -F,kcos6, —F, cos¢, F,, sing,
cos@, —/sin@, —/sing, cosg@,
= a,,cos6,  a,sin@  —la,, sing, a,, cosg,
b, sin6, b, cos6,  —Ib, cos¢, Ib,, sing,
Here
(415) g =@dmeose,
Cim
(4.16) b - wdmecos f,
2,m
Wi ¥ Wi U
(4.17) W Wit g Wt
' Wonm =W | " (),
Wosm Wi (&%),

a combination of equations (4.14) and (4.17), yields,

Mm Mm_l
' o] Wi
I ), 72 ), |
(o), (&),

where, from (4.13)

353
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0 "o ! 0
aZ,m _a‘l,m a?,m _al,m
b2,m 0 _F;,m
E b —-FK E b —F
( 41 9) Elm _ 1m~"2m 2,mh,m 1,mb2,m Z,mbl,m
_a,m O _};l',m
}:l‘,me,m _FZV,mh,m Fl:me,m _Fé,mbl,m
0 ki - 0
L Gy =y by =y,
Equation (4.18) can be written as
um VVrl,m + I/I/;l,m
(4 20) Wm A I/Vrl,m - VVil,m
. (Af;c )m S Wr2,m _M}iZ,m
(A‘fz )m Wr2,m + WiZ,m
Here the elements of the matrix product
(4.21) A, =D, E" may be computed as follows :

_bZ,mE,m COs em + bl,n1F'2,n1 Cos ¢m

(4, = (F.by = F by )

b

_ ll:_aZ,mE,m s em + al,mﬂ,m sin ¢m :|

(Am )12 (az,m _ al,m)

_I[F,sin6,~F,,sing, |

(a2,m - al,m )

b

(Am )13

(4,) :Fl,mFlm [cos6, —cosg, |
m )14

(E,me,m - sz’mbl’m )
l[_bz,m Sil’l 9m + bl,m Sin ¢m :I
(02, = Fb10)

1,m

b

(Am )21 =

5

b
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B [—alm cos®, +a,, cosd, ]

(Am )22 (az,m - al,m ) ’
_ [c0s0, —cos4, ]

(Am )23 - (az,m — al,m) '
_I[F,5in6,~F,,sing, |

(Am )24 - (F;’mbz,m - F‘Z’mbl,m ) 5

A _ ll:al,mbz,m sin Qm + al”’bl’m sin ¢m]

( m )31 - (E’mbz’m - F;mblm ) ’
a4, [—cos6, +cosg, |

(Am )32 - (az’m —a,, ) ’
_a,,cos0,-a,,cosd,,

(Am )33 = (a2,m _ al,m) ’

(A ) — Zl:al,mF;,m sin 9m - az,mFLW’ sin ¢m]

m )34 ’

(F;,me,m - Fz,mbl,m )
_b,b,, [—cos6, +cosg, |
(F;,mbz,m - sz,mbl,m ) '
~ I[-a,,b,,sin6,+a,b,, sing, |
(Am )42 - (az,m ~a,, )
_I[b,,sin0,—b,,sing, |

(a2,m - al,m)
1y, [0, B o]
m ) 44 (Emem _F;,mbl,m)

(4,),

B

(4,).,

B

The boundary conditions require that the values of displacements and
incremental stresses at the top of the m™" layer be the same as the values
computed at the bottom of the (m-1)" layer .We may write

u u

W: _ W:_—z
22 1), |72 (ar),
(o), (8, .

By repeated application of equation (45), we have,
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u, U
(4.23) e A, A, 4y o ’
(Afx )n—l (Af" )0
(A1), (41.),

where u, =u,(z =0), w, = w,(z = 0) are displacements and
(41,), = (4f,), (z=0),(A1.), = (4, ), (z = 0) are incremental stresses at the
free surface: From equations (40) and (45), we obtain

I/Vrl,n + VV;l,n uO
(4.24) W™ Won | g 4 4 al M
' VV;Ln - VV[Z,n no e l (Af;c )0 ’
I/Vr2,n + VV;Z,n (Af;‘ )0
(4.25) Putting J, =4,,4, ,....4 ]

in equation (4.24), we get

W tW,, U

(4.26) WeinWin | 7 o
. I/Vr2,n - W;Z,?‘l ! (Afx )0
W+ W (A7),

In general, equation (4.26) is equally applicable to surface waves or to
waves transmitted through the initially stressed layered medium.

5. Rayleigh Waves

Here we restrict our analysis to surface waves, in which there are no
stresses across the free surface, so that (Af,),=(4Af.),=0. and there are no

sources at infinity, so that W, =W, =0. Then equation (4.26) reduces to
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er,n U,
W, Wo
(5.1 T=J, ,
VV;Ln 0
VV;Ln 0

Equation (5.1) gives

W=Dt + () Wy,
(5.2) W, =)ty +(J,)0nWps

Wew =)ty +(J, )Wy,

W= utty +(J,) W,
On simplification equation (5.2), gives

(5.3) Yy _ (Jn )22 _(Jn )12 _ (Jn )42 _(Jn )32

Wo (‘]n )11 _(Jn )21 (‘]n )31 _(Jn )41 '

6. Special Cases

6.1 Single layer case
We take n=2, i.e. a single layer over a half-space. For this, equation (4.25)

yields
(6.1) J,=EA.
Using equations (4.15), (4.19) and (4.21) in equation (6.1), we have

Z[(az,zbz,l —ay,b,, ) sin 6, + (az,lbl,l —ay,by, ) sin ¢, ]

)y = AR |
(1) =2 [(a:2-a,,)c050, +a, (@, ~a,,)cos) :

(“2,1 —a, )(az,2 -a, )
Vo) = b,, I:(F;,zbl’l —F, by, )cos 6, + by, (F, b, — F, b, )cos ¢1] |

(E,lbz,z - Fzzlbl,z ) (E,lbz,l - Fz,lbl,l )

1|:a2,1 (Fz,zbl,l —F by, )Sin 0 +a, (Fz,lbz,z —Fy5b,, )Sin 9 ]
(E,zbz,z —-F, b, ) (az,l —a, )

(6.2) (Jy)y =

>
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by, [(Fibss = Fy by, )cos 6, +by, (F by, — Fy by, )cosg, |
(Fiibos = Pty )(Fiiboz = Faobiz )
[ ay, (F by = F by, )sinG, +a,, (F by, - F b, )sing |
(Fabos = Foobys ) (s -,

[ [bz,l (aL1 —a, ) sin@, +b, (aL2 —a,, )sin & :
(E,lbz,l —-Fb, )(az,z —a, )

(J5)5 =

b

(V)5 =

b

(J2)41 =

ay, [(al,l —a, )COS 0 +a, (a1,2 —a,, )COS 9 ]

CArS
o (a2,1 —4a, )(az,z —4a, )
6.2. Two layer case

We take n=3, that is two layers lying over a half-space.Then using equations
and following the same procedure of simplification as for single layer, case,
we have from equation(4.25)

(Blzbz 37 Fz 3B41)
Jo)p =
( 3)22 ( 13 _Fz3b13)
B
(E3b23 F23b13)
(_B12b13 +EzB42)
I ) =y
( 3)32 (FI,3b2,3_F2,3b1,3)
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4,),, (4y), +(4),, (4),, + (), (A), +(4),, (4),, 5
(6.6) By =(4),,(4), +(4), (4), +(4),(4), +
=(4),, (4),, +(4), (4), +(4)5(4)
= (), (4), +(4), (4),, +(4), (
(4),, (), + (), (), +(4) 5 (

2

+

ve)

>}

+

32
41
42

)
~—
N
@

and

(6‘7) (Al)ll ’(A1)12 ’(Al )21 ’(Al )31 ’(Al )32 ’(Al )41 ’(Al )42, (AZ )11 ’(A2 )12 ’(A2 )21 ’
(AZ )31 ’(A2)32 ’(AZ )41 and(AZ )42

are obtained from equation (4.21).

7. Conclusions

We have derived the dispersion equations for Rayleigh waves in prestressed
multilayered elastic half-space. Particular cases of Rayleigh waves in
layered half-space and two layered half-space have been considered in
detail.

Acknowledgement: One of the author (I.S.G) is thankful to UGC for
providing financial assistance through MRP.
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Fig.1 Geometry of the problem
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Z=0 at (m-1) e X

dm

z=dm at (m)
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Abstract: Thomson-Haskell matrix method is used to study the propagation of Rayleigh waves in prestressed multilayered elastic solid with incremental elastic coefficients possessing orthotropic symmetry. The dispersion equations are derived for one and two prestressed layered half space. 
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1. Introduction


In fact the velocity of waves depends on the material properties (elastic moduli and density) allows us to use seismic wave observations to investigate the interior structure of the planet. We can look at the travel times and the amplitudes of waves to infer the existence of features within the planet, and this is an active area of seismological research. To understand how we “see” into Earth using vibrations, we must study how waves interact with the rocks that make up Earth. Surface waves carry the greatest amount of energy from shallow shocks and are of primary cause of destruction that can result from earthquakes .Surface waves propagating over the surface of homogeneous and inhomogeneous elastic half space are a well- known and prominent features of waves theory.

The Early attempts were made, to drive the dispersion equations for surface waves of Rayleigh types on a layered medium by Sezawa1, Fu2 and others. But the methods used by them, were so formidable that no attempt appears to have been made to treat cases of more than two layers. A straight forward matrix method was investigated by Thomson3. Haskell (1953) followed the same technique to study the dispersion equations for Love and Rayleigh waves in homogeneous isotropic media .This method has been adopted by several investigators e.g. Anderson4,Hannon5 and Saini6.


All these study ignore the initial stresses present in the medium. Adopting the basic theory of Biot7 on prestressed solids in last three decades ,the propagation of elastic waves in prestressed solids of infinite extent has been discussed by Dahlen8,Walton9,Tolstoy10, Dey and Chakraborty11, Sidhu and Singh12, Singh and Singh13.


Recently Addy and Chakraborty14 showed the effect of temperature and initial hydrostatic stress on the propagation of Rayleigh waves in viscoelastic half space .Sharma and Garg15 have derived Modified Christoffel equations for three dimensional wave propagation in general anisotropic medium under initial stress. Gupta et al.16 found out the effect of initial stress on propagation of Love waves in an anisotropic porous layer.

The model of the Earth is supposed to be composed of several layers  of different thickness and inner layers of the Earth are under immense stress owing to different physical causes  i.e. variation in temperature ,slow process of creep and gravitational field. Therefore, the study of propagation of elastic waves in the prestressed elastic multilayered media is of great importance in seismology.

Keeping in  view, the above aspects, study of propagation of Rayleigh  waves in layered prestressed elastic media have been dealt in the present paper following Thomson-Haskell matrix method. Dispersion equations of Rayleigh waves are derived for one and two layers respectively .The results obtained in this analysis are compared with those for  an initially stress free medium. 


2. Basic Theory

The general form of Biot’s field equations for prestressed solids in the absence of external forces is (Tolstoy10)
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The Sij are the components of prestress which are assumed to be satisfy the equilibrium equations 
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The   sij are the incremental stresses and are assumed to be linearly related to the incremental strains 
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where we have put
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Further
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In deriving (2.6), we have taken

 .Futher,  
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 are the initial strains.


     We now consider the two dimensional problem for which 

   .We further assume that



 

and 

 are constants. Equation (2.2) shows that





[image: image25.wmf](


)


113313


122322


2331


1


(2.8),,,


2


11


,,0.


22


1


(2.9),


2


xzzx


xz


eueweuw


eveve


wv


w


===+


===


=




                                                  



[image: image27.wmf]112233


0.


www


===




                                             

On taking i=1,2,3 in  equation (2.1) and using  equations (2.4), (2.7) - (2.9), we get
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If we restrict our analysis to xz- plane ,put v =0 from first and last member of equation (2.10), we get


(2.11)          
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where  

  and 

.

We assume the solution of equation (2.11) in the form as 

                                             

 

 



where 

 and  

 are the amplitude factors and 
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Substituting equations (2.12) & (2.13) in equation (2.11), we have
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The set of homogeneous equations (2.14) in 

 has a non-trivial solution only if     
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Thus, in general, in this two dimensional model of the prestressed solid, there are two types of plane waves i.e. quasi P waves and quasi SV waves whose velocities depend on the initial stresses and direction of propagation .

3. Formulation of The Problem

Consider a homogeneous prestressed elastic half-space composed of n parallel ,homogeneous, prestressed  plane layers. The nth layer being a homogeneous, prestressed elastic half-space, various layers and interfaces are numbered away from free surface, as shown in (Fig.1). Let the material is either isotropic in finite strain or anisotropic with orthotropic symmetry. The principal directions of initial stress are chosen to coincide with the directions of elastic symmetry and the co-ordinate axes. The state of initial stress is, therefore, defined by principal components 

and

[image: image64.wmf]33
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  of  the initial stress. We assume plane strain parallel to the xz- plane and z-axis is taken as directed into the medium. The equations of motion for    mth layer are given as in equation (3.1)
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where 
is the density and 
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are the incremental elastic coefficients in the mth layer. When the initial state is unstressed, the medium is isotropic, and the first order theory of classical elasticity is assumed, them it can be shown that
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where [image: image77.png]Am and p,




 are the usual Lame parameters. 

For plane waves of circular frequency [image: image79.png]



 wavenumber [image: image81.png]



 and phase velocity [image: image83.png]



 ,propagating in the x-direction, are incident at the free boundary z=0 of a semi-infinite prestressed medium, both quasi-P and quasi-SV waves will be generated. we may assume the total displacement field to be of the form
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 are the phase factors associated with incident and the reflected quasi-P waves, respectively, [image: image94.png]



 being the angle which these waves make with z-axis.[image: image96.png]
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  are the phase factors associated with the incident and the reflected quasi-S waves, respectively, [image: image100.png]



  beings the angle which these waves make with z-axis.
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 are amplitude factors associated with the incident and the reflected S-waves.

We find that the displacements given in equation (3.4) must satisfy the equation of motion (3.1), we have
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4. Boundary Conditions

Let plane waves be incident from the prestressed isotropic elastic half-space at the (n-1)th interface at an angle[image: image107.png]



 Let the plane of incident be taken as xz-plane, we solve the problem subject to the following conditions:

(1) The free surface is stress free, that is, 
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(2) The displacements and incremental boundary forces are continuous at an interface. This implies




[image: image111.wmf](


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


1


1


1


1


13,33,11,


33,33,


4.2,


,


,


,


1,2,3,......,(1).


,


(4.3).


iii


iii


xixi


ii


zizi


ii


xiiyizx


ii


i


ziixx


ii


uzu


wzw


fzfz


fzfz


in


fsSwSe


fsSe


+


+


+


+


=


=


D=D


D=D


=+


D=+-


D=+




are the incremental boundary forces per unit initial area. [image: image113.png]
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  are incremental stresses,
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 is the incremental rotation component parallel to xz- plane. Explicit expressions for these quantities in terms of [image: image119.png]u; and w;
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We temporarily shift the origin to the (m-1)th interface as shown in (Fig.2).  Then, at the (m-1) th interface we have [image: image124.png]



 We denote displacements and incremental stresses at the mth interface by 
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 respectively. Then for (m-1) th interface equation (3.4) together with the boundary condition (4.2) and equations (4.3) - (4.4), give



[image: image126.wmf](


)


(


)


(


)


(


)


1,2,1,2,


1,2,1,2,


(,0)(,0)(,0)(,0)


11,2,1,2,


(,0)(,0)(,0)(,0)


11,2,1,2,


2,1,1,


1


1,


2,1,


(4.5),


2cos


1


2


mmmm


mmmm


iRxiRxiRxiRx


mimimrmrm


iRxiRxiRxiRx


mimimrmrm


mmrmimm


x


m


m


mmrm


uUeUeUeUe


wWeWeWeWe


QPUUe


f


c


QRW


-


-


-


=+++


=+++


+-


D=


+-


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


(


)


1,


2,


1,


(,0)


1,


2,2,2,


(,0)


2,


2,2,2,


12,11,1,1,


(,0)


1


1,


22,1,1,


12


2,


sin


2cos


1


,


2sin


sin


1


cos


1


m


m


m


iRx


imm


mmrmimm


iRx


m


mmrmimm


mmrmimm


iRx


z


m


m


mrmimm


m


e


We


QPUUf


e


c


QRWWf


BSUUe


fe


c


BWWe


B


c


-


ìü


ïï


+


íý


-


ïï


îþ


ìü


+-


ïï


íý


+--


ïï


îþ


ìü


+-


ïï


D=+


íý


+-


ïï


îþ


(


)


(


)


(


)


(


)


2,


,11,2,2,


(,0)


22,2,2,


1,12,211,33,


sin


.


cos


(4.6)(),(),,


m


mmrmimm


iRx


mrmimm


mmmmmmm


SUUf


e


BWWf


where


ccecceRSS


ìü


+-


ïï


íý


+-


ïï


îþ


===+






  and we have made use of the results
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Since equation (4.5) must be satisfied for all values of x, we have
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Which, on using equation (3.2) implies 
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This is the form of Snell’s law for initially stressed media. Using equations (3.5), (4.8) in equation (4.5) and suppressing the common factor 
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Where
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Equation (4.10) can be written in te matrix form as
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Similarly, from equation (3.1).We find the values of the displacements and stresses at the mth   interface by putting 
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a combination of equations (4.14) and (4.17), yields,
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Equation (4.18) can be written as 
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Here the elements of the matrix product




[image: image145.wmf](


)


1


2,1,1,2,


11


1,2,2,1,


(4.21):


coscos


(),


mmm


mmmmmm


m


mmmm


ADEmaybecomputedasfollows


bFbF


A


FbFb


qf


-


=


-+


=


-






[image: image146.wmf](


)


(


)


(


)


(


)


2,1,1,2,


12


2,1,


1,2,


13


2,1,


sinsin


,


sinsin


,


mmmmmm


m


mm


mmmm


m


mm


laFaF


A


aa


lFF


A


aa


qf


qf


éù


-+


ëû


=


-


éù


-


ëû


=


-






[image: image147.wmf](


)


[


]


(


)


(


)


(


)


1,1,


14


1,2,2,1,


2,1,


21


1,2,2,1,


coscos


,


sinsin


,


mmmm


m


mmmm


mmmm


m


mmmm


FF


A


FbFb


lbb


A


FbFb


qf


qf


-


=


-


éù


-+


ëû


=


-






[image: image148.wmf](


)


(


)


(


)


[


]


(


)


(


)


(


)


(


)


(


)


(


)


[


]


2,1,


22


2,1,


23


2,1,


1,2,


24


1,2,2,1,


1,2,2,1,


31


1,2,2,1,


1,2,


32


2,1,


coscos


,


coscos


,


sinsin


,


sinsin


,


coscos


mmmm


m


mm


mm


m


mm


mmmm


m


mmmm


mmmmmm


m


mmmm


mmmm


m


m


aa


A


aa


A


aa


lFF


A


FbFb


labab


A


FbFb


aa


A


aa


qf


qf


qf


qf


qf


éù


-+


ëû


=


-


-


=


-


éù


-


ëû


=


-


éù


+


ëû


=


-


-+


=


-


(


)


(


)


(


)


(


)


(


)


(


)


[


]


(


)


(


)


(


)


(


)


1,2,


33


2,1,


1,2,2,1,


34


1,2,2,1,


1,2,


41


1,2,2,1,


2,1,1,2,


42


2,1,


1,


43


,


coscos


,


sinsin


,


coscos


,


sinsin


,


sin


m


mmmm


m


mm


mmmmmm


m


mmmm


mmmm


m


mmmm


mmmmmm


m


mm


mm


m


aa


A


aa


laFaF


A


FbFb


bb


A


FbFb


labab


A


aa


lbb


A


qf


qf


qf


qf


q


¶


-


=


-


éù


-


ëû


=


-


-+


=


-


éù


-+


ëû


=


-


-


=


(


)


(


)


(


)


2,


2,1,


1,2,2,


44


1,2,2,1,


sin


,


coscos


.


mm


mm


mmmmm


m


mmmm


aa


bFBF


A


FbFb


f


qf


éù


ëû


-


éù


-


ëû


=


-


 

The boundary conditions require that the values of displacements and incremental stresses at the top of the mth layer be the same as the values computed at the bottom of the (m-1) th layer .We may write
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By repeated application of equation (45), we have,
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where 
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are displacements and 
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are incremental stresses at the free surface: From equations (40) and (45), we obtain
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(4.25)             Putting   
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in equation (4.24), we get
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In general, equation (4.26) is equally applicable to surface waves or to waves transmitted through the initially stressed layered medium.

5. Rayleigh Waves


 
Here we restrict our analysis to surface waves, in which there are no stresses across the free surface, so that 
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Equation (5.1) gives
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On simplification equation (5.2), gives
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6. Special Cases


6.1 Single layer case


We take n=2, i.e. a single layer over a half-space. For this, equation (4.25) yields 
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Using equations (4.15), (4.19) and (4.21) in equation (6.1), we have
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6.2. Two layer case


                                                                                                                                                                             We take n=3, that is two layers lying over a half-space.Then using equations and following the same procedure of simplification as for single layer, case, we have from equation(4.25)
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are obtained from equation (4.21).

7. Conclusions

We have derived the dispersion equations for Rayleigh waves in prestressed multilayered elastic half-space. Particular cases of Rayleigh waves in layered half-space and two layered half-space have been considered in detail.
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Fig.1 Geometry of the problem
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