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1. Preliminaries

Let F"=(M",L) be a Finsler space equipped with the fundamental

function L(x, y) on the smooth manifold M". Let f=5.(x)y' be a one-form
2

on the manifold M", then L — is called Matsumoto change of Finsler

2

metric. If we write L = and F" =(M",L), then the Finsler space F"

is said to be obtained from F” by a Matsumoto change. The quantities
corresponding to F" are denoted by putting bar over those quantities.

The fundamental metric tensor g, the normalized element of support /,
and angular metric tensor /; of F" are given by
1o oL O’L

= —, : - and h,=L——=g, —1I1.
YT T ey T ET
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We shall denote the partial derivative with respect to x* and y'by 0, and 0 .
respectively and write

1

L=0L,  L;=00L,  L,=000.L

Then
-1
L =1, L h,=L,.
The geodesics of F" are given by the system of differential equations

2
d = 26 (x,@j =0,
ds ds

where G'(x,y) are positively homogeneous of degree two in ' and are
given by

. L. I?
(1.1) 2G'=¢g"(y'0,0,F —0,F), F:?,
where g” are the inverse of g, .
The well known Berwald connection Bl = (Gj.k, G;) of a Finsler space is
constructed from the quantity G’ appearing in the equation of geodesic and
is given by

G =0,G', G, =0G.

The Cartan's connection CT' =(F;,G},C},) is constructed from the metric

function L by the following five axioms':

(i) g =0 (i) g,l,=0 (i) F,=F,
(iv) F,=G,, (v) C;k = C,;. ,

where | and |, denote h- and v-covariant derivatives with respect to CT. It
is clear that the h-covariant derivative of L with respect to BI' and CT is
the same and vanishes identically. Furthermore, the h-covariant derivatives
of L;, L, withrespectto CT" are also zero.

We shall write
(1.2) 2, = bi\j +b.

Jli?

25y =by; = by
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2. Matsumoto Change of Finsler metric

The Matsumoto change of Finsler metric L is given by

_ I? .
2.1 L= ,  where x,y)=b.(x)y".
@.1) oy B(x, ) =b,(x)y
We may put
(2.2) G =G +D'".

Then G, =G+ D) and G, =G}, + D), , where D, =0 D" and D), =0,D).
The tensors D', D} and D), are positively homogeneous in y' of degree
two, one and zero respectively.

To find D' we deal with equation® L, =0, i.e.

(2.3) oL, ~L

ijr

G/ —L.F, —LF. =0.

" ik ir™ Jjk

Since élﬂ =b,, from (2.1), we have

Lz—ZﬂLL . r 5
(L-p7 " L-p)7"

b L[ -L=2BL, 2

TA=-p 7 L-p)

0,L, =L2_—2mfa].L,. +L3(ﬂLl_ —Lb)d,L
© (L=7) (L=F)

2L r ’

Lb, - BL)?, o,

+(L—ﬂ)3( i ﬁ 1) ]ﬂ—i_(L_ﬂ)z Ji

—  I’-2BL 2 ) )
o.L, = —0,L, — =B (L-PB)L,+3B° LL,
Sy ey T
+(L +2BL)bb, — (B> +2BLY(Lb; + L b)}0, L
(d) 2
+
(L-p)*
— (L +2BLYLb, +Lb)}0, B+ 2h
T (L-p)’

24) (@ L=

[B°LL;, — BL(Lb,+ Lb)+L’bp,],

{~BL(L-B)L, +(S*+2BL)LL, +3L°bp,
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28
L —Lb)d,L, ~(BL,~Lb)d,L,

2L 2L

Lb,—pBL)O,b, +———(Lb,— SL.)0,b,,
b e (Lh = PLYOD, = s (L = LD

and
- [’-28L 2

e = ,82 Ly + 3
(L-P) (L-7)
_:BL(Lijbk +ijbi +Likbj)}
©) —
(L-7)
— (L +2BL)Lbb, +Lbb +Lbb,)

—3B°LL,L +3Lbbb,}.

B*(LyL, + Ly L +L,L)

{(B*+2BLYLLb, +L,Lb+LLb,)

Since L, =0 in F", after using (2.2), we have

O¢Ly =Ly, (Gi +Dp) = L, (Fy + D)~ L, (Fj +°Dj,) =0,
where Fj —F) =D/,
Substituting in the above equation the values of akZl.j, L, and Zl.jr from

(2.4) and using (2.3) and then contracting the equation thus obtained with
y*, we get

(2.5 2 {

L' -2pBL 28
- ir LL +L L+LL)-L(Lb
(L—ﬂ)z ijr (L—,B)3 {6( gl YL Ly + Ly, ]) ( D,

L2BT2BD) gy g b e b+ 22D
(L-p) ’ ’ T (L-p)

+L,b,

+L,b,)} (Lb,b,

cLbb +Lhb) s SLLL - oL 4bib4br}D’
' Ta-pt T @=p

_{L2—2ﬂLL_+ 2
(L=py " (L-p)

_{Lz—zﬂLL_+ 2
(L=py " (L-p)

{B°L,L,— BL(L,b,+Lb,) +L2brbj}}D,.’

{ﬂzLiLr - ﬂL(Lzbr + Lrbi) + Lzbibr}:| D]”
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2
4
(L-p)
(LD, + Lb)]ry, +

+

[-BL(L—P)L; +(B* +2BL)LL, +3L’bb, — (L’ +25L)

2L
(L-p)
(Lb, = BL; )1 +5,)=0.

(LD, = BL)(rys+5,9)
2L
(L-p)
where ‘0" stands for contraction with y* viz. r,, =r,y"*, r,, =r;»'y’ and we
have used the fact that D!, y* =“Di,y* =D
Next, we deal with ]jl.‘j =0, that is 81.1;. ~L,G;~LF/ =0.Then

ir=j r i

+

(2.6) 0,L,~L, (G, + D))~ L.(F, +°D})=0.

Putting the values of 0 ij L, and L from (2.4) in (2.6) and using

equation

L,=0,L,-L,G —LF/ =0

ir = j reij 2
and rearranging the terms, we get
L, _{L2—2ﬁL L2
@-p " Lw-pr " @-py

{ﬂzLiLr - ﬂL(Lzbr + Lrbi) + Lzbibr}:| D]”

2 2
+{L 2ﬂ2L L+ L 5 br}’D; oL 3
(L-p) (L-p) (L-P)
which after using (1.2), gives

(Lbz _ﬁlﬁ)(r}o +Sj0),

2.7)

2r L' -2pL 2 ) ,

- ‘ LL —BL(Lb +Lb)+I’bb} D,
LB LL—/»Z T A ”}} /
= e

L-py " L-B)
2L 2L
- Lb, = BL)(ry+5.,)— .
(L_ﬁ)3( y = BL)(ry +55) 7B
+2{L2_2ﬁ2LL,+ L 2b,}D;
(L-p) (L-p) !

{B°L,L,— BL(L,b, +L,bj)+L2bjbr}}D[

(Lbj _:BL]-)(F;O +5;)
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and

(2.8)
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*LL —BL(Lh +Lb)+L’bb} |D.
-y Sy - By i T - ﬁ){ﬂ L —BLILL +Lb)+LDb,}

2L
_(L—,B)3 (Lbi _ﬁlﬁ)(’”jo +Sj0)_|:

~BL(Lb, +Lb,)+ b b 11D} +

21 {LZ 2pL, 2

2_2'82LL7+ 2 .
(L—ﬁ) TL-p)
) T (Lb; — BL )15+ 55)-

BLL,

Subtracting (2.7) from (2.5) and contracting the resulting equation with ',
we obtain

(2.9)

—wL. 2 L.L —BL(Lb, +Lb, Lzbb}D’
[ (L—ﬂ)z @ py b UL L) Lb

- (BL, - j)’”oo"'L—zz’"jo:{Lz_ZﬂfLr"’ L 2br}DJr"
(- ,3) (L-P5) (L-P) (L-P)

Contracting (2.9) with / , we get

(2.10)

2L-2B)L.D" +2Lb D" =Lr,.

Subtracting (2.8) from (2.5) and contracting the resulting equation with y’,

we get

2.11)

Inviewof LL =g, —

(2.12)

L’ -2BL 2 ) 2 ’
L LL —BL(Lb +Lb)+L’bb}|D
|:(L—ﬁ)2 1r+(L_ﬂ)3 {ﬂ r ﬁ ( i r+ r z)+ 1 r}:|

L I’
- Lb, — BL )y + ———— ..
L—py o PR g

the equation (2.11) can be written as

tr’

(L By (L-p)

_{M}err = L 3 (Lb, = BL )1y, +L—22si0'
) (L-PB) (L=5)

—28 D,_{(L2—3ﬂL)Li+2ﬂLbi}LD,
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Contracting (2.12) with b’ = g"b,, we get
(2.13) 3B = BL—2BLK )L,V +(I* =3BL+2* )b I =P (L—P)s, +(B* L2 - F)ry,

where we have written s, for s,,b".
The equations (2.10) and (2.13) constitute the system of algebraic
equations in L D"and b D" whose solution is given by

_ 20 (L-2p)s,+(2b°L* + BL— 457,

(2.14) b.D’ -
2L{(1+2b*)L -3}
and
2.15) [ = 2L —(L=2B)r
' ’ 2{(1+2b*)L -3}

Contracting (2.12) by g” and putting the values of D" and L D" from
(2.14) and (2.15) respectively, we get

U:(L_4:B){(L_2ﬁ)roo_2Lzso} i L{(L_Zﬁ)roo_ZLzso} b+ r g
L2 +2AL3B"  (L=2B)((1+2) =38  L—28"

1

where I/ =2
L

(2.16)

Proposition 2.1. The difference tensor D' =G' —G' of Matsumoto
change of Finsler metric is given by (2.16).

3.  Projective Change of Finsler Metric

The Finsler space F" is said to be projective to Finsler space F"if
every geodesic of F"is transformed to a geodesic of F". It is well known
that the change L — L is projective if G' =G + P(x,y)y', where P(x,y)
is a homogeneous scalar function of degree one in y', called projective
factor”.

Thus from (2.2) it follows that L — L is projective iff D' = Py’. Now

2

we consider that the Matsumoto change L — L = is projective. Then

from equation (2.16), we have
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(L—4B){(L-2P)r,,— 2L2s0} L{L-2P)y, —2L's,} b r g
2(L-2B){(1+2h")L— 3[}} (L “2B(1+2)L-38  L-28"

G.1)p =

Contracting (3.1) with y,(=g,»’) and using the fact that s;y, =0 and
yy' =L, we get

(L=-2PB)ry, — 2L2S0

(3.2) . .
2L{(1+2b°)L—-3p}

Putting the value of P from (3.2) in (3.1), we get
(33) BUL-2B)r, 2L}y = P{(L~2P)my ~2Ls,}b' + L {(1+26)L—3B}s).

Transvecting (3.3) by b', we get
S, p ?
(3.4) Foo = (L —ﬂ)zo, where A= (fj —b* 0.

Substituting the value of 7, from (3.4)in (3.2), we get

s
3.5 pP=-".
(3.5) A
Eliminating P and r,, from (3.5), (3.4) and (3.1), we get
i B }So
3.6 S I
(3.6) [ 2 Y A

The equations (3.4) and (3.6) give the necessary conditions under which a
Matsumoto change becomes a projective change.

Conversely, if conditions (3.4) and (3.6) are satisfied, then putting these
conditions in (2.16), we get

Di:S—Oyi, ie. D' =Py', where p=20
2A 2A
Thus F" is projective to F".

Theorem 3.1. The Matsumoto change of a Finsler space is projective if
and only if (3.4) and (3.6) hold.
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Let us assume that L is the metric of a Riemannian space, that is
2

— -«
L=a=,la.(x)y'y’ . Then L= , which is the metric of Matsumoto
& (0)y'y oy

space. In this case b, =b,, where ;j denotes the covariant derivative with

respect to Christoffel symbols constructed from Riemannian metric ¢ . Thus
r; and s; are functions of co-ordinates only, and in view of theorem (3.1), it

follows that the Riemannian space is projective to Matsumoto space iff

2
e =(a@-P)L and s, = (ﬁzyi —b’)s—o, where A= (ﬁj —b>#0. These
A a A a
equations may be written as

(3.7) (a) (B =ba’)=a’(a-P)s,
(b) so(B*=b*a®)=(By' —a’b)s,.
The equation (3.7)(b) can be written as
i i i i i i 1 i
(s.byb, +,b,b, +5,0,b,)— b’ (Say +s,a;, +s.a,)= 5[(bhsk +b,5,)0; +

(b5, +b,5;)8, +(bs, +b,s)8,1-b"(ays; +ays, +as,).

Contracting this equation with i =, we get

(3.8) (s,b, +s,0,)=0, for n>2.

Transvecting (3.8) by b", we get b’s, =0, which implies that s, =0
provided b5° #0. Therefore we have s, =0, s,=0 and (3.7)(a) gives
1o =0 as B> —b’a’ #0. Consequently r, =0, s, =0. Hence b, =0, ie.
the pair (a, f) is parallel pair.

Conversely, if b, =0, then equation (3.7)(a) and (b) hold identically.
Thus we have

Theorem 3.2. The Riemannian space with metric « is projective to
2

Matsumoto space with metric iff the (a, B) is parallel pair.
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4. Matsumoto Change of Douglas Space

The Finsler space F" is called a Douglas space iff G'y’ -G’y is
homogeneous polynomial of degree three in y'.> We shall write Ap () to
denote a homogeneous polynomial in ' of degree r. If we write
B" =D'y’ —D’y’, then from (2.16), we get

i L2 —2Ls}y . o L
4.1) B _(L—Z,B){(1+2b2)L—3,B}(bJ/ b/y)+L—2ﬂ(S0y So V)

If a Douglas space is transformed to a Douglas space by a Matsumoto
change (2.1), then B” must be Ap (3) and vice-versa.

Theorem 4.1. The Matsumoto change of Douglas space is a Douglas
space iff B’ given by (4.1) is hp (3).

Since Riemannian space is a Douglas space, in the following we discuss
the Matsumoto change of Riemannian space and find the condition under

which the same is a Douglas space.
2

which

Let us assume that L is a Riemannian metric « , then L =

a p—
is the metric of Matsumoto space. Therefore we find the condition for
Finsler space F" to be Douglas space by using theorem (4.1). In this case
F" is a Douglas space. Therefore F" is a Douglas space iff B? is hp(3).

Si

When L is a Riemannian metric, then r;, s;, s,

l'j b
ordinates only and h-covariant derivative in F" is nothing but covariant
derivative with respect to Riemannian Christoffel symbol.

For L = a, the equation (4.1) can be written as

i s; are functions of co-

42 (1+26")e +6°}B’ +3a’ Bsyy’ 55y )~ 1By =By
T —of(5+4P") BB +(14+257)aC (s, —s13' )~ 2e’s, +1i, B —b/ )] =0.

Since «a is an irrational function in y', therefore equating to zero, the

rational and irrational terms in )’ of equation (4.2), we get

(4.3) {(1+267)a’ +6B°}B" +3a’B(s,y’ —siv')—a’r,,(b'y’ —b'y' ) =0
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and
(4.4) (5+4b*)BB" + (1+2b7)a’ (shy’ —siy' )= 2(’s, + Bryy b’y —=b'y") =0.

Eliminating B” from equations (4.3) and (4.4), we get
(4.5) A(syy’ =siy)+ BBy =b'y") =0,
where we put
A={9p> —(1+2b*)a’},
B=[2s,{(1+2b*)a’ + 687} =3B, Ja’ +128°r,.
Transvecting (4.5) by b,y , we get
(4.6) Aa’sy +B(b*a’ — p7)=0.

Since —12r,,f is the only term of (4.6) which seemingly does not contain

a’, we must have /p(5) u; such that
(4.7) 1B’ =a’ ug.
Then it will be better to divide our consideration into three cases as follows:

(i) u;=0, (i)  wu;#0,a”#0 (modf),
(iii) u;#0, @’ =0 (mod B).

The case (1) is simple: From (4.7) we have r,, =0 and (4.6) is reduced to
(@’ =4B°){(1+2b*)a’ =3B%}s, =0,
which implies s, = 0 immediately.
Next we deal with the case (ii). The equation (4.7) shows the existence

of a function A(x) satisfying u; = A3 and hence 7, = Aa’ then (4.6) is
reduced to
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(4.8) As, +(b°a® = B2, {(1+267)a’ + 68>} —3AB(c> — 4 57)] = 0.

Since —12(s, + AB)B" is the only term of (4.8) which seemingly does not
containa”, hence we must have hp(3) v, such that(s,+A8)B" =a’v,.
From a’ #0 (mod f3) it follows that v, must vanish and hences, =1 3,
i.e. s, =—Ab,. This on transvection by b', gives 2b* =0. In case of 1 =0,
we get 5,=0 and 7, =0. On the other hand, in case of b’ =0, equation

(4.8) reduces to Aa’B(a’ —4%)=0, which implies 1 =0. Therefore both
the cases (1) and (ii) lead to s, =0 and 7,, =0. Hence (4.5) is reduced to

oy’ —=s;¥' =0, which on transvection by y, gives s,=0. Finally
r; =s; =0 are concluded, thatis b, =0.
Now we take the case (iii), wherein the following Lemma shall be used.

Lemma®. If ¢’ =0 (mod f3) i.e. a,;(x)y'y’ contains b,(x)y" as a factor,
then the dimension is equal to two and b* vanishes. In this case we have
5 =d.(x)y' satisfying a” = BS anddb' =2.

Equation (4.7) is of the formr,B*=du,, which must be reduced to

1, =0V, v=v.(x)y . Consequently (4.6) is written as
(4.9) 60OL-9)s,—P{25,(6+6B)+3v(45-5)}=0.

Since —d7s, is the only term of (4.9) which seemingly does not contain 3,
there must exist a function A(x) satisfyings, = A, and the equation (4.9) is
reduced to 3v=A(0 —3f). Consequently we obtain

(4.10) oy = w(g— ﬂj, s, = AB.

Then (4.5) is written as(s;y’ —s{y')+A5(b'y’ —=b’y')=0, which on

transvection by y,, leads to

4.11) s = A(y' = 6b)).
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Thus the equation (4.2) is written as
3a-2B)a-3B)B" = 167 (BS —5af +657)(b'y’ —b'y").

From o’ =5 it follows that(a—28)(a—38)=LB6-5ap+6p>, and
hence

Bij

A8y —b'y)
3 b

which are /p(3). Equation (4.10) and (4.11) lead to
1
(4.12) bi;jzﬂ(gdi—bijdj.
Thus, we get the following theorem which has been proved in’:

Theorem 4.2. If o> £0 (mod ), then the Matsumoto space is Douglas
space iff b, =0.

Theorem 4.3. If o’ =0 (mod ), then n = 2 and the Matsumoto space
is a Douglas space iff b, is written in the form (4.12), where a’=ps,
S=d.(x)y" and A=2A(x).
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2.
Matsumoto Change of Finsler metric
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Proposition 2.1. The difference tensor 
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Putting the value of P from (3.2) in (3.1), we get 
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The equations (3.4) and (3.6) give the necessary conditions under which a Matsumoto change becomes a projective change.


Conversely, if conditions (3.4) and (3.6) are satisfied, then putting these conditions in (2.16), we get 
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Theorem 3.1.  The Matsumoto change of a Finsler space is projective if and only if (3.4) and (3.6) hold. 
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Contracting this equation with i = j, we get
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4.
 Matsumoto Change of Douglas Space

The Finsler space 
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If a Douglas space is transformed to a Douglas space by a Matsumoto change (2.1), then 
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 must be hp (3) and vice-versa.


Theorem 4.1.  The Matsumoto change of Douglas space is a Douglas space iff 
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Since Riemannian space is a Douglas space, in the following we discuss the Matsumoto change of Riemannian space and find the condition under which the same is a Douglas space.
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Since 
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Eliminating 
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Then it will be better to divide our consideration into three cases as follows:
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Now we take the case (iii), wherein the following Lemma shall be used.
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Then (4.5) is written as

[image: image280.wmf]00


()()0


ijjiijji


sysybyby


ld


-+-=


, which on transvection by

[image: image281.wmf]j


y


, leads to 

(4.11)




[image: image282.wmf]0


().


iii


syb


ld


=-
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Thus, we get the following theorem which has been proved in7: 
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