Matsumoto Change of Finsler Metric

H. S. Shukla, O. P. Pandey and Honey Dutt Joshi
Department of Mathematics \& Statistics
DDU Gorakhpur University,Gorakhpur, India
Email: profhsshuklagkp@rediffmail.com, oppandey1988@gmail.com, honeythms@gmail.com

(Received October 10, 2012)

Abstract

The purpose of the present paper is to find the necessary and sufficient conditions under which a Matsumoto change becomes a projective change. We have also found the conditions under which a Matsumoto change of Douglas space becomes a Douglas space. The Matsumoto change of a Riemannian space has been discussed as a particular case.

Keywords: Matsumoto change, Projective change, Finsler space, Douglas space.
2000 Mathematics Subject Classification: 53B40, 53C60

1. Preliminaries

Let $F^{n}=\left(M^{n}, L\right)$ be a Finsler space equipped with the fundamental function $L(x, y)$ on the smooth manifold M^{n}. Let $\beta=b_{i}(x) y^{i}$ be a one-form on the manifold M^{n}, then $L \rightarrow \frac{L^{2}}{L-\beta}$ is called Matsumoto change of Finsler metric. If we write $\bar{L}=\frac{L^{2}}{L-\beta}$ and $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$, then the Finsler space \bar{F}^{n} is said to be obtained from F^{n} by a Matsumoto change. The quantities corresponding to \bar{F}^{n} are denoted by putting bar over those quantities.

The fundamental metric tensor $g_{i j}$, the normalized element of support l_{i} and angular metric tensor $h_{i j}$ of F^{n} are given by

$$
g_{i j}=\frac{1}{2} \frac{\partial^{2} L^{2}}{\partial y^{i} \partial y^{j}}, \quad l_{i}=\frac{\partial L}{\partial y^{i}} \quad \text { and } \quad h_{i j}=L \frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}=g_{i j}-l_{i} l_{j} .
$$

We shall denote the partial derivative with respect to x^{i} and y^{i} by ∂_{i} and $\dot{\partial}_{i}$ respectively and write

$$
L_{i}=\dot{\partial}_{i} L, \quad L_{i j}=\dot{\partial}_{i} \dot{\partial}_{j} L, \quad L_{i j k}=\dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} L
$$

Then

$$
L_{i}=l_{i}, \quad L^{-1} h_{i j}=L_{i j}
$$

The geodesics of F^{n} are given by the system of differential equations

$$
\frac{d^{2} x^{i}}{d s^{2}}+2 G^{i}\left(x, \frac{d x}{d s}\right)=0
$$

where $G^{i}(x, y)$ are positively homogeneous of degree two in y^{i} and are given by

$$
\begin{equation*}
2 G^{i}=g^{i j}\left(y^{r} \dot{\partial}_{j} \partial_{r} F-\partial_{j} F\right), \quad F=\frac{L^{2}}{2} \tag{1.1}
\end{equation*}
$$

where $g^{i j}$ are the inverse of $g_{i j}$.
The well known Berwald connection $B \Gamma=\left(G_{j k}^{i}, G_{j}^{i}\right)$ of a Finsler space is constructed from the quantity G^{i} appearing in the equation of geodesic and is given by ${ }^{1}$

$$
G_{j}^{i}=\dot{\partial}_{j} G^{i}, \quad G_{j k}^{i}=\dot{\partial}_{k} G_{j}^{i} .
$$

The Cartan's connection $C \Gamma=\left(F_{j k}^{i}, G_{j}^{i}, C_{j k}^{i}\right)$ is constructed from the metric function L by the following five axioms ${ }^{1}$:

$$
\begin{aligned}
& \text { (i) } g_{i j \mid k}=0 \quad \text { (ii) }\left.g_{i j}\right|_{k}=0 \quad \text { (iii) } \quad F_{j k}^{i}=F_{k j}^{i} \\
& \text { (iv) } F_{0 k}^{i}=G_{k}^{i}, \quad \text { (v) } C_{j k}^{i}=C_{k j}^{i},
\end{aligned}
$$

where ${ }_{\mid k}$ and $\left.\right|_{k}$ denote h - and v-covariant derivatives with respect to $C \Gamma$. It is clear that the h-covariant derivative of L with respect to $B \Gamma$ and $C \Gamma$ is the same and vanishes identically. Furthermore, the h-covariant derivatives of $L_{i}, L_{i j}$ with respect to $C \Gamma$ are also zero.
We shall write

$$
\begin{equation*}
2 r_{i j}=b_{i \mid j}+b_{j \mid i}, \quad 2 s_{i j}=b_{i \mid j}-b_{j \mid i} \tag{1.2}
\end{equation*}
$$

2. Matsumoto Change of Finsler metric

The Matsumoto change of Finsler metric L is given by

$$
\begin{equation*}
\bar{L}=\frac{L^{2}}{L-\beta}, \quad \text { where } \quad \beta(x, y)=b_{i}(x) y^{i} . \tag{2.1}
\end{equation*}
$$

We may put

$$
\begin{equation*}
\bar{G}^{i}=G^{i}+D^{i} . \tag{2.2}
\end{equation*}
$$

Then $\bar{G}_{j}^{i}=G_{j}^{i}+D_{j}^{i}$ and $\bar{G}_{j k}^{i}=G_{j k}^{i}+D_{j k}^{i}$, where $D_{j}^{i}=\dot{\partial}_{j} D^{i}$ and $D_{j k}^{i}=\dot{\partial}_{k} D_{j}^{i}$. The tensors D^{i}, D_{j}^{i} and $D_{j k}^{i}$ are positively homogeneous in y^{i} of degree two, one and zero respectively.

To find D^{i} we deal with equation ${ }^{2} L_{i j \mid k}=0$, i.e.

$$
\begin{equation*}
\partial_{k} L_{i j}-L_{i j r} G_{k}^{r}-L_{r j} F_{i k}^{r}-L_{i r} F_{j k}^{r}=0 . \tag{2.3}
\end{equation*}
$$

Since $\dot{\partial}_{i} \beta=b_{i}$, from (2.1), we have
(a) $\bar{L}_{i}=\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i}+\frac{L^{2}}{(L-\beta)^{2}} b_{i}$
(b) $\quad \bar{L}_{i j}=\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i j}+\frac{2}{(L-\beta)^{3}}\left[\beta^{2} L_{i} L_{j}-\beta L\left(L_{i} b_{j}+L_{j} b_{i}\right)+L^{2} b_{i} b_{j}\right]$,
(c)

$$
\partial_{j} \bar{L}_{i}=\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} \partial_{j} L_{i}+\frac{2 \beta}{(L-\beta)^{3}}\left(\beta L_{i}-L b_{i}\right) \partial_{j} L
$$

$$
\begin{aligned}
+ & \frac{2 L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right) \partial_{j} \beta+\frac{L^{2}}{(L-\beta)^{2}} \partial_{j} b_{i} \\
\partial_{k} \bar{L}_{i j}= & \frac{L^{2}-2 \beta L}{(L-\beta)^{2}} \partial_{k} L_{i j}-\frac{2}{(L-\beta)^{4}}\left\{-\beta^{2}(L-\beta) L_{i j}+3 \beta^{2} L_{i} L_{j}\right. \\
& \left.+\left(L^{2}+2 \beta L\right) b_{i} b_{j}-\left(\beta^{2}+2 \beta L\right)\left(L_{i} b_{j}+L_{j} b_{i}\right)\right\} \partial_{k} L
\end{aligned}
$$

(d)

$$
\begin{aligned}
& +\frac{2}{(L-\beta)^{4}}\left\{-\beta L(L-\beta) L_{i j}+\left(\beta^{2}+2 \beta L\right) L_{i} L_{j}+3 L^{2} b_{i} b_{j}\right. \\
& \left.-\left(L^{2}+2 \beta L\right)\left(L_{i} b_{j}+L_{j} b_{i}\right)\right\} \partial_{k} \beta+\frac{2 \beta}{(L-\beta)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\beta L_{i}-L b_{i}\right) \partial_{k} L_{j}+\frac{2 \beta}{(L-\beta)^{3}}\left(\beta L_{j}-L b_{j}\right) \partial_{k} L_{i} \\
& +\frac{2 L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right) \partial_{k} b_{j}+\frac{2 L}{(L-\beta)^{3}}\left(L b_{j}-\beta L_{j}\right) \partial_{k} b_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{L}_{i j k}= & \frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i j k}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2}\left(L_{i j} L_{k}+L_{j k} L_{i}+L_{i k} L_{j}\right)\right. \\
& \left.-\beta L\left(L_{i j} b_{k}+L_{j k} b_{i}+L_{i k} b_{j}\right)\right\} \\
& +\frac{2}{(L-\beta)^{4}}\left\{\left(\beta^{2}+2 \beta L\right)\left(L_{i} L_{j} b_{k}+L_{j} L_{k} b_{i}+L_{i} L_{k} b_{j}\right)\right. \\
& -\left(L^{2}+2 \beta L\right)\left(L_{i} b_{j} b_{k}+L_{j} b_{i} b_{k}+L_{k} b_{i} b_{j}\right) \\
& \left.-3 \beta^{2} L_{i} L_{j} L_{k}+3 L^{2} b_{i} b_{j} b_{k}\right\} .
\end{aligned}
$$

Since $\bar{L}_{i j \mid k}=0$ in \bar{F}^{n}, after using (2.2), we have

$$
\partial_{k} \bar{L}_{i j}-\bar{L}_{i j r}\left(G_{k}^{r}+D_{k}^{r}\right)-\bar{L}_{r j}\left(F_{i k}^{r}+{ }^{c} D_{i k}^{r}\right)-\bar{L}_{i r}\left(F_{j k}^{r}+{ }^{c} D_{j k}^{r}\right)=0,
$$

where $\bar{F}_{j k}^{i}-F_{j k}^{i}={ }^{c} D_{j k}^{i}$.
Substituting in the above equation the values of $\partial_{k} \bar{L}_{i j}, \bar{L}_{i r}$ and $\bar{L}_{i j r}$ from (2.4) and using (2.3) and then contracting the equation thus obtained with y^{k}, we get
(2.5) $2\left[-\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i j r}-\frac{2 \beta}{(L-\beta)^{3}}\left\{\beta\left(L_{i j} L_{r}+L_{j r} L_{i}+L_{i r} L_{j}\right)-L\left(L_{i j} b_{r}+L_{j r} b_{i}\right.\right.\right.$

$$
\left.\left.+L_{i r} b_{j}\right)\right\}-\frac{2\left(\beta^{2}+2 \beta L\right)}{(L-\beta)^{4}}\left(L_{i} L_{j} b_{r}+L_{j} L_{r} b_{i}+L_{i} L_{r} b_{j}\right)+\frac{2\left(L^{2}+2 \beta L\right)}{(L-\beta)^{4}}\left(L_{i} b_{j} b_{r}\right.
$$

$$
\left.\left.+L_{j} b_{i} b_{r}+L_{r} b_{i} b_{j}\right)+\frac{6 \beta^{2}}{(L-\beta)^{4}} L_{i} L_{j} L_{r}-\frac{6 L^{2}}{(L-\beta)^{4}} b_{i} b_{j} b_{r}\right] D^{r}
$$

$$
-\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{r j}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{r} L_{j}-\beta L\left(L_{r} b_{j}+L_{j} b_{r}\right)+L^{2} b_{r} b_{j}\right\}\right] D_{i}^{r}
$$

$$
-\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i r}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{i} L_{r}-\beta L\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} b_{i} b_{r}\right\}\right] D_{j}^{r}
$$

$$
\begin{aligned}
& +\frac{2}{(L-\beta)^{4}}\left[-\beta L(L-\beta) L_{i j}+\left(\beta^{2}+2 \beta L\right) L_{i} L_{j}+3 L^{2} b_{i} b_{j}-\left(L^{2}+2 \beta L\right)\right. \\
& \left.\left(L_{i} b_{j}+L_{j} b_{i}\right)\right] r_{00}+\frac{2 L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right)\left(r_{j 0}+s_{j 0}\right) \\
& +\frac{2 L}{(L-\beta)^{3}}\left(L b_{j}-\beta L_{j}\right)\left(r_{i 0}+s_{i 0}\right)=0 .
\end{aligned}
$$

where ' 0 ' stands for contraction with y^{k} viz. $r_{j 0}=r_{j k} y^{k}, r_{00}=r_{i j} y^{i} y^{j}$ and we have used the fact that $D_{j k}^{i} y^{k}={ }^{c} D_{j k}^{i} y^{k}=D_{j}^{i}{ }^{3}$.

Next, we deal with $\bar{L}_{i \mid j}=0$, that is $\partial_{j} \bar{L}_{i}-\bar{L}_{i r} \bar{G}_{j}^{r}-\bar{L}_{r} \bar{F}_{i j}^{r}=0$. Then

$$
\begin{equation*}
\partial_{j} \bar{L}_{i}-\bar{L}_{i r}\left(G_{j}^{r}+D_{j}^{r}\right)-\bar{L}_{r}\left(F_{i j}^{r}+{ }^{c} D_{i j}^{r}\right)=0 . \tag{2.6}
\end{equation*}
$$

Putting the values of $\partial_{j} \bar{L}_{i}, \quad \bar{L}_{i r}$ and \bar{L}_{r} from (2.4) in (2.6) and using equation

$$
L_{i \mid j}=\partial_{j} L_{i}-L_{i r} G_{j}^{r}-L_{r} F_{i j}^{r}=0,
$$

and rearranging the terms, we get

$$
\begin{gathered}
\frac{L^{2}}{(L-\beta)^{2}} b_{i \mid j}=\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i r}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{i} L_{r}-\beta L\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} b_{i} b_{r}\right\}\right] D_{j}^{r} \\
\\
+\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{r}+\frac{L^{2}}{(L-\beta)^{2}} b_{r}\right]^{c} D_{i j}^{r}-\frac{2 L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right)\left(r_{j 0}+s_{j 0}\right),
\end{gathered}
$$

which after using (1.2), gives

$$
\begin{align*}
& \frac{2 L^{2}}{(L-\beta)^{2}} r_{i j}=\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i r}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{i} L_{r}-\beta L\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} b_{i} b_{r}\right\}\right] D_{j}^{r} \tag{2.7}\\
& +\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{j r}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{j} L_{r}-\beta L\left(L_{j} b_{r}+L_{r} b_{j}\right)+L^{2} b_{j} b_{r}\right\}\right] D_{i}^{r} \\
& -\frac{2 L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right)\left(r_{j 0}+s_{j 0}\right)-\frac{2 L}{(L-\beta)^{3}}\left(L b_{j}-\beta L_{j}\right)\left(r_{i 0}+s_{i 0}\right) \\
& +2\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{r}+\frac{L^{2}}{(L-\beta)^{2}} b_{r}\right]{ }^{c} D_{i j}^{r}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{2 L^{2}}{(L-\beta)^{2}} s_{i j}=\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i r}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{i} L_{r}-\beta L\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} b_{i} b_{r}\right\}\right] D_{j}^{r} \tag{2.8}\\
& -\frac{2 L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right)\left(r_{j 0}+s_{j 0}\right)-\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{j r}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{j} L_{r}\right.\right. \\
& \left.\left.-\beta L\left(L_{j} b_{r}+L_{r} b_{j}\right)+L^{2} b_{j} b_{r}\right\}\right] D_{i}^{r}+\frac{2 L}{(L-\beta)^{3}}\left(L b_{j}-\beta L_{j}\right)\left(r_{i 0}+s_{i 0}\right) .
\end{align*}
$$

Subtracting (2.7) from (2.5) and contracting the resulting equation with y^{i}, we obtain

$$
\begin{align*}
& {\left[-\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{j r}-\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{j} L_{r}-\beta L\left(L_{j} b_{r}+L_{r} b_{j}\right)+L^{2} b_{j} b_{r}\right\}\right] D^{r}} \tag{2.9}\\
& -\frac{L}{(L-\beta)^{3}}\left(\beta L_{j}-L b_{j}\right) r_{00}+\frac{L^{2}}{(L-\beta)^{2}} r_{j 0}=\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{r}+\frac{L^{2}}{(L-\beta)^{2}} b_{r}\right] D_{j}^{r} .
\end{align*}
$$

Contracting (2.9) with y^{j}, we get

$$
\begin{equation*}
2(L-2 \beta) L_{r} D^{r}+2 L b_{r} D^{r}=L r_{00} . \tag{2.10}
\end{equation*}
$$

Subtracting (2.8) from (2.5) and contracting the resulting equation with y^{j}, we get

$$
\begin{gather*}
{\left[\frac{L^{2}-2 \beta L}{(L-\beta)^{2}} L_{i r}+\frac{2}{(L-\beta)^{3}}\left\{\beta^{2} L_{i} L_{r}-\beta L\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} b_{i} b_{r}\right\}\right] D^{r}} \tag{2.11}\\
\quad=\frac{L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right) r_{00}+\frac{L^{2}}{(L-\beta)^{2}} s_{i 0} .
\end{gather*}
$$

In view of $L L_{i r}=g_{i r}-L_{i} L_{r}$, the equation (2.11) can be written as

$$
\begin{align*}
& \frac{L-2 \beta}{(L-\beta)^{2}} g_{i r} D^{r}-\left\{\frac{\left(L^{2}-3 \beta L\right) L_{i}+2 \beta L b_{i}}{(L-\beta)^{3}}\right\} L_{r} D^{r} \tag{2.12}\\
&-\left\{\frac{2 \beta L L_{i}-2 L^{2} b_{i}}{(L-\beta)^{3}}\right\} b_{r} D^{r}=\frac{L}{(L-\beta)^{3}}\left(L b_{i}-\beta L_{i}\right) r_{00}+\frac{L^{2}}{(L-\beta)^{2}} s_{i 0} .
\end{align*}
$$

Contracting (2.12) with $b^{i}=g^{i j} b_{j}$, we get
(2.13) $\left(3 \beta^{2}-\beta L-2 \beta L b^{2}\right) L_{r} D^{r}+\left(L^{2}-3 \beta L+2 b^{2} L^{2}\right) b_{r} D^{\prime}=L^{2}(L-\beta) s_{0}+\left(b^{2} L^{2}-\beta^{2}\right) r_{00}$, where we have written s_{0} for $s_{r 0} b^{r}$.

The equations (2.10) and (2.13) constitute the system of algebraic equations in $L_{r} D^{r}$ and $b_{r} D^{r}$ whose solution is given by

$$
\begin{equation*}
b_{r} D^{r}=\frac{2 L^{2}(L-2 \beta) s_{0}+\left(2 b^{2} L^{2}+\beta L-4 \beta^{2}\right) r_{00}}{2 L\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{r} D^{r}=-\frac{2 L^{2} s_{0}-(L-2 \beta) r_{00}}{2\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}} . \tag{2.15}
\end{equation*}
$$

Contracting (2.12) by $g^{i j}$ and putting the values of $b_{r} D^{r}$ and $L_{r} D^{r}$ from (2.14) and (2.15) respectively, we get

$$
\begin{equation*}
D^{\dot{j}}=\frac{(L-4 \beta)\left\{(L-2 \beta) r_{00}-2 L^{2} s_{0}\right\}}{2 L(L-2 \beta)\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}} y^{i}+\frac{L\left\{(L-2 \beta) r_{00}-2 L^{2} s_{0}\right\}}{(L-2 \beta)\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}} b^{i}+\frac{L^{2}}{L-2 \beta} s_{0}^{i} \tag{2.16}
\end{equation*}
$$ where $l^{i}=\frac{y^{i}}{L}$.

Proposition 2.1. The difference tensor $D^{i}=\bar{G}^{i}-G^{i}$ of Matsumoto change of Finsler metric is given by (2.16).

3. Projective Change of Finsler Metric

The Finsler space \bar{F}^{n} is said to be projective to Finsler space F^{n} if every geodesic of F^{n} is transformed to a geodesic of \bar{F}^{n}. It is well known that the change $L \rightarrow \bar{L}$ is projective if $\bar{G}^{i}=G^{i}+P(x, y) y^{i}$, where $P(x, y)$ is a homogeneous scalar function of degree one in y^{i}, called projective factor ${ }^{4}$.

Thus from (2.2) it follows that $L \rightarrow \bar{L}$ is projective iff $D^{i}=P y^{i}$. Now we consider that the Matsumoto change $L \rightarrow \bar{L}=\frac{L^{2}}{L-\beta}$ is projective. Then from equation (2.16), we have
(3.1) $P y^{i}=\frac{(L-4 \beta)\left\{(L-2 \beta) r_{00}-2 L^{2} s_{0}\right\}}{2 L(L-2 \beta)\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}} y^{i}+\frac{L\left\{(L-2 \beta) r_{00}-2 L^{2} s_{0}\right\}}{(L-2 \beta)\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}} b^{i}+\frac{L^{2}}{L-2 \beta} s_{0}^{i}$.

Contracting (3.1) with $y_{i}\left(=g_{i j} y^{j}\right)$ and using the fact that $s_{0}^{i} y_{i}=0$ and $y_{i} y^{i}=L^{2}$, we get

$$
\begin{equation*}
P=\frac{(L-2 \beta) r_{00}-2 L^{2} s_{0}}{2 L\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}} . \tag{3.2}
\end{equation*}
$$

Putting the value of P from (3.2) in (3.1), we get

$$
\begin{equation*}
\beta\left\{(L-2 \beta) r_{00}-2 L^{2} s_{0}\right\} y^{i}=L^{2}\left\{(L-2 \beta) r_{00}-2 L^{2} s_{0}\right\} b^{i}+L^{3}\left\{\left(1+2 b^{2}\right) L-3 \beta\right\} s_{0}^{i} . \tag{3.3}
\end{equation*}
$$

Transvecting (3.3) by b^{i}, we get

$$
\begin{equation*}
r_{00}=(L-\beta) \frac{s_{0}}{\Delta}, \quad \text { where } \quad \Delta=\left(\frac{\beta}{L}\right)^{2}-b^{2} \neq 0 \tag{3.4}
\end{equation*}
$$

Substituting the value of r_{00} from (3.4) in (3.2), we get

$$
\begin{equation*}
P=\frac{S_{0}}{2 \Delta} . \tag{3.5}
\end{equation*}
$$

Eliminating P and r_{00} from (3.5), (3.4) and (3.1), we get

$$
\begin{equation*}
s_{0}^{i}=\left[\frac{\beta}{L^{2}} y^{i}-b^{i}\right] \frac{s_{0}}{\Delta} . \tag{3.6}
\end{equation*}
$$

The equations (3.4) and (3.6) give the necessary conditions under which a Matsumoto change becomes a projective change.

Conversely, if conditions (3.4) and (3.6) are satisfied, then putting these conditions in (2.16), we get

$$
D^{i}=\frac{s_{0}}{2 \Delta} y^{i} \text {, i.e. } D^{i}=P y^{i} \text {, where } P=\frac{s_{0}}{2 \Delta} .
$$

Thus \bar{F}^{n} is projective to F^{n}.
Theorem 3.1. The Matsumoto change of a Finsler space is projective if and only if (3.4) and (3.6) hold.

Let us assume that L is the metric of a Riemannian space, that is $L=\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$. Then $\bar{L}=\frac{\alpha^{2}}{\alpha-\beta}$, which is the metric of Matsumoto space. In this case $b_{i \mid j}=b_{i, j}$ where $; j$ denotes the covariant derivative with respect to Christoffel symbols constructed from Riemannian metric α. Thus $r_{i j}$ and $s_{i j}$ are functions of co-ordinates only, and in view of theorem (3.1), it follows that the Riemannian space is projective to Matsumoto space iff $r_{00}=(\alpha-\beta) \frac{s_{0}}{\Delta}$ and $s_{0}^{i}=\left(\frac{\beta}{\alpha^{2}} y^{i}-b^{i}\right) \frac{s_{0}}{\Delta}$, where $\Delta=\left(\frac{\beta}{\alpha}\right)^{2}-b^{2} \neq 0$. These equations may be written as
(a) $\quad r_{00}\left(\beta^{2}-b^{2} \alpha^{2}\right)=\alpha^{2}(\alpha-\beta) s_{0}$
(b) $\quad s_{0}^{i}\left(\beta^{2}-b^{2} \alpha^{2}\right)=\left(\beta y^{i}-\alpha^{2} b^{i}\right) s_{0}$.

The equation (3.7)(b) can be written as

$$
\begin{aligned}
& \left(s_{j}^{i} b_{h} b_{k}+s_{h}^{i} b_{j} b_{k}+s_{k}^{i} b_{j} b_{h}\right)-b^{2}\left(s_{j}^{i} a_{h k}+s_{h}^{i} a_{j k}+s_{k}^{i} a_{j h}\right)=\frac{1}{2}\left[\left(b_{h} s_{k}+b_{k} s_{h}\right) \delta_{j}^{i}+\right. \\
& \left.\left(b_{j} s_{k}+b_{k} s_{j}\right) \delta_{h}^{i}+\left(b_{j} s_{h}+b_{h} s_{j}\right) \delta_{k}^{i}\right]-b^{i}\left(a_{h k} s_{j}+a_{h j} s_{k}+a_{k j} s_{h}\right) .
\end{aligned}
$$

Contracting this equation with $i=j$, we get

$$
\begin{equation*}
\left(s_{h} b_{k}+s_{k} b_{h}\right)=0, \text { for } n>2 \tag{3.8}
\end{equation*}
$$

Transvecting (3.8) by b^{h}, we get $b^{2} s_{k}=0$, which implies that $s_{k}=0$ provided $b^{2} \neq 0$. Therefore we have $s_{0}^{i}=0, s_{0}=0$ and (3.7)(a) gives $r_{00}=0$ as $\beta^{2}-b^{2} \alpha^{2} \neq 0$. Consequently $r_{i j}=0, s_{i j}=0$. Hence $b_{i, j}=0$, i.e. the pair (α, β) is parallel pair.

Conversely, if $b_{i ; j}=0$, then equation (3.7)(a) and (b) hold identically. Thus we have

Theorem 3.2. The Riemannian space with metric α is projective to Matsumoto space with metric $\frac{\alpha^{2}}{\alpha-\beta}$ iff the (α, β) is parallel pair.

4. Matsumoto Change of Douglas Space

The Finsler space F^{n} is called a Douglas space iff $G^{i} y^{j}-G^{j} y^{i}$ is homogeneous polynomial of degree three in y^{i}. ${ }^{\mathbf{5}}$ We shall write $h p(r)$ to denote a homogeneous polynomial in y^{i} of degree r. If we write $B^{i j}=D^{i} y^{j}-D^{j} y^{i}$, then from (2.16), we get

$$
\begin{equation*}
B^{j}=\frac{L\left\{(L-2 \beta) r_{00}-2 L^{2} s_{0}\right\}}{(L-2 \beta)\left\{\left(1+2 b^{2}\right) L-3 \beta\right\}}\left(b^{i} y^{j}-b^{j} y^{i}\right)+\frac{L^{2}}{L-2 \beta}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right) . \tag{4.1}
\end{equation*}
$$

If a Douglas space is transformed to a Douglas space by a Matsumoto change (2.1), then $B^{i j}$ must be $h p$ (3) and vice-versa.

Theorem 4.1. The Matsumoto change of Douglas space is a Douglas space iff $B^{i j}$ given by (4.1) is $h p$ (3).

Since Riemannian space is a Douglas space, in the following we discuss the Matsumoto change of Riemannian space and find the condition under which the same is a Douglas space.

Let us assume that L is a Riemannian metric α, then $\bar{L}=\frac{\alpha^{2}}{\alpha-\beta}$ which is the metric of Matsumoto space. Therefore we find the condition for Finsler space \bar{F}^{n} to be Douglas space by using theorem (4.1). In this case F^{n} is a Douglas space. Therefore \bar{F}^{n} is a Douglas space iff $B^{i j}$ is $h p(3)$. When L is a Riemannian metric, then $r_{i j}, s_{i j}, s_{j}^{i}, s_{j}$ are functions of coordinates only and h-covariant derivative in F^{n} is nothing but covariant derivative with respect to Riemannian Christoffel symbol.
For $L=\alpha$, the equation (4.1) can be written as

$$
\begin{align*}
& \left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\} B^{j j}+3 \alpha^{2} \beta\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\alpha^{2} r_{00}\left(b^{i} y^{j}-b^{j} y^{i}\right) \\
& -\alpha\left[\left(5+4 b^{2}\right) \beta B^{i j}+\left(1+2 b^{2}\right) \alpha^{2}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-2\left(\alpha^{2} s_{0}+r_{00} \beta\right)\left(b^{i} y^{j}-b^{j} y^{i}\right)\right]=0 . \tag{4.2}
\end{align*}
$$

Since α is an irrational function in y^{i}, therefore equating to zero, the rational and irrational terms in y^{i} of equation (4.2), we get

$$
\begin{equation*}
\left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\} B^{i j}+3 \alpha^{2} \beta\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\alpha^{2} r_{00}\left(b^{i} y^{j}-b^{j} y^{i}\right)=0 \tag{4.3}
\end{equation*}
$$

and
(4.4) $\left(5+4 b^{2}\right) \beta B^{i j}+\left(1+2 b^{2}\right) \alpha^{2}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-2\left(\alpha^{2} s_{0}+\beta r_{00}\right)\left(b^{i} y^{j}-b^{j} y^{i}\right)=0$.

Eliminating $B^{i j}$ from equations (4.3) and (4.4), we get

$$
\begin{equation*}
A\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+B\left(b^{i} y^{j}-b^{j} y^{i}\right)=0 \tag{4.5}
\end{equation*}
$$

where we put

$$
\begin{gathered}
A=\left\{9 \beta^{2}-\left(1+2 b^{2}\right) \alpha^{2}\right\} \\
B=\left[2 s_{0}\left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\}-3 \beta r_{00}\right] \alpha^{2}+12 \beta^{3} r_{00}
\end{gathered}
$$

Transvecting (4.5) by $b_{i} y_{j}$, we get

$$
\begin{equation*}
A \alpha^{2} s_{0}+B\left(b^{2} \alpha^{2}-\beta^{2}\right)=0 \tag{4.6}
\end{equation*}
$$

Since $-12 r_{00} \beta^{5}$ is the only term of (4.6) which seemingly does not contain α^{2}, we must have $h p(5) u_{5}$ such that

$$
\begin{equation*}
r_{00} \beta^{5}=\alpha^{2} u_{5} \tag{4.7}
\end{equation*}
$$

Then it will be better to divide our consideration into three cases as follows:
(i) $u_{5}=0$,
(ii) $\quad u_{5} \neq 0, \alpha^{2} \not \equiv 0(\bmod \beta)$,
(iii) $u_{5} \neq 0, \alpha^{2} \equiv 0(\bmod \beta)$.

The case (i) is simple: From (4.7) we have $r_{00}=0$ and (4.6) is reduced to

$$
\left(\alpha^{2}-4 \beta^{2}\right)\left\{\left(1+2 b^{2}\right) \alpha^{2}-3 \beta^{2}\right\} s_{0}=0
$$

which implies $\mathrm{s}_{0}=0$ immediately.
Next we deal with the case (ii). The equation (4.7) shows the existence of a function $\lambda(x)$ satisfying $u_{5}=\lambda \beta^{5}$ and hence $r_{00}=\lambda \alpha^{2}$ then (4.6) is reduced to

$$
\begin{equation*}
A s_{0}+\left(b^{2} \alpha^{2}-\beta^{2}\right)\left[2 s_{0}\left\{\left(1+2 b^{2}\right) \alpha^{2}+6 \beta^{2}\right\}-3 \lambda \beta\left(\alpha^{2}-4 \beta^{2}\right)\right]=0 . \tag{4.8}
\end{equation*}
$$

Since $-12\left(s_{0}+\lambda \beta\right) \beta^{4}$ is the only term of (4.8) which seemingly does not contain α^{2}, hence we must have $h p(3) v_{3}$ such that $\left(s_{0}+\lambda \beta\right) \beta^{4}=\alpha^{2} v_{3}$. From $\alpha^{2} \not \equiv 0(\bmod \beta)$ it follows that ν_{3} must vanish and hence $s_{0}=-\lambda \beta$, i.e. $s_{i}=-\lambda b_{i}$. This on transvection by b^{i}, gives $\lambda b^{2}=0$. In case of $\lambda=0$, we get $s_{i}=0$ and $r_{00}=0$. On the other hand, in case of $b^{2}=0$, equation (4.8) reduces to $\lambda \alpha^{2} \beta\left(\alpha^{2}-4 \beta^{2}\right)=0$, which implies $\lambda=0$. Therefore both the cases (i) and (ii) lead to $s_{0}=0$ and $r_{00}=0$. Hence (4.5) is reduced to $s_{0}^{i} y^{j}-s_{0}^{j} y^{i}=0$, which on transvection by y_{j} gives $s_{0}^{i}=0$. Finally $r_{i j}=s_{i j}=0$ are concluded, that is $b_{i ; j}=0$.

Now we take the case (iii), wherein the following Lemma shall be used.
Lemma ${ }^{6}$. If $\alpha^{2} \equiv 0(\bmod \beta)$ i.e. $a_{i j}(x) y^{i} y^{j}$ contains $b_{i}(x) y^{i}$ as a factor, then the dimension is equal to two and b^{2} vanishes. In this case we have $\delta=d_{i}(x) y^{i}$ satisfying $\alpha^{2}=\beta \delta$ and $d_{i} b^{i}=2$.

Equation (4.7) is of the form $r_{00} \beta^{4}=\delta u_{5}$, which must be reduced to $r_{00}=\delta v, v=v_{i}(x) y^{i}$. Consequently (4.6) is written as

$$
\begin{equation*}
\delta(9 \beta-\delta) s_{0}-\beta\left\{2 s_{0}(\delta+6 \beta)+3 v(4 \beta-\delta)\right\}=0 \tag{4.9}
\end{equation*}
$$

Since $-\delta^{2} s_{0}$ is the only term of (4.9) which seemingly does not contain β, there must exist a function $\lambda(x)$ satisfying $s_{0}=\lambda \beta$, and the equation (4.9) is reduced to $3 v=\lambda(\delta-3 \beta)$. Consequently we obtain

$$
\begin{equation*}
r_{00}=\lambda \delta\left(\frac{\delta}{3}-\beta\right), \quad s_{0}=\lambda \beta \tag{4.10}
\end{equation*}
$$

Then (4.5) is written as $\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+\lambda \delta\left(b^{i} y^{j}-b^{j} y^{i}\right)=0$, which on transvection by y_{j}, leads to

$$
\begin{equation*}
s_{0}^{i}=\lambda\left(y^{i}-\delta b^{i}\right) \tag{4.11}
\end{equation*}
$$

Thus the equation (4.2) is written as

$$
3(\alpha-2 \beta)(\alpha-3 \beta) B^{i j}=\lambda \delta^{2}\left(\beta \delta-5 \alpha \beta+6 \beta^{2}\right)\left(b^{i} y^{j}-b^{j} y^{i}\right)
$$

From $\alpha^{2}=\beta \delta$ it follows that $(\alpha-2 \beta)(\alpha-3 \beta)=\beta \delta-5 \alpha \beta+6 \beta^{2}$, and hence

$$
B^{i j}=\frac{\lambda \delta^{2}\left(b^{i} y^{j}-b^{j} y^{i}\right)}{3},
$$

which are $h p(3)$. Equation (4.10) and (4.11) lead to

$$
\begin{equation*}
b_{i, j}=\lambda\left(\frac{1}{3} d_{i}-b_{i}\right) d_{j} . \tag{4.12}
\end{equation*}
$$

Thus, we get the following theorem which has been proved in ${ }^{7}$:
Theorem 4.2. If $\alpha^{2} \not \equiv 0(\bmod \beta)$, then the Matsumoto space is Douglas space iff $b_{i ; j}=0$.

Theorem 4.3. If $\alpha^{2} \equiv 0(\bmod \beta)$, then $n=2$ and the Matsumoto space is a Douglas space iff $b_{i, j}$ is written in the form (4.12), where $\alpha^{2}=\beta \delta$, $\delta=d_{i}(x) y^{i}$ and $\lambda=\lambda(x)$.

References

1. H. S. Park and I. Y. Lee, The Randers changes of Finsler spaces with (α, β) - metrics of Douglas type, J. Korean Math. Soc., 38 (2001) 503-521.
2. M. Matsumoto, On Finsler space with Randers metric and special forms of important tensors, J. Math. Kyoto Univ., 14 (1974) 477-498.
3. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Otsu, Japan, 1986.
4. M. Matsumoto, Theory of Finsler spaces with (α, β) - metric, Rep. Math. Phy., 31 (1992) 43-83.
5. S. Bacso and M. Matsumoto, On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen, 51 (1997) 385-406.
6. M. Hashiguchi, S. Hojo and M. Matsumoto, Landsberg spaces of dimension two with (α, β) - metric, Tensor, N. S., 57 (1996) 145-153.
7. M. Matsumoto, Finsler space with (α, β) - metric of Douglas type, Tensor, N. S., 60 (1998) 123-134.
