Absolute Banach Summability of Orthogonal Series

Satish Chandra and Devendra Kumar Verma
Department of Mathematics, S. M. Post-Graduate College Chandausi-244 412, India
Email: satishchandra111960@gmail.com

(Received July 17, 2013)

Abstract

In this paper we have proved a theorem on generalized Nörlund summability of infinite series, which generalizes various known results. However, the theorem is as follows:

Theorem: Let $\{\Omega(n)\}$ be positive sequence such that $\left\{\frac{\Omega(n)}{n}\right\}$
is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$
converges and $\int_{t}^{\delta} \frac{\Phi_{n}(u)}{u} d u=O\left(\frac{t}{\log \left(\frac{1}{t}\right)}\right)$ as $t \rightarrow 0, \delta$
being some fixed positive constant then the orthogonal series
$\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|B|$ at $t=x$, provided $\sum_{n=1}^{\infty} k^{2} \log (n+k)=O(n \Omega(n))$.

Definitions and Notations: Let $\left\{s_{n}\right\}$ be the sequence of partial sums of a series $\sum a_{n}$. Let the sequence $\left\{t_{k}(n)\right\}_{k=1}^{\infty}$ is defined by

$$
\begin{equation*}
t_{k}(n)=\frac{1}{k} \sum_{v=0}^{k-1} s_{n+v}, \quad k \in N \tag{1.1}
\end{equation*}
$$

If
(1.2) $\lim _{k \rightarrow \infty} t_{k}(n)=S$, a finite number, uniformly for all $n \in N$, then $\sum u_{n}$ is said to be Banach summable to S^{1}.

Further if $\sum_{k=1}^{\infty}\left|t_{k}(n)-t_{k+1}(n)\right|<\infty$ uniformly for all $n \in N$,
then the series $\sum u_{n}$ is said to be absolute Banach summable or
simply $|B|$-summable.
2. Let $\left\{\phi_{n}\right\}$ be an orthogonal system defined in the interval (a, b). We suppose that $f(x)$ belongs to $L^{2}(a, b)$ and

$$
f(x) \approx \sum_{n=0}^{\infty} a_{n} \phi_{n}(x)
$$

We denote by $E_{n}^{(2)}(f)$ the best approximation to $f(x)$ in the metric of L^{2} by means of polynomials of $\phi_{0}(x), \phi_{1}(x), \ldots \ldots \ldots \phi_{n-1}(x)$.

It is well known that

$$
E_{n}^{(2)}(f)=\left(\sum_{k=n}^{\infty}\left|a_{k}\right|^{2}\right) 1 / 2
$$

we write $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n-1}$, for any sequence $\left\{\lambda_{n}\right\}$.

$$
\begin{equation*}
g(k, t)=\frac{2}{\pi} \frac{1}{k(k+1)} \sum_{v=1}^{k} \frac{v}{(n+v)}(n+v)^{\nu \beta} \frac{\Omega(t)}{t^{2}} \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& J(k, u)=\frac{1}{F(1-\beta)} \int_{u}^{\infty} \frac{d}{d t} g(k, t)(t-u)^{-\beta} d t \tag{2.2}\\
& \omega(k, u)=u^{v} J(k, u) \\
& {[x]=\text { greatest integer not exceeding } \mathrm{x}} \\
& U=\left(\frac{1}{u}\right) \text { and } \tau=\left(\frac{1}{t}\right)
\end{align*}
$$

2000 Mathematics subject classification: 40D05, 40E05, 40F05 and 40G05.

Key words and phrases: Absolute Banach summability, Orthogonal series.

1. Introduction

Ul'yanov ${ }^{7}$ has proved the following theorems on $|C, \alpha|$ summability.
Theorem A: If $1 \geq \alpha>\frac{1}{2}$ and $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|^{2} \log n(\log \log n)^{1+\epsilon}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem B: If $0<\alpha<\frac{1}{2}$ and $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|^{2} n^{1-2 \alpha} \log n(\log n)^{1+\epsilon}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem C: If $1 \geq \alpha>\frac{1}{2}$ and $\sum_{n=n_{0}}^{\infty} n^{-1}(\log \log n)^{1+\epsilon}\left\{E_{n}^{(2)}(f)\right\}^{2}$ converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Theorem D: If $0<\alpha<\frac{1}{2}$ and converges, then the series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|C, \alpha|$ almost everywhere.

Generalizing the above theorems Okuyama ${ }^{6}$ has proved following theorem for $\left|N, p_{n}\right|$ summability of orthogonal series.

Theorem E: Let $\{\Omega(n)\}$ be positive sequence such that Error!
Reference source not found. is a non-increasing sequence and the series
$\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. Let $\left\{p_{n}\right\}$ be non-negative and non-increasing. If the series $\sum_{n=1}^{\infty}\left|a_{k}\right|^{2} \Omega(n) \omega_{n}$ converges, then the orthogonal series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $\left|N, p_{n}\right|$ almost everywhere.

$$
\text { where } \quad \omega_{k}=\frac{1}{k} \sum_{n=1}^{\infty} \frac{n^{2} p_{n}^{2} p_{n-k}^{2}}{p_{n}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-k}}{p_{n-k}}\right)^{2} \text { Error! }
$$

Reference source not found. The main object of this paper is to generalize Theorem E for absolute Banach summability of orthogonal series.

Main Theorem: We establish our result in the form of following theorem.

Theorem: Let $\{\Omega(n)\}$ be positive sequence such that $\left\{\frac{\Omega(n)}{n}\right\}$ is a nonincreasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges and $\int_{t}^{\delta} \frac{\phi_{n}(u)}{u} d u=O\left(\frac{t}{\log \left(\frac{1}{t}\right)}\right)$ as $t \rightarrow 0, \delta$ being some fixed positive constant
then the orthogonal series $\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$ is summable $|B|$ at $t=x$, provided $\sum_{k=1}^{\infty} k^{2} \log (n+k)=O(n \Omega(n))$.

Proof: In order to prove the theorem. We have to prove that

$$
\sum_{k=1}^{\infty}\left|t_{k}(n)-t_{k+1}(n)\right|=O(1)
$$

Now taking

$$
\begin{aligned}
t_{k}(n)- & t_{k+1}(n)=\frac{1}{k(k+1)} \sum_{v=1}^{k} v(n+v) \phi_{(n+v)}(t) n^{k-1} \text { where } 0<\gamma<1 \\
& =\frac{1}{k(k+1)} \sum_{v=1}^{n} v(n+v)^{\gamma}\left(\frac{2}{\pi}\right)_{0}^{\pi} \frac{\Omega(t)}{t}\left\{\frac{\phi_{n}(t)}{\log (n+t)}\right\} n^{k-1} d t \\
& =t\left\{\frac{1}{k(k+1)}\right\} \sum_{v=1}^{k} \frac{v}{(n+v)}(n+v)^{\gamma}\left(\frac{2}{\pi}\right)_{0}^{\pi} \frac{\Omega(t)}{t^{2}}\left\{\frac{\phi_{n}(t)}{\log (n+t)}\right\} n^{k-1} d t \\
& =\int_{0}^{\pi} \phi_{n}(t)\left[\frac{2}{\pi} \frac{1}{k(k+1)} \sum_{v=1}^{k} v(n+v)^{\gamma-1} \frac{\Omega(t)}{t^{2}} \frac{n^{k-1}}{\log (n+t)}\right] d t
\end{aligned}
$$

$$
=\int_{0}^{\pi} \phi_{n}(t) \frac{\Omega(t)}{t^{2}} \frac{n^{k-1}}{\log (n+t)} \frac{d}{d t} g(k, t) d t
$$

$$
=\int_{0}^{\pi} \frac{d}{d t} g(k, t)\left\{\int_{0}^{t}\left(\frac{\Omega(u)}{u^{2}} \frac{n^{k-1}}{\log (n+u)} d u\right)\right\} d t
$$

$$
\begin{aligned}
& \leq \log t\left\{\sum_{k=2^{m}+1}^{2^{m+1}} g(k, t) \frac{\Omega(t)}{t^{2}} \frac{n^{k-1}}{\log (n+t)} d t\right\} \\
& \leq \log t\left[\sum_{k=2^{m}+1}^{2^{m+1}}\left\{\sum_{v=0}^{k} g(v, t) \frac{n^{k-1}}{\log (n+t)}+J(v, t) \frac{n^{k-1}}{\log (n+v)}\right\}\right] \\
& \leq \log t \sum_{m=1}^{\infty}\left(2^{m}\right)\left[\sum_{k=2^{m}+1}^{2^{m+1}}\left\{\sum_{v=0}^{k}(n+v) \omega(k, v) \frac{n^{k-1}}{\log (n+v)}\right\}\right] \\
& +\log t \sum_{m=1}^{\infty}\left(2^{m}\right)\left\{\sum_{k=2^{m}+1}^{2^{m+1}} \omega(k, v) \frac{n^{k-1}}{\log (n+k)}\right\} \\
& =\sum_{1}+\sum_{2}
\end{aligned}
$$

this estimation holds for any $k>-1$.
Now,

$$
\begin{aligned}
\sum_{1} & =\log t \sum_{n=1}^{\infty}\left(2^{m}\right)\left[\sum_{k=2^{m}+1}^{2^{m+1}}\left\{\sum_{v=0}^{k}(n+v) \omega(k, v) \frac{n^{k-1}}{\log (n+v)}\right\}\right] \\
& =\sum_{k \leq \frac{1}{v}} O((n+v) \omega(k, v))-O\left(\sum_{k<\frac{1}{v}} k^{2} \log (n+k)\right) \\
& =O\left(n^{v}\right) O(n \Omega(n)) \\
& =O(1)
\end{aligned}
$$

Again $\sum_{2}=\log t \sum_{m=1}^{\infty}\left(2^{m}\right)\left\{\sum_{k=2^{m}+1}^{2^{m+1}} \omega(k, v) \frac{n^{k-1}}{\log (n+k)}\right\}$

$$
\begin{aligned}
& =\log t \sum_{k>\frac{1}{v}} O\left\{\frac{2^{m} n^{(k-1)} n \Omega(n)}{k(k+1) \log (n+k)}\right\} \\
& =\log t O\left(n^{v-1}\right) \sum_{k>\frac{1}{v}}\left\{\frac{2^{m} n \Omega(n)}{k(k+1) \log (n+k)}\right\} \\
& =O\left(n^{v-1}\right) \sum_{k>\frac{1}{v}}\left\{\frac{2^{m}}{k(k+1)}\right\} O(n \Omega(n)) \\
& =O\left(n^{v-1}\right) O(n \Omega(n)) \\
& =O(1)
\end{aligned}
$$

This completes the proof of the theorem.

References

1. S. Banach, Theoric dis operations Lineaires monograffe, Matematyezne, Warsaw 1(1932).
2. L. S. Bosanquet and J. M. Hyslop, On the absolute summability of the allied series of a Fourier series, Mathematics Zeitschrift 42 (1937) 489-512.
3. G. H. Hardy, Dirvergent series, Oxford University press, Oxford, 1949.
4. S. N. Lal, On the absolute Nörlund summability of Fourier series, Indian J.Math., 9 (1967) 151-161.
5. L. Leindler, Uber strukturbedingungen fur Foűrierreihen, Math. Zeitschr., 88 (1965) 418-431.
6. Y. Qkuyama, On the absolute Nörlund summability of orthogonal series, Proc.Japan Acad., 54 A(5) (1978) 113-118.
7. P. L. Ul'yanov, Solved and unsolved problem in the theory of trigonometric and orthogonal series, Uspehi Math Nauk 1964, 3-69.
8. A. Zygmund, Trigonometric series, vol I and II (IInd Ed.), Cambridge University Press, Cambridge, 1959.
