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Abstract: In this paper we have proved a theorem on generalized 

Nörlund  summability of  infinite series, which generalizes various 

known results. However, the theorem is as follows: 
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1. Introduction 

Ul’yanov
7
 has proved the following theorems on ,C α  summability. 
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Generalizing the above theorems Okuyama
6
 has proved following 

theorem for , nN p  summability of orthogonal series. 
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Main Theorem: We establish our result in the form of following 

theorem. 
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This completes the proof of the theorem. 
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