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Abstract: In this paper, we have studied the effect of insecticides for 

the control of vector borne diseases, like malaria. A non-linear 

mathematical model for transmission of Malaria caused by 

infected mosquito population on susceptible human population and 

using chemicals to control the disease is proposed and analyzed 
1-3

. It is 

further assumed that susceptible human population  become infected by 

direct contact with vector  mosquitos . The mosquito population density 

is assumed to be governed by general logistic model. It is found that 

model exhibits three non-negative  equilibria  viz. mosquito and disease 

free equilibrium
0E  Mosquito persistence and disease free equilibrium 

1E  and endemic equilibrium *E . The model is analyzed by using local 

and global stability theory of differential equations and numerical 

simulation 
3, 4

 . 

Keywords: Mathematical model, human population, mosquito 

population, insecticide concentration. 

 

 

Mosquito are the major public health pest throughout the tropical and 

subtropical region in the world. Out of 3,492 species of mosquitoes 

recorded worldwide, more than a hundred species are able of transmitting 
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various diseases in human and other vertebrates. In India, malaria is one of 

the major cause of direct or indirect infant, child, and adult, mortality. 

About two million confirmed malarial cases and 1,000 deaths are reported 

annually 
5-7 

. The control of mosquito larva worldwide depends primarily 

on continued applications of organophosphates such as temephos and insect 

growth regulators such as diflubenzuron and methoprene. In  tropical and 

subtropical region, mosquito borne diseases are  a major problem and are 

responsible for many life- threatening diseases, e.g. malaria, yellow fever,  

dengue fever, and Chikungunya, etc. Out of these mosquito borne life-

threatening diseases, the malaria is a serious illness in human caused by 

several species of mosquito-borne parasite (Plasmodium falciparum, vivax, 

knowlesi and ovale) and it is endemic in many parts of the World . In the 

past, several efforts have been made to reduce the incidence of malaria 

focusing on reducing the number of mosquitoes and preventing mosquito 

bites 
9
. However, most of these efforts, especially the ones that use 

pesticides, have been banned by the environmental protection agencies as 

they harm non-targeted  population . Also due to continuous application of 

pesticides, mosquitoes have developed resistance to these chemicals and 

now they are not so effective. Chemical control means introduction or 

manipulation of chemical to suppress vector population. Chemical control, 

particularly using DDT plays a very positive role in controlling mosquitoes. 

The method of control of mosquito using DDT is not new,  it has been 

implemented since 1937 in many parts of the world. But control of 

mosquitoes using pesticides was fast so it suppressed this conventional 

method of control of mosquitoes. Now again this method of chemical 

control is accepted and successfully implemented in many part of world 
10-

13
 

 

2. The Mathematical Model 

 

Let ( )N t  be the total human population density in the region under 

consideration at any time t , which is divided into two subclasses namely, 

( )X t   as susceptible class and infective class with density as ( )Y t .  

( )sM t as density of susceptible mosquitoes, ( )iM t as density of infective 

mosquitoes. ( )hC t is the concentration of insecticides at time t . A is the 

constant immigration rate, the constant  represents the transmission rate 

of susceptible to the infective class, constant d and    denote the natural 

death rate and recovery rate of human population respectively. Constant 

 represents disease induced death rate of human population, mb and md are 
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the natural birth rate and natural death rate of mosquito respectively. K is 

the carrying capacity of mosquito. 0  is death rate of mosquito and 1 is the 

depletion rate of mosquito due to insecticides   is the transmission rate of 

mosquito.   is the spraying rate of chemical and constant 0 is the natural 

decay rate of insecticides and 1  decay rate of due to uptake by mosquito of 

the chemicals. 

 

    i
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It suffices to study the model system (2) The region of attraction for all 

solutions initiating in the 

positive orthant is given by 

 

0

: ( , , , , ) : 0 ,0 ,0i h i h

A K
Y N M M C Y N M M K C

d





 
          

 
 

 

3. Equilibrium Analysis 

 

The model system (2) has the following three non-negative equilibria: 

 Mosquito and Disease Free Equilibrium 0 0, ,0,0,0
A

E
d

 
 
 

 which always 

exists. 

 Mosquito persistence and Disease Free Equilibrium 1 1 10, ,0, , h

A
E M C

d

 
 
 

. 

 * * * * * *( , , , , )i hE Y N M M C  as an endemic equilibrium. 

 

3.1 Existence of 1E : If 0M  , then equilibrium point 0 (0, ,0,0,0)
A

E
d

exists 

without any condition but this is not a feasible Equilibrium as mosquito 

population is zero. So next we assume that 0M  . Now Equilibrium will 

be obtained by solving the following equations: 

 

(3)    ( ) ( ) 0,iN Y M d Y        

 

(4)    0,A dN Y    

 

(5)    0 1( ) 0,i i h i m iM M Y M C M d M        

 

(6)    0 1(1 ) ( ) 0,h

M
r C

K
      

 

(7)    0 1 0h hM C MC      

 

from eqn.(4), we have 

 

(8)    
A Y

N
d


  



              

                Mathematical Model for Malaria Transmission and Chemical Control            381 

  

 

now  

 

(9)    
( )A Y A d Y

N Y Y
d d

   
     

 

from eqn. (7), we have  
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now using (9) and (10) in (3), we get, 
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Which  gives, either,  0Y   
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Now, if 0Y  then ,
A

N
d

  0iM  M and hC  are given by following two 

equations, 

 

(13)   0 1(1 ) ( )h

M
r C

K
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(15)   
0 1

h

M
C

M


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
, 

 

using  this value of hC  in (13), we get 
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(16)   1
0

0 1

( )
MM

r r
K M

 


 
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
,  
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As  

 

(19)   0( ) 0,r  
 

 

This is because of the fact that the maximum intrinsic growth rate of 

mosquito population must be positive otherwise mosquito population will 

extinct. Now clearly one root of above equation is positive which gives 
*

2M M  After getting *

2M M we get *

2h hC C  from equation (15) Thus the 

equilibrium * *

2 2 2(0, ,0, , )h

A
E M C

d
exists provided 0( ) 0r    

3.2 Existence of *E : Now we assume 0Y  In this case 
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0 1
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now from equation (9) we have, 
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From  eqn.(6) and (21) we get 
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Again using eqn (21) in (20), we get, 
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now we prove the existence of *M and *Y by analyzing the isoclines (23) 

and (25), 

Analysis of isocline (23): As eqn. (23), 1
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It has always a positive root and moreover this positive root will be *

2M  

differentiating (26) w.r.t. ,M we get, 

 

(27)   1 0

2

0 1

0
( )

r

K M

  

 
  


 

 

Analysis of isocline(25): At 0,M    0 0md
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put 
0, ,
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m

A
a b d

d d
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

 
  

 
then above equations reduces to, 
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let cM M be the positive root of above eqn.  Now differentiating equation 

(25)  w.r.t. M , we get, 
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Thus the two isoclines (23) and (25) will intersect in the interior of first 

quadrant, provided 
*

2cM M  
 

4. Stability Analysis 

 

 4.1  Local Stability: Let 0 1,J J and *J be the variational matrices evaluated 

at 0 1,E E and *E respectively, The general variational  matrix of the model 

system (2) is given by: 
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0E is unstable if 0 0r   , If  1E  exists, 
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If 0c  atleast 1
0

0 1 1

0,
( )( )h

A M
R

d d C d

 


   
 

   
 

 

Theorem 1: Let the following inequality holds, 
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then *E is locally asymptotically stable. 

Proof : By Liapunov Linearization Method, let 
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The linearized system corresponding to *E is 
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To establish the local stability of the equilibrium * ,E we consider the 

following positive definite function 

 

(37)   2 2 2 2 231 2 4

*

1

2 2 2 2 2
i h

kk k k
V y n m m c

M
     , 

 

where ( 1,2,3,4)ik i 
 

are positive constants to be chosen appropriately. 

Differentiating (\ref{eqn52}), with respect to ' 't using the linearized system 

corresponding to *E ,we get, 
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* * * * 2 * *
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V will be negative definite if the following conditions are satisfied  
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From inequalities (40a) and (40b), we can get a positive value of 

2k provided the condition (\ref{eqn2e}) holds. Further from the inequality 

(40c), we can get a  positive values of 3k .Hence the proof. 

4.1 Global Stability: Furthermore, to establish the non-linear stability o 

the equilibrium *E we employ Liapunov's stability theory. Thus, we obtain 

following results regarding the global stability of equilibrium *E . 

Theorem 2: The equilibrium *E  if exists, is globally asymptotically 

stablein  , provided, 
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(41)  
2

2 2 2 * 2 * *

0 1

1
( ) ( )

4
m m i h mN Y M d Y C d                     , 

 

 
2 *2

2 1
4* *

0 1

2

( )h m

m Y K
m

r Y C d

 

   

 
 

   
 

 
 

* * * *

1 0 1 0 1

2 2

1

2 ( )( )
,

max

i i h m

h

r dM K M Y C d
min

K C

      

  

    
  

  

. 

 

Proof: Let us consider the positive definite function 

 

(43)   * 2 * 2 * 21 21
( ) ( ) ( )

2 2 2
i i

m m
W Y Y N N M M       

 

* * * 24
3 *

ln ( )
2

h h

mM
m M M M C C

M

 
     

 
 

(44)   * * *

1 2( ) ( ) ( ) i
i i

dMdY dN
W Y Y m N N m M M

dt dt dt
       

 

*
*

3 4

( )
( ) h

h h

dCM M dM
m m C C

M dt dt


   . 

 

(45)    * *

2 2 ( )( )i i iW N Y m M m M Y Y M M          

 
 

* * *

1 ( )( )iM m Y Y N N      
* * *

2( )( )( )i im Y M M M M    

 

* * * 2

0 1 2( ) ( )h m i iY C d m M M         
* 2

3 ( )
r

m M M
K

   

 

  * *

3 1 4 ( )( )h hm m C C M M     
* * 2

0 4 1 4 ( )i h hm M m C C        

 
* *

4 1 ( )( )h h h i im C C C M M   . 

 

Choosing 
*

1
iM

m



 , 4

3

1

m
m




 , 4 1m  and 3

1

m



 . W can be made negative 

definite inside the region of attraction   if the following conditions are 

satisfied 

(42 )
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(46a)   2 2 * * *2
0 1( ) ( )

2
i h m

m
N Y M d Y C d                     

 

(46b)    2 2 * *

2 0 1

1
( ) ( )

2
 i i h mm M M M d Y C d                 

 

(46c)   2 *2 * *4
2 0 1

12
h m

rm
m Y Y C d

K


   


       

 

(46d)   2 2 * * *

4 1 2 0 1 0 1( )( )h i h mm C m M Y C d           

 

Now From inequalities (46a)and (46b), we can get a positive value of 2m  

provided the condition (\ref{eqn1f}) holds. Further, from the inequality 

(46c) and (46d), we can get the positive value of 4m  provided(\ref{eqn1g}) 

holds. Hence the proof. 

 

5. Numerical Simulation 

 

To confirm the analytically obtained results and to illustrate the 

dynamical behavior of the system, numerical simulation has been carried 

out using MATLAB 7.0.5. We have taken the following set of parameter 

values in model system (2): 

 

0

1

0 1

10, 0.00000001, 0.00004, 0.2,

0.0001, 0.000001, 0.01, 0.1,

10000000, 0.00001, 0.00001,

0.098, 0.0000001, 00000001m

A d

r

L

d

 

  

 

 

   

   

  

  
 

 

For the above set of parameter values it may be checked that the condition 

of existence of endemic equilibrium *E is satisfied. The equilibrium 

components are found as follows: 

 
* *

* * *

849.69908, 247875.7523,

68842.446, 8900000.011 9999i h

Y N

M M C

 

    

 

The eigenvalues of the Jacobian matrix corresponding to the equilibrium 
*E for the model system (2) are -0.3098851638, -0.0007590279143,   
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-0.00007393177048, -0.08900000021and -0.8900001010. We note that all the 

five eigen values of *E
J are negative. Hence, for the above set of parameter 

values the endemic equilibrium *E  is locally asymptotically stable.  With 

these parameter values, the solution trajectories of the model system (2) 

have been drawn in figure 1 with different initial starts. From this figure, 

we may see that all the trajectories initiating inside the region of attraction 

are approaching towards the equilibrium point * *( , )hM C This shows the 

non-linear stability behavior of the endemic equilibrium *E  in 
* *

hM C plane. 

 

 

 
Figure 2. Nonlinear stability of 

* *( , )hM C in hM C plane. 

 

 

 The variation of infective human population ( )Y t  and infective mosquito 

population ( )iM t  with respect to time t  for different values of rate of 

transmission of susceptible human population to infective human 

population ' '  and the rate of transmission of susceptible mosquito 

population to infective mosquito population ' '  are shown in figures 3 and 

4, respectively.  

 



              

                Mathematical Model for Malaria Transmission and Chemical Control            391 

  

 
 

 

Figure 3. Variation of infected human population and infected 

mosquito population with time for different values of .  

 

 

 
 

Figure 4. Variation of infected human population and infected mosquito 

population with time for different values of   

 

 

       These figures, illustrate that as the rate of transmission of susceptible 

human  population to infective human population and the rate of 

transmission of susceptible  mosquito population to infective mosquito 

population increase, infective human population ( )Y t  and infective 

mosquito population ` ( )iM t ' both increase. Further, the variations of 

infective human population ` ( )Y t ' and infective mosquito population ( )iM t  
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with respect to time  ` t ' for different values of  growth rate coefficient of 

insecticides due to mosquito population ' '  and  decay rate  due to uptake 

by mosquito of the chemicals 1   are shown in figures 5 and 6, respectively.  

From these figures, it is apparent that as the depletion rate coefficient of 

mosquito population due to insecticides ' '  and growth rate coefficient of 

insecticides due to mosquito population 1  increase,  infective human 

population ( )Y t  and infective mosquito population ( )iM t  decrease. 

 

 

 
 

Figure 5. Variation of infected human population and infected mosquito population with 

time for different values of   
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Figure 6. Variation of infected human population and infected mosquito  

population with time for different values of 1  

 

6. Conclusion 

 

In this paper, A nonlinear mathematical model for malaria is proposed and 

analyzed. Equilibria of the model are found and stability behavior of these 

equilibria are discussed using variational matrix method. It is found that 

under some conditions the mosquito population may present in the 

atmosphere but the infected human population is zero. This suggest that 

under some conditions,the malaria can be eradicated from the community. 

It is also found that the number of infected individuals decreases as the rate 

of introduction of chemicals increases. Furthermore it is found that 

immigration rate of susceptible class makes disease more endemic. Further, 

numerical simulation is performed to demonstrate the analytical results. 
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