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Abstract: In this paper, we have studied space-time with 
4W -curvature 

tensor and proved that a 4-dimensional relativistic 
4W -flat space-time 

satisfying Einstein's field equation with cosmological constant, the 

energy-momentum tensor is covariant constant. It is also observed that 

in a 4-dimensional relativistic space-time M has conservative 
4W -

curvature tensor if and only if the energy momentum tensor is Codazzi 

tensor provided that the scalar curvature is constant in both the cases. 
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1. Introduction 

 

The aim of the present work is to study certain investigations in general 

theory of relativity and cosmology by the coordinate free method of 

differential geometry. The basic difference between Riemannian and semi-

Riemannian geometry are (i) the existence of null vector (i.e.  , 0g v v  , for 

0v   where g  is the metric tensor) in semi-Riemannian manifold but not 

Riemannian manifold, (ii) the signature of metric tensor g  in semi-

Riemannian manifold is  , ,... , , ,...,       but in a Riemannian manifold 

the signature of g  is  , ,...,   . Lorentzian manifold is a spacial case of 

semi-Riemannian manifold. The signature of metric tensor g  in Lorentzian 

manifold is  , , ,...,    . A Lorentzian manifold consists of three types of 
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vectors such as time-like (i.e.  , 0g v v  ), spacelike (i.e.  , 0g v v  ) and 

null vector (i.e.  , 0g v v  ,  for 0v  ). In general, a Lorentzian manifold 

 ,M g  may not have a globally time-like vector field. If  ,M g  admits a 

globally time-like vector field, it is called time orientable Lorentzian 

manifold, physically known as space-time. The foundation of general 

relativity is based on a 4-dimensional space-time manifold which is the 

stage of present modeling of the physical world a torsionless, time-oriented 

Lorentzian manifold  ,M g . 

An n-dimensional generalized Robertson-Walker1-3 (GRW) space-time 

with 3n   is a Lorentzian manifold which is a warped product of an open 

interval I  of  and a ( 1)n   dimensional Riemannian manifold. These 

Lorentzian manifolds broadly extend the classical Robertson-Walker (RW) 

space-time. RW space-time is regarded as cosmological models since it is 

spatially homogenous and spatially isotropic whereas GRW space-time 

serves as inhomogeneous extension of RW space-times that admit an 

isotropic radiation. 

In general relativity the matter content of the space-time is described by 

the energy momentum tensor. The matter content is assumed to be a fluid 

having density and pressure and possessing dynamical and kinematical 

quantities like velocity, acceleration, vorticity, shear and expansion. In a 

perfect fluid space-time4, the energy momentum tensor T  of type  0,2  is 

of the form 

 

(1.1) ( , ) ( ) ( ) ( ) ( , )T X Y A X A Y g X Y     , 

 

where  is the isotropic pressure,  is the energy density and A  is a non-

zero one-form such that    ,g X A X  for all ,X  and   is the velocity 

vector field such that  , 1.g     The fluid is called perfect because of the 

absence of heat conduction terms and stress terms corresponding to 

viscosity. Perfect- fluid space-times in a language of differential geometry 

are called quasi-Einstein spaces where A  is metrically equivalent to a unit 

space-like vector field. If the isotropic pressure  is vanish in perfect fluid 

then it is said to be dust fluid. In a dust fluid space-time4, the energy 

momentum tensor T  of type  0,2  is of the form 

 

(1.2) ( , ) ( ) ( ),T X Y A X A Y  
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The Einstein's field equation4 with cosmological constant is given by 

  

(1.3)        , , , , ,
2

r
S X Y g X Y g X Y kT X Y    

 

where S  and r  denotes the Ricci tensor and scalar curvature respectively, 

  is the cosmological constant, T  is the energy momentum tensor and 

0k  .Einstein's field equation4 without cosmological constant is given by  

 

(1.4)      , , , .
2

r
S X Y g X Y kT X Y   

 

The Einstein's field equations (1.3) and (1.4) imply that the energy-

momentum tensor is conservative. This requirement is satisfied if the 

energy-momentum tensor is covariant constant. M. C. Chaki and Sarbari 

Ray5 showed that a general relativistic space-time with covariant constant 

energy-momentum tensor is Ricci symmetric, that is, 0,S  where S  is 

Ricci tensor of the space-time. 

A symmetric  0,2  type tensor field E  on a semi-Riemannian manifold 

 ,nM g  is said to be a Codazzi tensor if it satisfies the Codazzi equation 

 

(1.5)      , , ,U VE V X E U X    

 

for arbitrary vector fields U ,V  and X . The geometrical and topological 

consequences of the existence of a non-trivial Codazzi tensor on a 

Riemannian manifold have been studied by Derdzinski and Shen4.  

Pokhariyal and Mishra6 introduced some curvature tensors similar to 

projective curvature tensor on an n-dimensional Riemannian manifold 

whose physical significance and geometric properties have been studied by 

several authors. Our work is confined to study geometric behavior of 

4W  curvature tensor on relativistic space-time. The 4W  curvature tensor 

on an n-dimensional Riemannian manifold is defined as 

 

(1.6) 4

1
( , , , ) ( , , , ) [ ( , ) ( , ) ( , ) ( , )],

1
W U V X Y R U V X Y g U X S V Y g U V S X Y

n
  


  

 

where     , , , , ,R U V X Y g R U V X Y  is the Riemannian curvature. 
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2. 4W  Flat Space-Time 

 

Let M  be a 4-dimensional space-time of general relativity, then in view 

of equation (1.6), we have 

 

(2.1)         4

1
( , , , ) ( , , , ) [ ( , ) ( , ) ( , ) ( , )].

3
W U V X Y R U V X Y g U X S V Y g U V S X Y     

 

If  4 , , , 0W U V X Y  , then from equation (2.1), we have 

 

(2.2) 
1

( , , , ) [ ( , ) ( , ) ( , ) ( , )]
3

R U V X Y g U V S X Y g U X S V Y  . 

  

Putting iV Y e   and taking summation over ,i  1 4,i    we obtain  

 

(2.3) ( , ) ( , ).
2

r
S U X g U X


   

 

Thus, a 4W  curvature flat space-time is an Einstein manifold. Next, using 

equation (2.3) in equation (2.2), we get 

 

(2.4) ( , , , ) [ ( , ) ( , ) ( , ) ( , )],
6

r
R U V X Y g U X g V Y g U V g X Y    

 

which shows that M  is of constant curvature. Thus we can state as follows- 

Theorem 2.1: A 4-dimensional relativistic 4W  flat space-time is an 

Einstein space-time and it is of constant curvature. 

It is known that a Lorentzian manifold of constant curvature is a 

manifold of conformally flat. Thus we have the following corollary 

Corollary 2.1: A 4-dimensional relativistic 4W  flat space-time is a 

conformally flat space-time. 

In 1980, Kramer et al.7 have been proved that a space is of O-type if the 

conformal curvature tensor vanishes on it. Thus we have a theorem as 

follows 

Theorem 2.2: A 4-dimensional relativistic 4W  flat space-time is of O-

type. 
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Now, we consider a perfect fluid space-time with flat 4W  curvature 

tensor having Einstein's field equation in the presence of cosmological 

constant. Let £  be the Lie derivative operator along the vector field   

generating the symmetry. The matter collineation defined by 

(£ )( , ) 0T U V    represents the symmetry of energy momentum tensor T. 

In view of equation (2.3), equation (1.3) takes the form 

 

(2.5) ( ) ( , ) ( , ).
4

r
g X Y kT X Y      

 

If   be a Killing vector field on the space-time with 4W  flat curvature 

tensor, then 

 

(2.6) (£ )( , ) 0.g X Y    

 

Taking the Lie derivative of equation (2.5) along  , we obtain 

 

(2.7) ( )(£ )( , ) (£ )( , ).
4

r
g X Y k T X Y      

 

In virtue of equation (2.6), equation (2.7) shows that (£ )( , ) 0,T X Y  which 

shows that the space-time admits matter collineation. Conversely, If 

(£ )( , ) 0,T X Y   it follows that from equation (2.7), that   is Killing vector 

field. Hence we can state as follows: 

Theorem 2.3: If a 4-dimensional relativistic space-time having 

Einstein's field equation in the presence of cosmological constant 4W  flat 

curvature tensor, then the space-time satisfies matter collineation along a 

vector field   if and only if   is a Killing vector field. 

Next, Let us assume that the vector field  is a conformal Killing vector 

field, then we obtain 

 

(2.8) (£ )( , ) 2 ( , ),g X Y g X Y    

 

where   is scalar, which is view of equation (2.7), gives 
 

(2.9) ( )2 ( , ) (£ )( , ).
4

r
g X Y k T X Y     
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Using equation (2.5) in equation (2.9), we obtain 

 

(2.10) (£ )( , ) 2 ( , ).T X Y T X Y   

  

From above equation, we see that the energy-momentum tensor has Lie 

inheritance property along  . Conversely, if equation (2.10) holds, then it 

follows that equation (2.8) holds, i.e. the vector field   is a conformal 

Killing vector field. Thus we have a theorem as follows: 

Theorem 2.4: In a 4-dimensional relativistic space-time having 

Einstein's field equation in the presence of cosmological constant 4W  flat 

curvature tensor, a vector field   is conformal Killing vector field if and 

only if the energy-momentum tensor T has a symmetry inheritance property 

along   . 

Now, Taking covariant derivative of equation (2.5), we obtain 

 

(2.11) 
( )

( )( , ) ( , ).
4

U

dr U
T X Y g X Y

k
     

 

 Since r  is constant in a 4W  curvature flat space-time, we have 

 

(2.12) ( ) 0, .dr U U    

 

Using equation (2.12) in equation (2.11), we obtain 

 

(2.13) ( )( , ) 0.UT X Y   

  

Thus we have a result as follows: 

Theorem 2.5: In a 4-dimensional relativistic 4W  flat space-time 

having Einstein's field equation in presence of cosmological constant, the 

energy-momentum tensor T is covariant constant. 

Again, we consider a perfect fluid space-time with 4W  flat curvature 

tensor having Einstein's field equation in the absence of cosmological 

constant. Using equations (2.3) and (1.4) in equation (1.1), we get 

 

(2.14) ( ) ( , ) ( ) ( ) ( ),r k g X Y k A X A Y       
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which on contraction gives 

 

(2.15) 
1

( 3 ).
4

r k      

 

Now, taking X Y    in equation (2.14}) and using ( , ) 1g     , we 

obtain 

 

(2.16) .r k   

 

From equations (2.15) and (2.16), we have 

 

(2.17) 0.    

  

which gives that the perfect fluid behave as a cosmological constant. 

Thus, in view of equation (2.17), equation (1.1) reduces to 

 

(2.18) ( , ) ( , ).T X Y g X Y   

 

For a 4W  flat space-time, the scalar curvature is constant. Thus   is 

constant. Consequently,   is constant. Therefore, the covariant derivative 

of equation (2.18), we obtain 

 

(2.19) ( )( , ) 0,UT X Y    

 

which shows that the energy momentum tensor is covariantly constant. 

Thus we have theorem as follows 

Theorem 2.6: In a 4-dimensional relativistic perfect fluid 4W  flat 

space-time following Einstein's field equation in the absence of 

cosmological constant, 0    and the isotropic pressure and energy 

density are constants. Moreover, energy momentum tensor is covariantly 

constant. 

Now, Taking the frame-field after contraction over X  and Y  of 

equation (1.4), we obtain 

 

(2.20) ,r kt    

 

where t   is ( ).tr T   
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Therefore, equation (1.4) can be written as 

 

(2.21) ( , ) [ ( , ) ( , )].
2

t
S X Y k T X Y g X Y    

 

Einstein's field equation in the absence of cosmological constant for a 

purely electromagnetic distribution takes the form 

  

(2.22)    , , .S X Y kT X Y  

  

From equations (2.21) and (2.22), we obtained 0.t   Thus from equation 

(2.20), we get 0.r    Therefore, from equation (2.4), and we obtain 

 , , , 0,R U V X Y  which shows that the space is flat. Thus we arrive at 

 Theorem 2.7: A 4-dimensional relativistic 4W  flat space-time having 

Einstein's field equation in the absence of cosmological constant for a 

purely electromagnetic distribution is a Euclidean space. 

 

3. Space-time with Conservative 4W  curvature Tensor 

 

Definition 3.1: A 4-dimensional relativistic space-time M  is said to be 

4W  conservative if   4 , 0,div W U V X    where "div" denotes the 

divergence.  

From equation (1.6), we have 

 

(3.1)               4

1
( , ) ( , ) [ ( , ) ( ) ( , ) ( )],

1
W U V X R U V X g U X Q V g U V Q X

n
  


 

 

where  Q X  is Ricci operator.  

The divergence of 4W  curvature tensor is given b  

 

 4 4( )( , ) (( )( , ) , ) (( )( , ) , )
i ie i e idivW U V X g W U V X e g R U V X e   

  

 
1

[ ( , ) (( ) , ) ( , ) ( )( , )],
1 i ie i e ig U X g Q V e g U V g Q X e

n
   


  

 

(3.2) 4( )( , ) ( )( , ) ( )( , )U VdivW U V X S V X S U X      
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1

[ ( , ) ( ) ( , ) ( )]
6

g U X dr V g U V dr X  . 

 

If 4W  curvature tensor is conservative then in virtue of equation (3.2), we 

obtain scalar curvature r  is constant which implies that the Ricci tensor is 

of Codazzi type. Thus we can state as follows 

Theorem 3.1: A 4-dimensional relativistic space-time M  admits a 

conservative 4W  curvature tensor if and only if the Ricci tensor is Codazzi 

tensor. In both cases, the scalar curvature is constant. 

Now, Guifoyle and Nolan8 named "Yang Pure Space" a 4-dimensional 

Lorentzian manifold  ,M g  whose metric tensor solves Yang's equation 

( )( , ) ( )( , ) 0.U VS V X S U X     Thus we can state as follows 

Theorem 3.2: A 4-dimensional relativistic space-time M  admits a 

conservative 4W  curvature tensor is a Yang Pure space. 

Since we known that a 4-dimensional relativistic perfect fluid space- 

time with 0    is a Yang Pure space-time if and only if space-time is 

RW space-time. 

Theorem 3.3: A 4-dimensional relativistic space-time M  admits a 

conservative 4W  curvature tensor is a RW space-time. 

It is known that divergence of conformal (Weyl) curvature tensor can 

be written as 

 

(3.3) 
3

( )( , ) [( )( , ) ( )( , )
2

U V

n
divC U V X S V X S U X

n


   


  

       
1

{ ( , ) ( ) ( , ) ( )}].
2( 1)

g V X dr U g U X dr V
n

 


  

 

In virtue of equations (3.3), we observe that    , 0div C U V X   if Ricci 

tensor is Codazzi tensor. Thus   4 , 0.div W U V X    

Thus we can state as follows 

Theorem 3.4: A 4-dimensional relativistic space-time M  satisfying 

   , 0div C U V X   if and only if   4 , 0.div W U V X   

Since we known that a perfect fluid space- time of dimension 3  

satisfies conservative conformal curvature tensor and the velocity vector 
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field irrotational, then the space-time  is a GRW space-time 

with   , 0.A C U V X    

Thus we can state as follows 

Theorem 3.5: A 4-dimensional relativistic space-time M  satisfying 

   , 0div C U V X  is a GRW space-time. 
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