Projectively Flat Finsler Spaces with Special (α, β)-Metric

Gauree Shanker and Proxy Gupta
Department of Mathematics and Statistics
Banasthali University, Banasthali Rajasthan-304022, India
Email: gsp.math.1978@gmail.com; proxygupta@gmail.com

(Received April 17, 2013)

Abstract

The (α, β)-metric is a Finsler metric which is constructed from a Riemannian metric α and a differential 1-form β. In this paper, we discuss the projective flatness of a Finsler space with a special $(, \beta)$ metric in a locally Minkowski space.

Keywords: Finsler space, (α, β)-metric, projective flatness, locally Minkowski space, flat-parallel, associated Riemannian space.

2010 Mathematics Subject Classification: 53B40; 53C60.

1. Introduction

A Finsler metric function $L(x, y)$ is called an (α, β) metric if L is a positively homogeneous function of a Riemannian metric $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ and a differential 1-form $\beta=b_{i} y^{i}$ of degree one ${ }^{1}$. Interesting examples of (α, β)-metric are the Randers metric, Kropina metric and Matsumoto metric.

A Finsler space $F^{n}=\left(M^{n}, L\right)$ is called a locally Minkowski space ${ }^{2}$ if M^{n} is covered by coordinate neighborhood system $\left(x^{i}\right)$ in each of which L is a function of y^{i} only. A Finsler space $F^{n}=\left(M^{n}, L\right)$ is called projectively flat ${ }^{3}$ if F^{n} is projective to a locally Minkowski space.

The condition for a Randers space to be projectively flat was given by Hashiguchi-Ichijyo ${ }^{4}$ and Matsumoto ${ }^{5}$. The projective flatness of Kropina space was investigated by Matsumoto ${ }^{5}$ and Matsumoto space was studied by Aikou- Hashiguchi-Yamauchi'. The condition for a Finsler space with a
generalized Randers metric L satisfying $L^{2}=c_{1} \alpha^{2}+2 c_{2} \alpha \beta+c_{3} \beta^{3}$, where c_{i} 's are constants, to be projectively flat was given by Park and Choi ${ }^{7}$. Recently, the projective flatness of Finsler spaces with some special metric has been studied in the paper ${ }^{8}$. A locally Minkowski space with (α, β) - metric is called flat-parallel if α is locally flat and β is parallel with respect to α^{9}.

The purpose of the present paper is to consider the projective flatness of Finsler spaces with a special (α, β) - metric $L=\alpha+\beta+\frac{\alpha}{\beta}+\frac{\alpha}{\beta}$.

2. Preliminaries

In a Finsler space $F^{n}=\left(M^{n}, L\right)$ with an $\left(\alpha, \beta\right.$-metric, let $\gamma_{j k}^{i}(x)$ be the Christoffel symbols constructed from the Riemannian metric $a_{i j}$. We denote by $(;)$ the covariant differentiation with respect to $\gamma_{j k}^{i}(x)$. In a Finsler space F^{n} with (α, β)-metric, we define

$$
\begin{align*}
& 2 r_{i j}=b_{i, j}+b_{j ; i}, 2 s_{i j}=b_{i, j}-b_{j ; i}, s_{j}^{i}=a^{i r} s_{r j}, \tag{2.1}\\
& s_{i}=b^{r} s_{r i}, \gamma_{j h k}=a_{h r} \gamma_{j k}^{r}, b^{2}=a^{r s} b_{r} b_{s}
\end{align*}
$$

We shall denote the homogeneous polynomials in $\left(y^{i}\right)$ of degree r by $\mathrm{hp}(\mathrm{r})$ for brevity. Now the following Matsumoto's theorem ${ }^{5}$ is well-known.

Theorem 2.1. A Finsler space F^{n} with an (α, β)-metric is projectively flat if and only if the space is covered by coordinate neighborhoods on which $\gamma_{j k}^{i}(x)$ satisfies

$$
\begin{align*}
\left(\gamma^{i}{ }_{00}-\right. & \left.\gamma_{000} y^{i} / \alpha^{2}\right) / 2+\left(\alpha L_{\beta} / L_{\alpha}\right) s_{0}^{i} \tag{2.2}\\
& \quad+\left(L_{\alpha \alpha} / L_{\alpha}\right)\left(C+\alpha r_{00} / 2 \beta\right)\left(\alpha^{2} b^{i} / \beta-y^{i}\right)=0,
\end{align*}
$$

where the subscript 0 means a contraction by y^{i},

$$
L_{\alpha}=\frac{\partial L}{\partial \alpha}, L_{\beta}=\frac{\partial L}{\partial \beta}, L_{\alpha \alpha}=\frac{\partial L_{\alpha}}{\partial \alpha}, L_{\beta \beta}=\frac{\partial L_{\beta}}{\partial \beta},
$$

and C is given by

$$
\begin{equation*}
C+\left(\alpha^{2} L_{\beta} / \beta L_{\alpha}\right) s_{0}+\left(\alpha L_{\alpha \alpha} / \beta^{2} L_{\alpha}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(C+\alpha r_{00} / 2 \beta\right)=0 . \tag{2.3}
\end{equation*}
$$

By the homogeneity of L, we know $\alpha^{2} L_{\alpha \alpha}=\beta^{2} L_{\beta \beta}$.
Hence the formula (2.3) can be rewritten in the following form

$$
\begin{align*}
\left\{1+\left(L_{\beta \beta} / \alpha L_{\alpha \alpha}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\} & \left(C+\alpha r_{00} / 2 \beta\right) \tag{2.4}\\
= & (\alpha / 2 \beta)\left\{r_{00}-\left(2 \alpha L_{\beta} / L_{\alpha}\right) s_{0}\right\}
\end{align*}
$$

If $1+\left(L_{\beta \beta} / \alpha L_{\alpha \alpha}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$, then we can eliminate $\left(C+\alpha r_{00} / 2 \beta\right)$ in (2.2) and it is written in the form

$$
\begin{align*}
& \left\{1+L_{\beta \beta}\left(\alpha^{2} b^{2}-\beta^{2}\right) /\left(\alpha L_{\alpha}\right)\right\}\left\{\left(\gamma_{00}^{i}-\gamma_{000} y^{i} / \alpha^{2}\right) / 2+\left(\alpha L_{\beta} / L_{\alpha}\right) s_{0}^{i}\right\} \tag{2.5}\\
& \quad+\left(L_{\alpha \alpha} / L_{\alpha}\right)(\alpha / 2 \beta)\left\{r_{00}-\left(2 \alpha L_{\beta} / L_{\alpha}\right) s_{0}\right\}\left(\alpha^{2} b^{i} / \beta-y^{i}\right)=0 .
\end{align*}
$$

Thus, we have
Theorem 2.2. If $1+\left(L_{\beta \beta} / \alpha L_{\alpha \alpha}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$, then a Finsler space F^{n} with an $(\alpha, \beta)-$ metric is projectively flat if and only if (2.5) is satisfied.

It is known ${ }^{10}$ that if α^{2} contains as a factor, then the dimension is equal to two and $b^{2}=0$.
Throughout this paper, we assume that the dimension is more than two and $B^{2} \neq 0$ that is, $\alpha^{2} \not{ }_{0}(\bmod \beta)$.

3. Projectively Flat Space

Let F^{n} be a Finsler space with an (α, β)-metric given by

$$
\begin{equation*}
L=\alpha+\beta+\frac{\alpha^{2}}{\beta}+\frac{\alpha^{3}}{\beta^{2}} \tag{3.1}
\end{equation*}
$$

It is known ${ }^{1}$ that a Finsler space with (α, β)-metric given by (3.1) is flatparallel if it is locally Minkowski.

In this section, we find the condition for a Finsler space F^{n} with the metric given by (3.1) to be projectively flat.
The partial derivatives with respect to α and β of metric (3.1) are given by

$$
\begin{align*}
& L_{\alpha}=1+\frac{2 \alpha}{\beta}+\frac{3 \alpha^{2}}{\beta^{2}}, L_{\beta}=1-\frac{\alpha^{2}}{\beta^{2}}-\frac{2 \alpha^{3}}{\beta^{3}}, \\
& L_{\alpha \alpha}=\frac{2}{\beta}+\frac{6 \alpha}{\beta^{2}}, L_{\beta \beta}=\frac{2 \alpha^{2}}{\beta^{3}}+\frac{6 \alpha^{3}}{\beta^{4}} . \tag{3.2}
\end{align*}
$$

If $1+\left(L_{\beta \beta} / \alpha L_{\alpha}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)=0$, then we have

$$
\beta^{4}-3 \alpha^{2} \beta^{2}+2 b^{2} \alpha^{3} \beta+6 b^{2} \alpha^{4}=0
$$

which leads to a contradiction.Thus Theorem 2.2 can be applied.
Substituting (3.2) into (2.1), we get

$$
\begin{align*}
& \left(\beta^{4}-3 \alpha^{2} \beta^{2}+2 b^{2} \alpha^{3} \beta+6 b^{2} \alpha^{4}\right)\left\{\begin{array}{l}
-4 s_{0}^{i} \alpha^{6}-2 \beta s_{0}^{i} \alpha^{5}+3 \beta \gamma_{00}^{i} \alpha^{4} \\
+2 \beta^{2}\left(\gamma_{00}^{i}+\beta s_{0}^{i}\right) \alpha^{3} \\
+\beta\left(\beta^{2} \gamma_{00}^{i}-3 \gamma_{000} y^{i}\right) \alpha^{2} \\
-2 \beta^{2} \gamma_{000} y^{i} \alpha-\beta^{3} \gamma_{000} y^{i}
\end{array}\right\} \tag{3.3}\\
& +\left\{\begin{array}{l}
24 s_{0} \alpha^{8}+20 s_{0} \alpha^{7} \beta+2 \beta\left(2 s_{0} \beta+9 r_{00}\right) \alpha^{6} \\
+6 \beta^{2}\left(3 r_{00}-2 s_{0} \beta\right) \alpha^{5}+2 \beta^{3}\left(5 r_{00}-2 s_{0} \beta\right) \alpha^{4} \\
+2 r_{00} \alpha^{3} \beta^{4}
\end{array}\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 .
\end{align*}
$$

The equation (3.3) can be rewritten as a polynomial of tenth degree in α as follows

$$
\begin{aligned}
& \left(p_{10} \alpha^{10}+p_{8} \alpha^{8}+p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}\right) \\
& +\alpha\left(p_{9} \alpha^{8}+p_{7} \alpha^{6}+p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}\right)=0
\end{aligned}
$$

where

$$
\begin{aligned}
& p_{10}=24\left(-s_{0}^{i} b^{2}+s_{0} b^{i}\right), p_{9}=20\left(-s_{0}^{i} b^{2}+s_{0} b^{i}\right) \beta, \\
& p_{8}=\binom{12 s_{0}^{i} \beta^{2}-4 b^{2} s_{0}^{i} \beta^{2}+18 b^{2} \beta \gamma_{00}^{i}}{-24 s_{0} \beta y^{i}+4 s_{0} \beta^{2} b^{i}+18 r_{00} \beta b^{i}}, \\
& p_{7}=\binom{6 s_{0}^{i} \beta^{3}+18 b^{2} \beta^{2} \gamma_{00}^{i}+12 b^{2} \beta^{3} s_{0}^{i}}{-20 s_{0} \beta^{2} y^{i}+18 r_{00} \beta^{2} b^{i}-12 s_{0} \beta^{3} b^{i}}, \\
& p_{6}=\binom{-4 s_{0}^{i} \beta^{4}-9 \beta^{3} \gamma_{00}^{i}+10 b^{2} \beta^{3} \gamma_{00}^{i}+4 b^{2} \beta^{4} s_{0}^{i}-18 b^{2} \beta \gamma_{000} y^{i}}{-4 s_{0} \beta^{3} y^{i}-18 r_{00} \beta^{2} b^{i}+10 r_{00} \beta^{3} b^{i}-4 s_{0} \beta^{4} b^{i}}, \\
& p_{5}=\binom{-8 s_{0}^{i} \beta^{5}-6 \beta^{4} \gamma_{00}^{i}+2 b^{2} \beta^{4} \gamma_{00}^{i}-18 b^{2} \beta^{2} \gamma_{000} y^{i}}{-18 r_{00} \beta^{3} y^{i}+12 s_{0} \beta^{4} y^{i}-2 r_{00} \beta^{4} b^{i}}, \\
& p_{4}=\binom{9 \beta^{3} \gamma_{000} y^{i}-10 b^{2} \beta^{3} \gamma_{000} y^{i}}{-10 r_{00} \beta^{4} y^{i}+4 s_{0} \beta^{5} y^{i}}, \\
& p_{3}=\binom{2 \beta^{4} \gamma_{00}^{i}+2 \beta^{7} s_{0}^{i}+6 \beta^{4} \gamma_{000} y^{i}}{-2 b^{2} \beta^{4} \gamma_{000} y^{i}-2 r_{00} \beta^{5} b^{i}}, \\
& p_{2}=\beta^{7} \gamma_{00}^{i}, p_{1}=-2 \beta^{6} \gamma_{000} y^{i}, p_{0}=-\beta^{7} \gamma_{000} y^{i} .
\end{aligned}
$$

Since $p_{10} \alpha^{10}+p_{8} \alpha^{8}+p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}$ and $p_{9} \alpha^{8}+p_{7} \alpha^{6}+p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}$ are rational and α is irrational in y^{i}, we have

$$
\begin{align*}
& p_{10} \alpha^{10}+p_{8} \alpha^{8}+p_{6} \alpha^{6}+p_{4} \alpha^{4}+p_{2} \alpha^{2}+p_{0}=0, \tag{3.4}\\
& p_{9} \alpha^{8}+p_{7} \alpha^{6}+p_{5} \alpha^{4}+p_{3} \alpha^{2}+p_{1}=0 . \tag{3.5}
\end{align*}
$$

It follows from (3.4) that the term which has a factor β is $24\left(-s_{0}^{i} b^{2}+s_{0} b^{i}\right) \alpha^{10}$. Since $\alpha^{2} \neq 0(\bmod . \beta)$, we have a vector $\lambda^{i}=\lambda^{i}(x)$ satisfying $s_{0} b^{i}-b^{2} s_{0}^{i}=\lambda^{i} \beta$.

Transvecting this by $y_{i}=a_{i j} y^{j}$, we get $s_{0}=\lambda^{i} y_{i}$ so that, $\lambda_{i}=s_{i}$.
Therefore, we have, $b^{2} s_{0}^{i}=s_{0} b^{i}-s^{i} \beta$, that is,

$$
\begin{equation*}
b^{2} s_{i j}=b_{i} s_{j}-b_{j} s_{i} . \tag{3.6}
\end{equation*}
$$

Secondly, we observe in (3.5) that the term which must have a factor α^{2} is $-2 \beta^{6} \gamma_{000} y^{i}$. Hence we have 1-form $v_{0}=v_{i}(x) y^{i}$ such that

$$
\begin{equation*}
\gamma_{000}=v_{0} \alpha^{2} . \tag{3.7}
\end{equation*}
$$

From (3.4) and (3.7), the term which has a factor α^{2} is $\left(\gamma_{00}^{i}-v_{0} y^{i}\right) \beta^{7}$.
Hence we have $\mu^{i}=\mu^{i}(x)$ satisfying

$$
\begin{equation*}
\gamma_{00}^{i}-v_{0} y^{i}=\mu^{i} \alpha^{2} . \tag{3.8}
\end{equation*}
$$

Transvecting (3.8) by y_{i}, we have from (3.7), $\mu^{i} y_{i}=0$, which implies $\mu^{i}=0$.

Thus, we have

$$
\begin{equation*}
\gamma_{00}^{i}=v_{0} y^{i}, \tag{3.9}
\end{equation*}
$$

that is,

$$
\begin{equation*}
2 \gamma_{j k}^{i}=v_{k} \boldsymbol{\delta}_{j}^{i}+v_{j} \boldsymbol{\delta}_{k}^{i}, \tag{3.10}
\end{equation*}
$$

which shows that the Riemannian space is projectively flat.
Next substituting (3.7) and (3.9) into (3.3), we have
(3.11) $\left(\beta^{4}-3 \alpha^{2} \beta^{2}+2 b^{2} \alpha^{3} \beta+6 b^{2} \alpha^{4}\right)\left(-2 \alpha^{3}-\beta \alpha^{2}+\beta^{3}\right) s_{0}^{i}$

$$
+\left\{\begin{array}{l}
12 s_{0} \alpha^{5}+10 s_{0} \beta \alpha^{4}+\beta\left(2 s_{0} \beta+9 r_{00}\right) \alpha^{3} \\
+3 \beta^{2}\left(3 r_{00}-2 s_{0} \beta\right) \alpha^{2}+\beta^{3}\left(5 r_{00}-2 s_{0} \beta\right) \alpha \\
+r_{00} \beta^{4}
\end{array}\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0
$$

Transvecting (3.11) by b_{i}, we get

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(-6 s_{0} \beta+9 r_{00} b^{2}\right) \alpha^{4}+\left(5 r_{00} b^{2} \beta^{2}-4 s_{0} \beta^{3}-9 r_{00} \beta^{2}\right) \alpha^{2} \\
+\left(2 s_{0} \beta^{5}-5 r_{00} \beta^{4}\right)
\end{array}\right\} \boldsymbol{\alpha} \tag{3.12}\\
& +\left\{\begin{array}{l}
\left(-7 s_{0} \beta+9 r_{00} b^{2}\right) \beta \alpha^{4}+\left(2 s_{0} \beta-9 r_{00}+r_{00} b^{2}\right) \alpha^{2} \beta^{3} \\
+\left(s_{0} \beta-r_{00}\right) \beta^{5}
\end{array}\right\}=0,
\end{align*}
$$

which implies

$$
\begin{aligned}
& \left(-6 s_{0} \beta+9 r_{00} b^{2}\right) \alpha^{4}+\left(5 r_{00} b^{2} \beta^{2}-4 s_{0} \beta^{3}-9 r_{00} \beta^{2}\right) \alpha^{2}=0 . \\
& +\left(2 s_{0} \beta^{5}-5 r_{00} \beta^{4}\right)
\end{aligned}
$$

The term which has a factor α^{2} is $\left(2 s_{0} \beta^{5}-5 r_{00} \beta^{4}\right)$ i.e., $2 s_{0} \beta^{5}-5 r_{00} \beta^{4}=0$ This implies $2 s_{0} \beta=5 r_{00}$.

Thus, the above equation becomes

$$
\begin{equation*}
\left(-6 s_{0} \beta+9 r_{00} b^{2}\right) \alpha^{4}+\left(5 r_{00} b^{2} \beta^{2}-4 s_{0} \beta^{3}-9 r_{00} \beta^{2}\right) \alpha^{2}=0 . \tag{3.13}
\end{equation*}
$$

Therefore there exists a function $k=k(x)$ such that

$$
\begin{equation*}
-6 s_{0} \beta+9 r_{00} b^{2}=k \beta^{2}, 5 r_{00} b^{2}-4 s_{0} \beta-9 r_{00}=k \alpha^{2} \tag{3.14}
\end{equation*}
$$

Eliminating r_{00} from (3.14), we have

$$
\begin{equation*}
\left(6 b^{2}+54\right) s_{0} \beta=k\left(5 b^{2} \beta^{2}-9 b^{2} \alpha^{2}-9 \beta^{2}\right) \tag{3.15}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left(6 b^{2}+54\right)\left(s_{i} b_{j}+s_{j} b_{i}\right)=2 k\left\{\left(5 b^{2}-9\right) b_{i} b_{j}-9 b^{2} a_{i j}\right\} . \tag{3.16}
\end{equation*}
$$

Transvecting (3.16) by $a^{i j}$, we have

$$
\begin{equation*}
k b^{2}\left(5 b^{2}-9 n-9\right)=0 \tag{3.17}
\end{equation*}
$$

which implies $\mathrm{k}=0$. Thus from (3.15), we have $s_{0}=0$, and hence from (3.14) we obtain $r_{00}=0$, i.e., $r_{i j}=0$.

On the other hand, from $s_{i}=0$ and (3.6) we have $s_{i j}=0$.
So we get $b_{i, j}=0$.
Conversely, it is easy to see that (3.6) is a consequence of (3.9) and $b_{i, j}=0$. Thus we have

Theorem 3.1. A Finsler space $F^{n}(n>2)$ with the (α, β)-metric given by (3.1) is projectively flat if and only if the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat and $b_{i, j}=0$.

References

1. M. Matsumoto: A special class of locally Minkowski spaces with (α, β) metric and conformally flat Kropina spaces, Tensor (N.S.), 50 (1991), 202-207.
2. M. Matsumoto: Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Saikawa, Otsu, 520, Japan, 1986.
3. P. N. Pandey: On a Finsler space of zero projective curvature, Acta Math. Acad. Sci. Hungar., 39(4)(1982), 387-388.
4. M. Hashiguchi and Y. Ichijyo: Randers spaces with rectilinear geodesics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), 13 (1980), 33-40.
5. M. Matsumoto: Projectively flat Finsler spaces with (α, β)-metric, Rep. on Math. Phys. 30 (1991), 15-20.
6. T. Aikou, M. Hashiguchi and K. Yamauchi: On Matsumoto's Finsler space with time measure, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), 23 (1990), 1-12.
7. H. S. Park and E. S. Choi: On Finsler space with a special (α, β)-metric, Tensor, N. S. 56 (1995), 142-148.
8. Gauree Shanker and RavindraYadav: On Some Projectively flat (α, β)-metrics, Gulf Journal of Mathematics, 1 (2013), 72-77.
9. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Pub, Netherlands, 1993.
10. S. Bacso and M. Matsumoto: Projective changes between Finsler spaces with (α, β) metric, Tensor (N.S.), 55(3) (1994) 252-257.
