Projectively Flat Finsler Spaces with Special (α, β) -Metric

Gauree Shanker and Proxy Gupta

Department of Mathematics and Statistics Banasthali University, Banasthali Rajasthan-304022, India Email: gsp.math.1978@gmail.com; proxygupta@gmail.com

(Received April 17, 2013)

Abstract:The (α,β) -metric is a Finsler metric which is constructed from a Riemannian metric α and a differential 1-form β . In this paper, we discuss the projective flatness of a Finsler space with a special $(\ ,\beta)$ metric in a locally Minkowski space.

Keywords: Finsler space, (α,β) -metric, projective flatness, locally Minkowski space, flat-parallel, associated Riemannian space.

2010 Mathematics Subject Classification: 53B40; 53C60.

1. Introduction

A Finsler metric function L(x,y) is called an (α, β) metric if L is a positively homogeneous function of a Riemannian metric $\alpha^2 = a_{ij}(x) y^i y^j$ and a differential 1-form $\beta = b_i y^i$ of degree one¹. Interesting examples of (α, β) -metric are the Randers metric, Kropina metric and Matsumoto metric.

A Finsler space $F^n = (M^n, L)$ is called a locally Minkowski space² if M^n is covered by coordinate neighborhood system (x^i) in each of which L is a function of y^i only. A Finsler space $F^n = (M^n, L)$ is called projectively flat³ if F^n is projective to a locally Minkowski space.

The condition for a Randers space to be projectively flat was given by Hashiguchi-Ichijyo⁴ and Matsumoto⁵. The projective flatness of Kropina space was investigated by Matsumoto⁵ and Matsumoto space was studied by Aikou- Hashiguchi-Yamauchi⁶. The condition for a Finsler space with a

generalized Randers metric L satisfying $L^2 = c_1 \alpha^2 + 2c_2 \alpha \beta + c_3 \beta^3$, where c_i 's are constants, to be projectively flat was given by Park and Choi⁷. Recently, the projective flatness of Finsler spaces with some special metric has been studied in the paper⁸. A locally Minkowski space with (α, β) - metric is called flat-parallel if α is locally flat and β is parallel with respect to α ⁹.

The purpose of the present paper is to consider the projective flatness of Finsler spaces with a special (α, β) - metric $L = \alpha + \beta + \frac{\alpha}{\beta} + \frac{\alpha}{\beta}$.

2. Preliminaries

In a Finsler space $F^n = (M^n, L)$ with an (α, β) -metric, let $\gamma_{jk}^i(x)$ be the Christoffel symbols constructed from the Riemannian metric a_{ij} . We denote by (;) the covariant differentiation with respect to $\gamma_{jk}^i(x)$. In a Finsler space F^n with (α, β) -metric, we define

(2.1)
$$2r_{ij} = b_{i;j} + b_{j;i}, 2s_{ij} = b_{i;j} - b_{j;i}, s_j^i = a^{ir}s_{rj}, s_i = b^r s_{ri}, \gamma_{jhk} = a_{hr}\gamma_{jk}^r, b^2 = a^{rs}b_r b_s$$

We shall denote the homogeneous polynomials in (y^i) of degree r by hp(r) for brevity. Now the following Matsumoto's theorem⁵ is well-known.

Theorem 2.1. A Finsler space F^n with an (α, β) -metric is projectively flat if and only if the space is covered by coordinate neighborhoods on which $\gamma^i_{ik}(x)$ satisfies

(2.2)
$$(\gamma^{i}_{00} - \gamma_{000}y^{i} / \alpha^{2})/2 + (\alpha L_{\beta} / L_{\alpha})s^{i}_{0} + (L_{\alpha\alpha} / L_{\alpha})(C + \alpha r_{00} / 2\beta)(\alpha^{2}b^{i} / \beta - y^{i}) = 0$$

where the subscript 0 means a contraction by y^i ,

$$L_{\alpha} = \frac{\partial L}{\partial \alpha}, L_{\beta} = \frac{\partial L}{\partial \beta}, L_{\alpha \alpha} = \frac{\partial L_{\alpha}}{\partial \alpha}, L_{\beta \beta} = \frac{\partial L_{\beta}}{\partial \beta},$$

and C is given by

(2.3)
$$C + \left(\alpha^2 L_\beta / \beta L_\alpha\right) s_0 + \left(\alpha L_{\alpha\alpha} / \beta^2 L_\alpha\right) \left(\alpha^2 b^2 - \beta^2\right) \left(C + \alpha r_{00} / 2\beta\right) = 0.$$

Projectively Flat Finsler Spaces with Special (α, β) -Metric

By the homogeneity of L, we know $\alpha^2 L_{\alpha\alpha} = \beta^2 L_{\beta\beta}$

Hence the formula (2.3) can be rewritten in the following form

(2.4)
$$\{1 + (L_{\beta\beta} / \alpha L_{\alpha\alpha})(\alpha^2 b^2 - \beta^2)\}(C + \alpha r_{00} / 2\beta)$$
$$= (\alpha / 2\beta)\{r_{00} - (2\alpha L_{\beta} / L_{\alpha})s_0\}$$

If $1 + (L_{\beta\beta} / \alpha L_{\alpha\alpha})(\alpha^2 b^2 - \beta^2) \neq 0$, then we can eliminate $(C + \alpha r_{00} / 2\beta)$ in (2.2) and it is written in the form

(2.5)
$$\{ 1 + L_{\beta\beta} \left(\alpha^2 b^2 - \beta^2 \right) / (\alpha L_{\alpha}) \} \{ \left(\gamma_{00}^i - \gamma_{000} y^i / \alpha^2 \right) / 2 + \left(\alpha L_{\beta} / L_{\alpha} \right) s_0^i \} + (L_{\alpha\alpha} / L_{\alpha}) (\alpha / 2\beta) \{ r_{00} - \left(2\alpha L_{\beta} / L_{\alpha} \right) s_0 \} (\alpha^2 b^i / \beta - y^i) = 0 .$$

Thus, we have

Theorem 2.2. If $1 + (L_{\beta\beta} / \alpha L_{\alpha\alpha})(\alpha^2 b^2 - \beta^2) \neq 0$, then a Finsler space F^n with an (α, β) - metric is projectively flat if and only if (2.5) is satisfied.

It is known¹⁰ that if α^2 contains as a factor, then the dimension is equal to two and $b^2 = 0$.

Throughout this paper, we assume that the dimension is more than two and $\beta \neq 0$ that is, $\alpha^2 \cong 0 \pmod{\beta}$.

3. Projectively Flat Space

Let F^n be a Finsler space with an (α, β) -metric given by

(3.1)
$$L = \alpha + \beta + \frac{\alpha^2}{\beta} + \frac{\alpha^3}{\beta^2}$$

It is known¹ that a Finsler space with (α, β) -metric given by (3.1) is flatparallel if it is locally Minkowski.

In this section, we find the condition for a Finsler space F^n with the metric given by (3.1) to be projectively flat.

The partial derivatives with respect to α and β of metric (3.1) are given by

(3.2)
$$L_{\alpha} = 1 + \frac{2\alpha}{\beta} + \frac{3\alpha^2}{\beta^2}, \ L_{\beta} = 1 - \frac{\alpha^2}{\beta^2} - \frac{2\alpha^3}{\beta^3},$$
$$L_{\alpha\alpha} = \frac{2}{\beta} + \frac{6\alpha}{\beta^2}, \ L_{\beta\beta} = \frac{2\alpha^2}{\beta^3} + \frac{6\alpha^3}{\beta^4}.$$

If $1 + (L_{\beta\beta} / \alpha L_{\alpha})(\alpha^2 b^2 - \beta^2) = 0$, then we have $\beta^4 - 3\alpha^2 \beta^2 + 2b^2 \alpha^3 \beta + 6b^2 \alpha^4 = 0$

which leads to a contradiction. Thus Theorem 2.2 can be applied. Substituting (3.2) into (2.1), we get

$$(3.3) \quad \left(\beta^{4} - 3\alpha^{2}\beta^{2} + 2b^{2}\alpha^{3}\beta + 6b^{2}\alpha^{4}\right) \begin{cases} -4s_{0}^{i}\alpha^{6} - 2\beta s_{0}^{i}\alpha^{5} + 3\beta\gamma_{00}^{i}\alpha^{4} \\ +2\beta^{2}\left(\gamma_{00}^{i} + \beta s_{0}^{i}\right)\alpha^{3} \\ +\beta\left(\beta^{2}\gamma_{00}^{i} - 3\gamma_{000}y^{i}\right)\alpha^{2} \\ -2\beta^{2}\gamma_{000}y^{i}\alpha - \beta^{3}\gamma_{000}y^{i} \end{cases} \end{cases}$$

$$+ \begin{cases} 24s_0\alpha^8 + 20s_0\alpha^7\beta + 2\beta(2s_0\beta + 9r_{00})\alpha^6 \\ +6\beta^2(3r_{00} - 2s_0\beta)\alpha^5 + 2\beta^3(5r_{00} - 2s_0\beta)\alpha^4 \\ +2r_{00}\alpha^3\beta^4 \end{cases} \left\{ (\alpha^2b^i - \beta y^i) = 0. \end{cases}$$

The equation (3.3) can be rewritten as a polynomial of tenth degree in α as follows

$$(p_{10}\alpha^{10} + p_8\alpha^8 + p_6\alpha^6 + p_4\alpha^4 + p_2\alpha^2 + p_0) + \alpha (p_9\alpha^8 + p_7\alpha^6 + p_5\alpha^4 + p_3\alpha^2 + p_1) = 0,$$

where

Projectively Flat Finsler Spaces with Special (lpha, eta) -Metric

$$\begin{split} p_{10} &= 24 \left(-s_0^i b^2 + s_0 b^i \right), p_9 = 20 \left(-s_0^i b^2 + s_0 b^i \right) \beta, \\ p_8 &= \begin{pmatrix} 12 s_0^i \beta^2 - 4 b^2 s_0^i \beta^2 + 18 b^2 \beta \gamma_{00}^i \\ -24 s_0 \beta y^i + 4 s_0 \beta^2 b^i + 18 r_{00} \beta b^i \end{pmatrix}, \\ p_7 &= \begin{pmatrix} 6 s_0^i \beta^3 + 18 b^2 \beta^2 \gamma_{00}^i + 12 b^2 \beta^3 s_0^i \\ -20 s_0 \beta^2 y^i + 18 r_{00} \beta^2 b^i - 12 s_0 \beta^3 b^i \end{pmatrix}, \\ p_6 &= \begin{pmatrix} -4 s_0^i \beta^4 - 9 \beta^3 \gamma_{00}^i + 10 b^2 \beta^3 \gamma_{00}^i + 4 b^2 \beta^4 s_0^i - 18 b^2 \beta \gamma_{000} y^i \\ -4 s_0 \beta^3 y^i - 18 r_{00} \beta^2 b^i + 10 r_{00} \beta^3 b^i - 4 s_0 \beta^4 b^i \end{pmatrix}, \\ p_5 &= \begin{pmatrix} -8 s_0^i \beta^5 - 6 \beta^4 \gamma_{00}^i + 2 b^2 \beta^4 \gamma_{00}^i - 18 b^2 \beta^2 \gamma_{000} y^i \\ -18 r_{00} \beta^3 y^i + 12 s_0 \beta^4 y^i - 2 r_{00} \beta^4 b^i \end{pmatrix}, \end{split}$$

$$p_{4} = \begin{pmatrix} 9\beta^{3}\gamma_{000}y^{i} - 10b^{2}\beta^{3}\gamma_{000}y^{i} \\ -10r_{00}\beta^{4}y^{i} + 4s_{0}\beta^{5}y^{i} \end{pmatrix},$$

$$p_{3} = \begin{pmatrix} 2\beta^{4}\gamma_{00}^{i} + 2\beta^{7}s_{0}^{i} + 6\beta^{4}\gamma_{000}y^{i} \\ -2b^{2}\beta^{4}\gamma_{000}y^{i} - 2r_{00}\beta^{5}b^{i} \end{pmatrix},$$

$$p_{2} = \beta^{7}\gamma_{00}^{i}, p_{1} = -2\beta^{6}\gamma_{000}y^{i}, p_{0} = -\beta^{7}\gamma_{000}y^{i}.$$

Since $p_{10}\alpha^{10} + p_8\alpha^8 + p_6\alpha^6 + p_4\alpha^4 + p_2\alpha^2 + p_0$ and $p_9\alpha^8 + p_7\alpha^6 + p_5\alpha^4 + p_3\alpha^2 + p_1$ are rational and α is irrational in y^i , we have

(3.4)
$$p_{10}\alpha^{10} + p_8\alpha^8 + p_6\alpha^6 + p_4\alpha^4 + p_2\alpha^2 + p_0 = 0,$$

(3.5) $p_4\alpha^8 + p_5\alpha^6 + p_5\alpha^4 + p_5\alpha^2 + p_6 = 0$

(3.5)
$$p_9 \alpha^8 + p_7 \alpha^6 + p_5 \alpha^4 + p_3 \alpha^2 + p_1 = 0$$

It follows from (3.4) that the term which has a factor β is $24(-s_0^i b^2 + s_0 b^i) \alpha^{10}$. Since $\alpha^2 \not\cong 0 \pmod{\beta}$, we have a vector $\lambda^i = \lambda^i (x)$ satisfying $s_0 b^i - b^2 s_0^i = \lambda^i \beta$.

Transvecting this by $y_i = a_{ij} y^j$, we get $s_0 = \lambda^i y_i$ so that, $\lambda_i = s_i$.

Therefore, we have, $b^2 s_0^i = s_0 b^i - s^i \beta$, that is,

(3.6)
$$b^2 s_{ij} = b_i s_j - b_j s_i.$$

Secondly, we observe in (3.5) that the term which must have a factor $\alpha^2 \operatorname{is} -2\beta^6 \gamma_{000} y^i$. Hence we have 1-form $v_0 = v_i(x) y^i$ such that

$$(3.7) \qquad \gamma_{000} = v_0 \alpha^2$$

From (3.4) and (3.7), the term which has a factor α^2 is $(\gamma_{00}^i - v_0 y^i)\beta^7$. Hence we have $\mu^i = \mu^i(x)$ satisfying

(3.8)
$$\gamma_{00}^{i} - v_{0}y^{i} = \mu^{i}\alpha^{2}$$
.

Transvecting (3.8) by y_i , we have from (3.7), $\mu^i y_i = 0$, which implies $\mu^i = 0$.

Thus, we have
(3.9)
$$\gamma_{00}^{i} = v_{0} y^{i}$$
,

that is,

(3.10)
$$2\gamma_{jk}^{i} = v_{k}\delta_{j}^{i} + v_{j}\delta_{k}^{i},$$

which shows that the Riemannian space is projectively flat.

Next substituting (3.7) and (3.9) into (3.3), we have

$$(3.11)\left(\beta^4 - 3\alpha^2\beta^2 + 2b^2\alpha^3\beta + 6b^2\alpha^4\right)\left(-2\alpha^3 - \beta\alpha^2 + \beta^3\right)s_0^i$$

$$+ \begin{cases} 12s_0\alpha^5 + 10s_0\beta\alpha^4 + \beta(2s_0\beta + 9r_{00})\alpha^3 \\ + 3\beta^2(3r_{00} - 2s_0\beta)\alpha^2 + \beta^3(5r_{00} - 2s_0\beta)\alpha \\ + r_{00}\beta^4 \end{cases} \left(\alpha^2 b^i - \beta y^i \right) = 0.$$

Transvecting (3.11) by b_i , we get

(3.12)
$$\begin{cases} \left(-6s_{0}\beta+9r_{00}b^{2}\right)\alpha^{4}+\left(5r_{00}b^{2}\beta^{2}-4s_{0}\beta^{3}-9r_{00}\beta^{2}\right)\alpha^{2}\\ +\left(2s_{0}\beta^{5}-5r_{00}\beta^{4}\right)\\ +\left\{\left(-7s_{0}\beta+9r_{00}b^{2}\right)\beta\alpha^{4}+\left(2s_{0}\beta-9r_{00}+r_{00}b^{2}\right)\alpha^{2}\beta^{3}\\ +\left(s_{0}\beta-r_{00}\right)\beta^{5} \right\}=0,\end{cases}$$

which implies

$$\left(-6s_0\beta + 9r_{00}b^2 \right) \alpha^4 + \left(5r_{00}b^2\beta^2 - 4s_0\beta^3 - 9r_{00}\beta^2 \right) \alpha^2 + \left(2s_0\beta^5 - 5r_{00}\beta^4 \right) = 0.$$

The term which has a factor α^2 is $(2s_0\beta^5 - 5r_{00}\beta^4)$ i.e., $2s_0\beta^5 - 5r_{00}\beta^4 = 0$ This implies $2s_0\beta = 5r_{00}$.

Thus, the above equation becomes

(3.13)
$$\left(-6s_0\beta + 9r_{00}b^2\right)\alpha^4 + \left(5r_{00}b^2\beta^2 - 4s_0\beta^3 - 9r_{00}\beta^2\right)\alpha^2 = 0.$$

Therefore there exists a function k = k(x) such that

(3.14)
$$-6s_0\beta + 9r_{00}b^2 = k\beta^2, \ 5r_{00}b^2 - 4s_0\beta - 9r_{00} = k\alpha^2.$$

Eliminating r_{00} from (3.14), we have

(3.15)
$$(6b^2 + 54)s_0\beta = k(5b^2\beta^2 - 9b^2\alpha^2 - 9\beta^2),$$

i.e.

(3.16)
$$(6b^2 + 54)(s_ib_j + s_jb_i) = 2k\{(5b^2 - 9)b_ib_j - 9b^2a_{ij}\}.$$

Transvecting (3.16) by a^{ij} , we have

(3.17) $kb^2(5b^2-9n-9)=0.$

which implies k= 0. Thus from (3.15), we have $s_0 = 0$, and hence from (3.14) we obtain $r_{00} = 0$, i.e., $r_{ij} = 0$.

On the other hand, from $s_i = 0$ and (3.6) we have $s_{ij} = 0$.

So we get $b_{i;j} = 0$.

Conversely, it is easy to see that (3.6) is a consequence of (3.9) and $b_{i;j} = 0$. Thus we have

Theorem 3.1. A Finsler space $F^n(n > 2)$ with the (α, β) -metric given by (3.1) is projectively flat if and only if the associated Riemannian space (M^n, α) is projectively flat and $b_{i,j} = 0$.

References

1. M. Matsumoto: A special class of locally Minkowski spaces with (α, β) metric and conformally flat Kropina spaces, *Tensor* (*N.S.*), **50** (1991), 202-207.

2. M. Matsumoto: *Foundations of Finsler Geometry and Special Finsler Spaces*, Kaisheisha Press, Saikawa, Otsu, 520, Japan, 1986.

3. P. N. Pandey: On a Finsler space of zero projective curvature, Acta Math. Acad. Sci.

Hungar., 39(4)(1982), 387-388.

4. M. Hashiguchi and Y. Ichijyo: *Randers spaces with rectilinear geodesics*, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), **13** (1980), 33-40.

5. M. Matsumoto: Projectively flat Finsler spaces with (α, β) -metric, *Rep. on Math. Phys.* 30 (1991), 15-20.

6. T. Aikou, M. Hashiguchi and K. Yamauchi: *On Matsumoto's Finsler space with time measure*, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), **23** (1990), 1-12.

7. H. S. Park and E. S. Choi: On Finsler space with a special (α, β) -metric, *Tensor*, *N. S.* 56 (1995), 142-148.

8. Gauree Shanker and RavindraYadav: On Some Projectively flat (α, β) -metrics, *Gulf Journal of Mathematics*, 1 (2013), 72-77.

9. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto: *The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology*, Kluwer Acad. Pub, Netherlands, 1993.

10. S. Bacso and M. Matsumoto: Projective changes between Finsler spaces with (α, β) metric, *Tensor (N.S.)*, **55(3)** (1994) 252-257.