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Abstract:  In this paper, a four dimensional SIS epidemic non-

linear model with immigration is proposed and analyzed to study 

the role of vaccination and isolation on the spread of an infectious 

diseases. The model has been analyzed by using stability theory of 

differential equations and simulation. The model has two equilibria 

namely, disease free and non-trivial endemic equilibrium.  

   It is shown that the disease free equilibrium is always unstable and 

the endemic equilibrium, if exists, becomes locally as well as non-

linearly stable under certain conditions. This analysis also implies 

that as the rate of vaccination of susceptible human population 

density or the rate of isolation of severely infected human 

population density increases, the spread of infectious disease 

decreases. A numerical analysis of the model is also performed 

which supports the analytical results.  
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1.  Introduction 
 

Infectious diseases kill more people worldwide than any other single 

reason. These diseases are considered contagious or communicable, 

meaning that they can be passed from person to person by direct contact. It 

is also possible for such diseases to spread indirectly through unhygienic 

conditions, or from animals to people, in which case they are called zoonotic 

diseases. 
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A variety of agents (pathogens) can be responsible for the spread of 

infectious diseases, including viruses, bacteria, fungi, protozoans, etc. With 

these infectious organisms, there are various modes of transmission, direct 

as well as indirect, for the spread of infectious diseases. In order to treat an 

infectious disease, doctors must be able to find out the source of infection 

and treat it appropriately. Many infectious diseases make the body 

vulnerable to secondary infections, in which case other organisms move in 

to take advantage of a weakened immune system and cause diseases 
5,9

. 
 

Vaccination is the administration of a vaccine to stimulate the immune 

system of an individual to develop protective immunity to a disease. It is 

considered to be the most effective method of controlling infectious 

diseases. The use of vaccination has been widely studied and verified; for 

example, the influenza vaccine, TB vaccine and the chicken pox vaccine 

among others. Smallpox was likely the first disease people tried to prevent 

by purposely inoculating themselves with other types of infections.
 
No 

public health tool has been as successful and effective as vaccines at saving 

lives, particularly among the world’s children 
1,2,6,7

. 
 

One other method of control of an infectious disease such as smallpox 

began even before vaccination, is isolation. From early times, first with 

leprosy and then with plague, it has been noted that it might be possible to 

avoid certain diseases by making sure that no direct or indirect contact 

occurs between infected and susceptible persons. The concept of starting 

sanatorium for diseases such as TB is used now by keeping this idea in 

view. Further, even in hospitals now, separate wards exist for infectious 

diseases 
3,8

.  
 

In view of the above, in this paper, therefore, effects of vaccination and 

isolation on the spread of infectious diseases are modeled and analyzed by 

using stability theory of differential equations and numerical simulation. We 

illustrate these effects in the case of an SIS model. 
 

2. An SIS Model 
 

Let )(tX  , )(tY , )(tV  and )(tZ  denote densities of susceptible, infective, 

vaccinated and isolated classes respectively of total human population 

density )(tN , in a region under consideration. By assuming simple mass 

action interaction, an SIS model of the situation can be written as:  
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Here  )( ′  denotes dtd )(  . 

 

In the modeling process, the following assumptions are made 
 

(i) The rate of vaccinated people is proportional to X. 

(ii) The rate of isolated people is proportional to Y. 

(iii) The birth and natural death rates of host population are equal. 
 

List of coefficients in the model (1): 
 

A : Immigration rate of susceptible human population from outside the 

region 

e : Rate of emigration of host population 

β : Transmission coefficient due to infective human population 

φ : Rate of vaccination of susceptible human population 

ν : Recovery rate of infected human population 

α : Disease related death rate 

ψ : Rate of isolation of severely infected human population 

k : Rate by which vaccinated human individuals become susceptible 
 

All the coefficients in the model (1) are assumed to be positive 

constants. 

In the following we analyze the model (1) by using stability theory of 

differential equations. 

 

3. Equilibrium Analysis 
 

Since NZVYX =+++ , the model (1) can be rewritten as follows:  
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The following lemma establishes region of attraction for the system (2). 

 

Lemma :  The set              

(
( )

)

,

,

A

e e e k

A

e

ϕ

ϕ

 
 + + 

Ω =  
 
  

attracts 

all the solutions initiating in the positive orthant. 

 

Proof: Here we give only a brief outline of the proof, the detail proof 

can be seen in 
4
.  

 

From the last equation of model (2), we have  
 

                 
NeAZYNeAN −≤−−−=′ αα   

 

and
           

( )NeAZYNeAN ααα +−≥−−−=′
 

 

By using comparison theorem, we get  
 

                             
.

e

A
N

e

A
≤≤

+α  
 

From the second equation of model (2), we have 
 

                            
( )Vke

e

A
V ++−≤′ φφ  

which gives       

                           
( )kee

A
V

++
≤<

φ

φ
0  

 

Similarly, from the equation for isolated population in (2), we have 

                                        
( )α

ψ

+
≤≤

ee

A
Z0 .

 The result of equilibrium analysis of the model (2) are stated in the 

following theorem: 
 

Theorem 1:  The system (2) has following two equilibria: 

(i) ( )NVE ,0,,0 , the disease free equilibrium. 

, 0 < V ≤

0 ≤ Z ≤

A
Y ,V , Z , N : 0 ≤ Y ≤ N ≤

A

e e + α e + α
≤ N ≤

ψ A
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            where 
( )kee

A
V

++
=

φ

φ
 and  ;

e

A
N =  

(ii) ( )***** ,,, NZVYE  , the endemic equilibrium. 

 

Proof: The existence of E  is obvious. Here we prove the existence 

of *E .The equilibrium point *E is given as the solutions of system of 

following equations, which are obtained after some simplification from (2) 

by equating left hand sides to zero:   

 

(3)                          0)()( =+++−−−− ψανβ eZVYN                                              
(4)                          ( ) 0)( =++−−− VkeZYN φφ                                                          

(5)                          ( ) 0=+− ZeY αψ
       

                                                                      

(6)                         0=−−− ZYeNA αα
    

  

,
                                                                                                                              

 
Now eliminating Z  between equations (5) and (6) we get   
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Now using (4) and (5) in (3), we get    
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Using (7) in (8), we get   

 

(9)                 
( )( )

( )
0)( =

+

+++++
−






 −
−=

ke

keeeNA
NNF

β

φψαν

α
                              

Now                                                                                          

 

 (10)            
( )( )

( )
0<

+

+++++
−=









+ ke

kee

e

A
F

β

φψαν

α
                 

                                          

 (11)                 
( )( )

( )ke

kee

e

A

e

A
F

+

+++++
−=









β

φψαν
      



360                                                 Shikha Singh  and
 
Vivek Kumar

 

 

                                                                

Here 0>
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the basic reproduction number. 

 

Thus, it is clear that there exists a root *
N  of 0)( =NF  in the 

interval ,
e

A
N

e

A
≤≤

+ α
provided 10 >R . Further, this root will be unique as 

01)( >+=′
α

e
NF . 

Remark: We can check that at *E  , 0<
φd

dY

 

and 0<
ψd

dY
. These conditions 

imply that, as the rate of vaccination of susceptible human population and 

rate of isolation of severely infected human population increases, the density 

of infectives decreases. These can be checked as follows 

From (3) and (4), we get 
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From (5), we get 
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Using these values in (4), we get  
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On differentiating (15) with respect to φ , we get  
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This clearly shows that at *
E , 

                                           

0<
φd

dY

    .   

Thus it is seen here that as the rate of vaccination of susceptible human 

population density increases, the infective human population density 

decreases at *
E .       

In the similar manner, we can show that at *E , 0<
ψd

dY
. Thus it is seen here 

that as the rate of isolation of severely infected human population density 

increases, the infective human population density decreases at the 

equilibrium point *E . 

 

4. Stability Analysis 
 

Now we shall study the stability behavior of above equilibria. The local 

stability result of equilibrium points E
 
and *E  are given in the following 

theorem: 
 

Theorem 2: The equilibria E
 
is locally unstable if 10 >R  and the 

equilibrium *E is locally asymptotically stable provided the following 

conditions are satisfied 
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Proof: The local stability behavior of  E  can be studied by computing 

corresponding variational matrix for system (2) and for nontrivial 

equilibrium point *E , it can be studied by using  Lyapunov’s theory. 
 

The variational matrix iM corresponding to equilibrium points is given by:
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Local Stability Behavior of ( )NVE ,0,,0 : 
 

The variational matrix corresponding to equilibrium point E  is given by 
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Here ( ) ( )ψανβ +++−− eVN  is one of the eigen values of the above 

variational matrix, which will be positive provided 

( )
( )( )

10 >
+++++

+
=

keee

keA
R

φψαν

β
. Hence E  is unstable if 10 >R .  

 

Local Stability behaviour of ( )***** ,,, NZVYE : 
 

We study the stability behaviour of *E  by Lyapunov’s method. For this 

we linearise the system (2) by using transformations 

 
**** ,,, NNnZZzVVvYYy −=−=−=−=   

and the following positive definite function to find the sufficient conditions 

for stability  
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(where 1k , 2k  and 3k  are positive constants to be chosen appropriately). 

Differentiating (19) with respect to t  and using the linearized version of (2),  
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can be written as: 
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Now the conditions for 
dt

dV
to be negative definite can be written as:   

 

(20)              ( ) ( ) ( )keYkkY ++<+ φβφβ *

1

2

1

*

3

4
                                                           

 

(21)                
( )( )

ψ

β

φ

αφ *

21
3

2 Yeke
k

+++
<

                                                                    
 

(22)                
( )

α

β

φ

φ *

21
3

2 Yeke
k

++
<

                                                                            

 

(23)                   ( )ααψ +< ee
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(21) and (22) will satisfy automatically. Hence V ′ is negative definite if (20) 

and (23) are satisfied. Thus, *E is locally stable if (17) and (18) are satisfied.  
 

The nonlinear stability results for *E are given by the following theorem: 
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Theorem 3: The equilibrium point *E is nonlinearly asymptotically 

stable in Ω  provided the following inequalities are satisfied:  
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 We can prove the above 

theorem by using the following positive definite function:  
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where 1m , 2m  and 3m  are positive constants to be chosen appropriately. 

 

5. Numerical Simulation 
 

Here we discuss the existence and stability of the nontrivial equilibrium 

point *E by taking the following set of parameter values:  
 

,1000=A  ,02.0=e  ,03.0=α  ,000005.0=β  ,05.0=ν  ,000001.0=λ  

,02.01 =ν ,09.0=φ  ,01.0=ψ  2.0=k  
 

For these values of parameters, the value of nontrivial equilibrium point 
*E corresponding to (2) is obtained as follows (using MAPLE): 

 
                       

        38600,690,9000,6909 **** ==== NZVY  
 

The variational matrix corresponding to the equilibrium point *E  is 

obtained as: 

                *

-0.03454 -0.03454 -0.03454 0.03454

-0.09 0.31 0.09 0.09

0.01 0 -0.1 0

0.03 0 0.03 -0.02

M

 
 − − =
 
 

− − 
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The eigen values of this matrix are: 

 

 

        - 0.0985, -0.0233+0.0279 i ,  -0.0233 -0.0279 i ,  -0.3192. 
 

All of which are with negative real part. Hence *E  is locally stable.  
 

Now numerical simulation is performed for Y vs. N for the different initial 

starts and displayed in the figure 1 which indicates nonlinear stability of the 

point ( )** ,YN  in YN −  plane. The model (2) has also been solved by 

MAPLE and Graphs of the variable Y with respect to t  for various values of 

parameters φ  and ψ  have been plotted in figure 2 and figure 3. From these, 

following observations have been drawn: 
 

(i) From figure 2, it is noted that )(tY  decreases as φ  (rate of vaccination 

of susceptible human population) increases. 
 

(ii) From figure 3, it is noted that )(tY  decreases as ψ (rate of isolation of 

severely infected human population) increases. 
 

These results are expected as increase (decrease) in the vaccination and 

isolation causes decrease (increase) of the density of infectives. 

 

 
 

Fig. 1 Phase plots between susceptible human population density   

and infected human population density  

 



366                                                 Shikha Singh  and
 
Vivek Kumar

 

 

         
Fig. 2 Plots of Y(t) w.r.t. t for different values of rate of vaccination  

of susceptible human population φ  

 

 
Fig. 3 Plots of Y(t) for different values of rate of isolation of  

severely infected human population ψ
 

 

6. Conclusions 
 

In this paper, a four dimensional SIS non-linear model with immigration 

has been proposed and analyzed to study the effect of vaccination and 

isolation on the spread of infectious diseases. The following assumptions 

have been made in the modeling process,  

 

(a) The rate of vaccination is proportional to the density of susceptibles. 
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(b) The rate of isolated people is proportional to the density of infectives. 
 

The model has been analyzed analytically as well as by computer 

simulation. The following main conclusions have been drawn from the 

analysis: 

(a) The density of infectives decreases as rate of vaccination of susceptible 

human population increases.    

(b) The density of infectives decreases, as the rate of isolation of severely 

infected people from active human population increases. 
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