
ISSN 0974 - 9373 
 

Vol. 17 No.4 (2013)           Journal of International Academy of Physical Sciences      pp. 325-354 

 

 

 

Mutualistic Interactions Leading to Coexistence in 

Competitive Ecological Communities: Mathematical 

Approach and Simulation Studies 

 
Bindhyachal Rai 

 

Department of Mathematics, University of Allahabad, Allahabad, India 

Email: brai@hri.res.in 

 

Piyush Khare 
 

Ewing Christian College, University of Allahabad, Allahabad, India 

Email: piyushkh53@gmail.com 
 

Madhsudan Singh 
 

Institute of Professional Studies, University of Allahabad, Allahabad, India 

Email: smadhu_math@rediffmail.com 
 
 

 
 

Abstract: The emerging industrial advancement and 

unlimited need of humans of our planet have created the 

problem of the ecological imbalance. The capacity to 

utilize the resource, which enabled the primitive man to 

survive, gradually attains multiple dimensions, tends to 

threaten the   life support systems. In this article, we are 

concerned with the contemporary ecological issue, of 

coexistence in a competitive ecological community. In 

addition to usual dynamical behaviors, the simulation 

studied has also been made to support the mathematical 

efficiency and the competition intensity of rivals have been 

calculated to ensure the coexistence of the system. 
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1. Introduction 
 

The emerging industrial advancement and unlimited need of humans of 

our planet have created the problem of the ecological imbalance. The 

analysis and control of this situation require the qualitative as well as 

quantitative understanding of the subject. The mathematical ecology helps 

(Received October 11, 2013)

results.  A   threshold  value,  depending  upon    conversion
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in getting an insight into the qualitative aspects of these problems, with the 

help of the mathematical models, using various mathematical techniques 

and computer simulation.  Ecology, the study of organisms in relation to one 

another and to their surroundings, is the comprehensive study of various 

ecosystems. These ecosystems are very complicated and their dynamical 

behavior is not governed by single rule like those in physical or chemical 

dynamical systems. The prediction of existence, stability, persistence, and 

validity etc., of these ecosystems and the exploration of ecological 

information they contain are very difficult. Hence, it is desirable to divide 

these systems into several subsystems which can be studied comparatively 

easily. Here, in the present article, we have chosen to consider the 

ecosystems governed by mutualistic interactions only. 
 

 Mathematical models in population dynamics, like those in other 

branches of science, are extremely useful, as they both answer and raise 

conceptual and analytical sophistication level prior to Second World War A. 

carried out his mathematical analysis by constructing a system of first order 

differential equations and displaying the nature of their solutions. The 

contribution of V. Volterra in mathematical ecology was due to the need of 

military technology during the first World War, but they mostly deal with 

the models of negative interactions like predation and competition. Since 

then there is an unending list of mathematical ecologists including some 

eminent personalities e.g. Kolmogorov
3
; Pearl

4
; Smit 

5 
;Rosenweig

6
;Mac 

Arthur
7
; Lawlor

8;
 May

9
 etc. The above fact together with the literature 

available in this field such as Darwin 
10

 and Gauss 
11

, were enough to 

dominate the way of thinking of the scientists working in these areas. The 

result was an emphasis on the struggle for existence. Another side of nature 

namely mutualistic interactions was ignored 
12

, where there are a variety of 

cooperative associations, even between two completely different types of 

organisms. This pattern continues today, as cooperative associations have 

historically attracted lesser attention than other interactions such as 

predation, parasitism and competition 
13

.  
 

 Sometimes the presence of a third species is required before the 

mutualism between two species can be apparent. For example, in the aphid-

ant system, the association seems to be commensal, but when we consider 

that predators may prey upon aphids in the absence of ants, the association 

is clearly mutualistic. Mutualism is further divided into obligate and non-

questions. Historically, research in this area started with the works of  Lotka
and Volterra , independently  to  enrich  the  mathematical  ecology up to the

J.  Lotka,  following  a  series  of  notes  on  the  action  of  human  parasites,

  1

2



obligate (facultative). If the interaction is crucial for the survival of one or 

both of the species, then it is termed as obligate, otherwise non-obligate. We 

will present here an example of each. A fascinating facultative mutualism 

involves the Boran people of Africa, and a bird known as the honey guide.  
  

 According to rock paintings, humans have been collecting honey in 

Africa for 20,000 years. Human hunting parties are often joined by the 

greater honey guide, which leads them to bee colonies. In unfamiliar areas, 

the average search time is approximately 8.9 hrs., when unguided, but only 

3.2 hrs when guided by the bird. Borans use fire and smoke to drive off the 

bees, break open the nest and remove the honey, but leave larvae and wax 

behind. The bird gains access to larvae and wax. The use of fire and smoke 

reduces the bird's risk of being stung, and humans increase accessibility of 

nests. According to the Borans, the honey guide informs them of direction, 

from the compass bearing of bird flight; distance, from the duration of the 

bird's disappearance and height of perch; and arrival, by the "indicator call". 

Birds and Borans can survive without the other, but each benefit from this 

facultative mutualism. A mutualism between certain ants and a small tree, 

the acacia, provides an excellent example of an obligate mutualism. This 

particular system has been extensively studied in Costa Rica.  The acacia 

provides a number of benefits to the ants, including shelter (hollow thorns), 

protein (beltian bodies at tip of leaflets) and nectar (secreted near base of 

leaves). The ant (Pseudomyrmex) provides several forms of protection. It 

attacks and removes herbivorous insects, it also removes vines that might 

overgrow the acacia, and kills the growing shoots of nearby plants that 

might become competitors. It clears away leaf litter from near the plant, and 

since the acacia grows in a seasonally dry environment where it 

occasionally is threatened by fire, the ant's activities protect the tree from 

fire damage as well 
14

.  
 

 During last three decades mutualism has received more attention 
15-23 

as 

an important factor, governing the populations of the interacting species. 

However the mathematical theory needed to analyze such models is not yet 

developed. In spite of being most fertile and having a one to one 

correspondence with real world applications, research in the field of 

mathematical ecology, was accelerated after publication of a unified book 

by H.I. Freedman 
24

, on deterministic mathematical models in ecology. In 

this book, the author has made an effort, not only to provide basic insight 

into the subject, but also presented a brief contemporary literature. 
 

 Initially, mathematical models, incorporating mutualiam as a key factor, 

were two dimensional
25-27

. Three dimensional mutualistic models, where the 
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mutualism arises due to presence of a third population, were first analyzed 

in Rai et. al.,
28

. Since then, until recently, there has been a fair amount of 

work, on three dimensional mutualistic models 
29-32

. Another aspect of 

dynamical systems namely time delay in mutualistic interactions was 

investigated in Rai and Singh 
33

, and established some useful results for the 

long and short time delays. In 
33

 the authors have derived that the 

introduction of the time delay in the system destabilizes the asymptotic 

stable equilibria, in general, but not always. In
34

 a mathematical model, in 

which the mutualist helps its partner up to a certain level and then it starts 

harvesting the same has been analyzed. There is a very little work on four 

dimensional mutualistic models. Freedman and Rais
35

 analyze four 

dimensional mutualistic model, throwing some light into the complex 

mutualistic interactions. In Freedman and Rai,
35 

a four dimensional 

mathematical model arising due to interaction of two competitors each with 

a mutualist has been modeled and it has been shown that, in the absence of 

one of the mutualists the corresponding three dimensional subspace has no 

interior equilibrium but if the mutualist is allowed to interact, then interior 

equilibrium exists, establishing the reversal of outcome. Different types of 

mutualistic interactions have different stability properties Addicott 
36

.  
 

Therefore, a diverse set of models of mutualism should be retained because 

conclusions based upon one type of mutualism need not apply to others. Rai 

and Singh 
37-39

 analyzed four dimensional prey mutualistic models, 

considering different aspects of mutualistic dynamics and established that 

coexistence could be attained if the death rates of the predators is less than a 

certain threshold value depending upon conversion efficiency and the 

competition by the rivals, making mathematical analysis one step close to 

reality. Compared to previous two and three-species models of mutualism, 

our model represents a more realistic and reasonable view of the structure of 

mutualistic systems, the mechanisms by which one species benefits another, 

and the effect of this beneficial interaction on competitive outcome of the 

system under consideration. Derivation of the model by basic principles of 

biology and the results obtained provide an important link between 

mathematical models and the eventual understanding of the dynamics of the 

real world systems, moving one step close to the theory of competition for 

survival of species in nature. In particular, mutualistic interactions are seen 

as being conceptually different from other type of interactions like predation 

and competition.In any mutualistic system there may be more species 

involved in the interaction, because a mutualist could simultaneously benefit 

its partners in more than one ways. Fritz
40 

observed that ants as mutualist 

decrease predation on treehoppers.   
 



Apart from symbiotic associations, mutualism may arise indirectly 

where there is no contact between the species. For example
41

, have 

discussed a four species system in which mutualism may arise indirectly 

between two of them. Vance 
42

, documented mutualistic systems based upon 

large number of species such as those in mullerian mimicry, convergence of 

flower types which attract pollinators. Some systems may involve 

interactions of at least five species in order for there to be mutualism 

between two of them. For example, consider a plant harboring aphids which 

attract ants, which in turn deter both the herbivores of the plant and the 

predators of the aphids. Other types of mutualisms involving beneficial 

interactions among two-species may still be very complex if there is 

multiple form of benefit involved in the system. For example, in the acacia 

system described by Janzen 
43

, at least five benefits are involved in the 

interaction between ants and acacias, including deterring predation and 

competition, ameliorating a biotic mortality, providing habitat and food. 

Among much qualitatively different type of mutualisms, we consider just 

one case namely mutualism with prey. A mutualist of prey may decrease the 

predation of its predators, or compete with its predators. A mutualist of a 

prey may help it to out compete its predators by adding it directly, 

competing with competitors or predating on its predators. Ecologically, this 

could involve a variety of different mechanisms, but all would have the 

effect of decreasing the rate at which prey are captured by the predators. For 

example mutualist might camouflage the prey making it less apparent to the 

predators; or the mutualist might make the prey harder to be captured: or it 

might directly deter the predators from feeding upon the prey.  
 

 In the present article, we are concerned with an important concept in 

theoretical ecology, namely, does the introduction of a mutualist into an 

existing community of species serve to enhance the long term persistence of 

the community? Here we address the question for the case in which existing 

community consists of two competing predators competing for the same 

prey and the prey is in a beneficial interaction with a mutualist. Often the 

consideration of a third species changes the commensional association into 

mutualism between the other two species. For example ants deter herbivore 

from feeding on plants, and ants deter predators from feeding on aphids. In 

the absence of herbivores and predators, the association between ants-plants 

and ants- aphids, respectively is surely commensal 
44. 

 

2. Basic Tools: Mathematics and Computer Simulation 
 

 Models in population dynamics often look at how variables such as 

population size, predation response, conservation efficiency etc change over 
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time. Mathematically speaking, such models may be termed as dynamical 

systems. In an ideal situation, one would like to compute the value of each 

variable at all times. However, this requires obtaining a general solution, 

which usually is not possible. Nonetheless, a lot can be learned by focusing 

on the equilibria of the system and their stability. The following summary of 

stability analysis is considered largely. 
 

2.1 Eqiulibria and their Stability: Elementary Concepts 
 

, 

• A system at equilibrium does not change over time. In single- 

variable models, a particular value of the variable is equilibrium 

value if the variable, when started at this value, does not change. In 

multi-variables models, the equilibrium is given by a set of values 

(one for each variable) which, together, causes the system to remain 

unchanged. 

• An equilibrium is locally stable (or locally attracting) if a system 

near the equilibrium approaches it. 

• An  equilibrium is globally stable if a system approaches it from all 

initial conditions. 

• An equilibrium is unstable (or repelling) if the system near the 

equilibrium moves away from it. 

• The set of initial conditions leading to a particular equilibrium is 

called its domain of attraction. 
  

2.2 Techniques to determine local Stability 
 

 The techniques reviewed here are concerned with local stability. They 

are based on the fact that, close to equilibrium, any model can be 

approximated by a so called linear model, whose behavior can be readily 

analyzed. In general, performing a local stability analysis involves the 

following steps: 
 

• Find all equilibria of the system, by noting that non-linear models 

can have more then one equilibrium. 

• Check under what conditions the equilibria are biologically relevant 

(e.g., population sizes must be non-negative). 

• Determine the local stability of each equilibrium. This is done by 

calculating eigenvalues of the system under consideration. In one-

variable models, eigenvalue is simply, the derivative of the update, 



rule evaluated at the equilibrium. In multi-variable models, it is 

calculated from the Jacobian matrix, which collects all possible 

derivatives of the update rules for each variable. 
 

Case 1: One variable, Continuous time 

 A continuous -time one variable model is given by a differential equation 

 

                                        ( )
dx

f x
dt

=  

 

 Stability analysis requires the following steps: 

• Find the equilibria by replacing x  with x̂ and setting ˆ( )
dx

f x
dt

= = 0 

and solving for x̂ . 

• Check whether and when the equilibria are biologically meaningful. 

• Differentiate ( )f x  with respect to x . 

• Evaluate the derivative at equilibrium x̂ , that is, replace x  by x̂ . The 

resulting value is the "eigenvalue" λ  for this equilibrium, i.e., 

                              
ˆ

ˆ( )
x x

df
f x

dx
λ

=

 
′= =  

 
 

• Evaluate the stability of the equilibrium according to the following 

rules: 

        1.  λ <0, x̂  is stable. 

              2. λ >0, x̂  is unstable. 

• Repeat the previous two steps for each equilibrium of interest. 
 

Case 2: Multiple variables, Continuous time 
 

A general non-linear, continuous-time model with n dynamic variables 

1 2, ,....... nx x x is a system of differential equations 

 

                                              
1

1 1 2 3( , , ...... ),n

dx
f x x x x

dt
=  

                                         2
2 1 2 3( , , ...... ),n

dx
f x x x x

dt
=  

                                          ………… 
 

                                         1 2 3( , , ...... ).n
n n

dx
f x x x x

dt
=  
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Equilibria are obtained by determining the values of the variables that cause 

all of the variables to remain constant, i.e. 
 

                           1 2 .................... 0.n
dxdx dx

dt dt dt
= = = =  

 

Again, there may be multiple equilibria, and finding them may be difficult. 

Stability analysis requires the following steps: 
 

• Find all equilibria. 

• Determine whether and when they are biologically meaningful. 

• Calculate the jacobian matrix. 
 

                                  

1 1 1

1 2

2 2

1

1 2 1

.........

..........

........

......

n

n

n n n

f f f

x x x

f f
J

x x

f f f

x x x

 ∂ ∂ ∂ 
 

∂ ∂ ∂ 
 ∂ ∂

=  
∂ ∂ 
 ∂ ∂ ∂
 

∂ ∂ ∂  

 

where  1 2( , ,.... )
i n

j

f x x x

x

∂

∂
 is the partial derivative of 1 2( , ,.... )

i n
f x x x with 

respect to 
j

x , i,j=1,2,…….n. 
 

• Evaluate the Jacobian matrix at equilibrium of interest. Let 

1 2
ˆ ˆ ˆ( , ,...... )

n
E x x x be an equilibrium point, then we replace 1 2, ,....

n
x x x in 

jacobian matrix with 1 2
ˆ ˆ ˆ, ,......

n
x x x . This yield the local stability matrix 

[ ]
1 1 2 2ˆ ˆ ˆ, ,.......

ˆ
n nx x x x x x

J J
= = =

=                         

• Calculate the eigenvalues of Ĵ , which are the roots of the 

characteristic equation det ˆ( ) 0J Iλ− = , usually one has to use 

Mathematica (a computer software to execute tedious calculations). 
 

• The equilibrium is locally stable if the real parts of all eigenvalues are 

negative.Equivalently, the real part of the leading eigenvalue (i.e. the 

eigenvalue with the largest real part) must be negative. If the real part 

of the leading eigenvalue is exactly zero, the analysis is inconclusive. 
 

• If the eigenvalues are complex, the system will spiral around the  

        equilibrium along some axes. 



 

 
 

• Repeate the steps for all the equilibria of interest. 

 

  2.2.1 Routh-Hurwitz Criterion. (Coppel
45

) 
 

We will use this criterion to obtain conditions for the asymptotic 

stability of the equilibrium states. Consider the th
n order polynomial 

equation. Then a formal general condition can now be written, in terms of 

the coefficients 1 2, ,.....
n

a a a , which are necessary and sufficient to ensure that 

all the roots of the equation (2.3) have negative real parts. 

 In our case 4n ≤ , so that we mention the explicit Routh-Hurwitz Criterion 

for 2,3,4n =  

2;n =
 

The characteristic equation takes the form 2

1 2 0a aλ λ+ + =  and the 

condition is given by   1 20, 0a a> >  .                                              
 

 

3;n =
 

The characteristic equation takes the form 3 2

1 2 3 0a a aλ λ λ+ + + =  and the 

condition is given by 1 3 1 1 30, 0, 0a a a a a> > − > . 
             ,                    

4;n =
 

The characteristic equation takes the form 4 3 2

1 2 3 4 0a a a aλ λ λ λ+ + + + =  

and the condition is given by  1. 4 1 20, 0, 0,a a a> > >
 
2. 2

3 1 2 3 1 4[a a a ] a a .a − >  
 
 

 

2.3 Techniques to determine Global Stability 
 

2.3.1 Global Existence and Uniqueness. (Perko
46

) 
 

Let,  

                                 0 0(X);X(t ) X ,X f= =ɺ   

 and 

                                 :
n n

f →ℝ ℝ  : n nf →ℝ ℝ
 

 

be  a given system, where 1( )nf C∈ ℝ . The following result gives the 

criterion for global existence and uniqueness of its solutions: 
 

Theorem 2.3.1: Suppose 1( )nf C∈ ℝ and (X)f   satisfies the global 

Lipschitz condition, 
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           (X) (Y) M X Y ,f f− ≤ −� � � �   0M > , for all , nX Y ∈ℝ . 
 

 Then for 0 ,
n

X ∈ℝ  initial value problem has unique solution defined for 

all 0 .t ∈ℝ  
   

 2.3.2 LaSalle
’
s Invariance principle (Hale

47
) 

  

 Consider the system of differential equations  

                                      (X)
dX

f
dt

=                                                                   

where : ( )n nf Ω ⊆ →ℝ ℝ  is continuous. We call V a Liapunov function on 

G ⊆ Ω  for the above system if :V G +→ ℝ   and  
 

1. V is continuous on G. 

2. If V is not continuous at  x G⊆  (the closure of G) then (X)V → +∞    

as x x→ for all x G∈ , and    

3. . 0V gradV f= ≤ɺ  on G. 
, 

    

Theorem 2.3.2 Assume that V is a Liapunov function for the system 

(2.6) on G. Define     

                          { }: (X) 0S x G V= ∈ ∩ Ω =  

 and let M be the largest invariant set in S. Then every bounded trajectory of 

the above system that remains in G approaches the set M eventually.  
 

 Now we mention the following results, which have been used frequently, in 

analyzing the models. 
 

2. 3.4. Liapunov Function and Stability Theorem. 
  

Consider the function 1 2(x , x ,.....x )
n

V defined in the phase space of 

variables, 1 2, ,......
n

x x x and denote 1 2X (x , x ,.....x )
n

=  , then V(X) is positive 

definite in the neighborhood U of origin if (X) >0, for all X ( ≠ 0) ∈U and V 

(0) =0. 
 

If  V(X) is positive definite and has continuous partial derivatives, then for a 

small enough positive constant c, the following property holds. 
 

   (X) cV < defines an open, bounded, connected region 
c

ϕ  which contains 

the origin and has (X) cV =   as its boundary; the diameter of 
c

ϕ tends to zero 

as c tends to zero; and when 1 2cc < the boundary of 
1c

ϕ is contained in that 

of 
2c

ϕ . 
 



2.3.5 Domain of Asymptotic Stability 
 

The region R U⊆  is defined to be the domain of asymptotic stability if 

the Liapunov function (X)V , where (X)V ′  is the derivative of V(X) along 

the solutions of the system, AXX =ɺ  have the same property as mentioned 

in above  section .   
 
 

2.4 Average Liapunov Function.  

A nonnegative real valued 1
C  function (X)ρ defined on n

ℝ , is called an 

average Liapunov function if it satisfies the following two properties: 

1. (X) 0ρ >  for all X n

+∈ℝ  and (X) 0ρ =  for X n

+∈∂ℝ   ,                                          

2. If we define  
1

( ) 1
( ) [ ( )]

( ) ( )

n

i i
ii

X
X X f X

X X x

ρ ρ
ψ

ρ ρ
=

∂
= =

∂∑
ɺ

,  then  ( )Xψ  has a 

continuous extension to the closure of n

+ℝ ,  and ( ) 0Xψ > , X ( )n

+∈Ω ∂ℝ . 
 

The next result provides a sophisticated tool for proving uniform persistence 

of the ecological systems. 
 

 Theorem 2.4.1 If the system  

                              (X),i 1,2,....n,i
i i

dx
x f

dt
= =

                                                      

  with (0) 0
i

x > , is dissipative, and if a persistence function (also called 

average Liapunov function) (X)ρ  exists then the above system is uniformly 

persistent, and hence permanent. 
 

4. Illustrative Example (Complete Analysis of a Model)  
 

 In this section we propose and analyze a mathematical model based on 

the techniques discussed in previous section. 
,   
3.1 Mathematical Model 
 

 Under the assumptions of continuous birth and death, we have modelled 

an ecological situation arising due to interaction of four species; two 

competing predators y and z, one prey x and a mutualist u to the prey 

species, living in the same environment, with the restriction that the 

mutualist deters both the predators in its interactions for the benefit of prey. 

Mathematically, this model can be described by the following system of 

autonomous differential equations: 
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1 2

1 1 1 1

2 2 2 2

(u, x),

( ) (u, ) (u, ),

[ ( ) ( ) (u, )],

[ ( ) (y) (u, )],

(0) 0, (0) 0, (0) 0.

u uh

x xg x yp x zp x

y y s y q z c p x

z z s z q c p x

x y z

α

=

= − − 


= − − + 


= − − + 
> > > 

ɺ

ɺ

ɺ

ɺ

 

            

Here 

                   
.

d

dt
≡ and t represents time, and  

 

           u (t) =population of mutualist at any time t, 
            
                     x (t) = population of prey at any time t, 

                     y (t) = population of the first predator at any time t, 

                        z (t) = population of the second predator at any time t; and α, 

c1, c2 
are parameters assumed always to be positive. 

 

Functions h, g, 
i

q
i

p ,
i

s , , for i=1,2;are continuous and sufficiently 

smooth  to ensure the existence and uniqueness of solutions of initial value 

problem (1) with initial conditions in 4

+ℝ  and to allow the stability analysis 

of any solutions of the system(see theorem 2.3.1). We also require the 

solutions to be defined on some interval [0, T) where 0 T≤ < ∞ .We further 

frame the following assumptions on the functions occurring in the model. 
 

H1: The function h : + +× →ℝ ℝ ℝ  represents the specific growth rate of 

mutualist and satisfies the following assumptions: 
 
 

               (a)      (0, x) 0,h >  

               (b) :L + +∃ →ℝ ℝ st (L(x), x) 0,h =   and     0
dL

dx
≥         

               (c)   
(u, x)

0,
h

u

∂
<

∂
                     (d)   

(u, x)
0.

h

x

∂
≥

∂
      

    

Ecologically, the above assumptions impose the following restrictions on 

mutualist population: 
 



1. The mutualist can grow at low densities with or without the prey (x). This 

indicates that mutualism is non-obligate for mutualists. 
 

2. The population of mutualists cannot grow over a certain population size, 

which depends on population size of its partner prey; this implies that 

environment has a carrying capacity L(x), for the mutualist, which is a 

function of prey population. 
 

3. The population of mutualist is slowed by an increase in its own 

population, other populations remaining the same. This further implies that 

mutualist exhibits density dependent growth. Ecologically this is termed as 

“population effect”. 
 

4. Population of mutualists is enhanced by an increase in the prey 

population for any population of the mutualist. 

 

H2: The function g(x), where :g + →ℝ ℝ  represents the specific growth 

rate of prey population. We propose the following hypothesis for this 

function: 

              (a)  (0) 0,g > (b) 0
g

x

∂
<

∂
, (c) 0K∃ >  such that (K) 0.g =  

Ecologically the above assumptions impose the following restrictions on 

specific growth rate of the prey species: 
 

1. The prey can grow at low densities with or without the presence of 

mutualists,so the mutualism is also non-obligate for  the prey species. 
 

2. The population of prey is slowed by an increase in its own numbers, for 

a fixed population size of mutualist. In other words the prey population 

exhibits density dependent growth pattern. 
 

3. The population of prey cannot grow over a certain size in any 

environment. In other words the environment has a carrying capacity for 

the prey species. 
 

H3: The functions  :
i

p + +× →ℝ ℝ ℝ  i=1, 2 represent predators response 

functions. We propose the following hypotheses on these functions: 
 

(a) (u, x) 0
i

p ≥  for 0, 0,x u> > (b) (u,0) 0, 1, 2,
i

p i= =  
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 (c) (u, x) 0,
ix

p ≥ (d) (u, x) 0.
iu

p ≤  
 

Ecologically, the above mathematical conditions impose the following  

restrictions on the predators response function: 

 

1. The predator’s responses to the prey densities, which refer to change 

in the density of preys per unit of time per predator as the prey 

densities changes, are assumed always to be non-negative. Also 

there cannot be any predation in the absence of preys. 
 

2. For fixed population of other species, the predation is enhanced with 

the increase in the number of prey species. 
 

3. The mutualist cuts down the effectiveness of predation on the prey. 

This may be termed as “Mutualist effect”. This is the main effect 

incorporated in the model. 
 

H4: The functions :
i

q + →ℝ ℝ  represent competition between predators y          

and z. We propose the following assumptions for these functions: 
 
 

  (a) (0) 0,
i

q =    (b) 1(z) 0,q > for 0,z >   (c) 2 (y) 0,q > for 0,y >  

  (d) 1(z) 0q′ >  for 0,z >   (e) 2 (y) 0,q′ > for 0.y >  

 

 Ecologically, these hypotheses impose the following restrictions on the 

functions
i

q , i =1, 2: 

1.  In the absence of competing predators there is no competition. 

2. Competition increases with the increase in rival densities.  
 

H5:  The functions 1(y)s  and 2 (z)s  where
 

:
i

s + →ℝ ℝ are death rates of 

competing predators. We propose the following hypotheses on these 

functions: 

              (a) (0) 0,i 1,2,
i

s > =  (b) 1(y)
0,

s

y

∂
>

∂
 (c) 2 (z)

0,
s

z

∂
>

∂
 

Ecologically, these hypotheses impose the following restrictions on the 

death rates. 
 

1. Initially death rates are positive. 

2. Death remains positive for all the time. 
 



 The death rates incorporated in the model are a combination of natural 

deaths and harvesting of predator by other predators. Obviously our model 

is valid if a predator is harvested by other predators or they die a natural 

death.  
 

 The above assumptions are ecologically reasonable and exemplified in 

nature as discussed in introduction. First we shall establish that our system 

is well behaved in the sense that all the solutions of the system (1) remain 

positive and bounded, with initial positive conditions. Now, we can state the 

following theorem. 
 

Theorem 3.1 Under assumed mathematical conditions on the functions 

h, g, 
i

q
i

p ,
i

s , , for i=1,2;  the solutions { }(t), x(t), y(t), z(t)u of system (1) with 

initial positive conditions are all positive and bounded for 0t t≥ . Set 

          { }1 1((u(t), x(t), y(t), z(t)) : 0 u L;0 ;0 ;0x K c x y M c x z NΩ = ≤ ≤ ≤ ≤ ≤ + ≤ ≤ + ≤ɶ ɶ ɶ ɶ  is a 

positively invariant set and attracts all solutions initiating with non-negative 

initial conditions, where 
0 0K max{x , K}, max{u , L(K)}L= =ɶ ɶ ɶ , 

1 0 0

1

max{c x y , }
M

M
s

= +ɶ , 
2 0 0

2

max{c x , }
N

N z
s

= +ɶ . 

 

3.2 Equilibrium States (Stationary Solutions)  
 In this section, the criteria for existence and non-existence of various 

equilibria points have been discussed. 
 

The equilibrium points of the system (1) are obtained by equating right hand 

side of each equation of the system equal to zero and solving them 

algebraically.  
 

 First we observe that trivial equilibrium  1(0,0,0,0)E  always exists. As 

well the following one-dimensional and concerned two-dimensional 

equilibria are obvious, 2 ( (0),0,0,0)E L , 3 (0, (0),0,0)E K , 

4
ˆ ˆ(0, , ,0,0)E x y , 5 ( , ,0,0)E u xɶ ɶ , 6 2 2(0, ,0, )E x z .  

 

On ecological point of view, there must exist equilibrium in u-x plane, for 

otherwise one of the populations would extinct contradicting the concept of 

mutualism. Hence, we assume that 5E  will always exist.  
 

There are other three other possible equilibria, which are in relative 

three-dimensional subspaces. If they exist, we denote them 

by 7 3 3 3( , , ,0)E u x y , 8 4 4 4( , ,0, )E u x z , 9 5 5 5( , , , )E o x y z . Finally, there may be a 

positive interior equilibrium denoted by 10 ( , , , )E u x y z
∗ ∗ ∗ ∗ . Later on, we will 

give a condition for such equilibrium to exist. 
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 The computation of interior equilibrium in four-dimension is very 

complicated. We shall show the existence of the interior equilibrium, in the 

section of uniform persistence by the use of the theorem due to Butler48. 

However, here in this section we will construct an example to demonstrate 

the existence of various equilibria, including the one in four-dimension. 
 

 

3.2.1 Illustrative Example 
 

 In order to illustrate the above analysis we consider the following 

example. All coefficients and functions are taken for mathematical 

convenience, not exactly from a real ecological system. 

                                                                                  

   (2)                             0 0

1
1 1 0

2 2 2 0

[1 ],

[1 ] ,
1

[ s (1 y) (z) x],
1

[ s (1 ) (y) ]

u
u u

L x

x xy
x x xz

K mu

c
y y

mu

z z z c x

α γ δ

δ γ

δ δ


= − +


 = − − −

+


= − + − −
+

 = − + − −

ɺ

ɺ

ɺ

ɺ

                                          

 

 
 

The values of the parameters specified in the system are taken as              

  

                  0 03, 4, 1L Kα γ δ= = = = = , 1 2 1 24, 1, 3, 4m c cδ δ= = = = =  

               

1 2

1 1
, .

3 4
s s= =                                                         

,   
 With above values of parameters, the various equilibrium points of the 

above system are found as follows:   

1(0,0,0,0)E , 2 (3,0,0,0)E , 3 (0,4,0,0)E , 4

1 7
(0, , ,0)

2 2
E , 

 

5(7,4,0,0)E ,
6

5 33
(0, ,0, )

17 17
E , 7 (4.2891, 2.1224,17.1177,0)E , 

 

8

44 5 47
( , ,0, )
13 13 13

E ,
9

7 23
(0, , ,0)

10 10
E , (0.0584, 2.187,0.4398,0.11145)E∗ . 

 
 

 



Clearly our system (2) satisfies all the mathematical restrictions assumed in 

assumptions and also the conditions of the results are verified. 
 

3.3 Stability Analysis 
 

 In this section we have discussed stability of the system under 

consideration. This section is divided into two subsections; each of which 

deals with a particular aspect of stability analysis namely the first subsection 

deals with local stability analysis while second subsection is concerned with 

global stability analysis. 
 

3.3.1 Local Stability of Equilibria 
 

      Local stability analysis can be made by computing the eigen values of 

the variational matrix at the equilibrium points. The signs of the real parts of 

eigen values evaluated at given equilibrium points determine the stability.  
    

In order to discuss stability of these equilibria, we compute the 

variational matrices about the various equilibria. We denote by V, the 

general variational matrix and use corresponding notations for the 

variational matrices about the corresponding equilibria. For example 1V is 

the variational matrix about 1E and so on. Local stability analysis can be 

made by computing the eigenvalues of the variational matrices at the 

various equilibrium points. The signs of the real parts of eigenvalues 

evaluated at given equilibrium points determine the stability.  

 
 

The general variational matrix V is given by 4 4( )ijV v ×=  

where    

               11v = ( , ) ( , )uh u x uh u x+ , 12v = ( , )xuh u x , 13v =0, 14v =0 

               21v = 1 ( , )uyp x u− 2 ( , )uzp x u− ,                               

               22v = [ ( ) ( )]xg x xg xα + 1 2( , ) ( , )x xyp x u zp x u− − 23v = 1( , )p x u− ,   

               24v = 2 ( , )p x u− , 31v = 1 1 ( , )uyc p x u , 32v = 1 1 ( , )xyc p x u ,    

               33v = 1 1 1 1( ) ( ) ( , )s y q z c p x u− − + 1' ( )ys y− , 34v = 1( )yq z′− ,    

               41v = 2 2 ( , )uzc p x u , 42v = 2 2 ( , )xzc p x u , 43v = ,

2 ( )zq y− ,  

               44v = 2 2( ) ( )s z q y− − 2 2 2( , ) ( )c p x u zs z′+ − . 
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Hence the variational matrices with respect to the various equilibria have the 

following non-zero entries: 

For 1V ;    

 11v = (0,0)h , 22v = (0)gα , 33v = 1 1 1 1(0) (0) (0,0)s q c p− − + ,   

 44v = 2 2(0) (0)s q− − 2 2 2(0,0) ( )c p zs z′+ − . 

For 2V ;  

11v = (0) ( (0),0)uL h L , 12v = (0) ( (0),0)xL h L , 22v = ( (0))g Lα ,   

33v = 1(0)s− , 44v = 2 (0)s− . 

For 3V ;  

11v = (0, (0))h K , 21v = 0 , 22v = [ (0) (0, (0)]xK g Kα , 

23v = 1(0, (0))p K− ,  24v = 2 (0, (0))p K− , 

33v = 1 1(0) (0)s q− − + 1 1(0, (0))c p K ,   

44v = 2 (0)s− − 2 (0)q + 2 2 (0, (0))c p K . 

For 4V ; 

 

 11v = 1(0, )h x , 21v = - 1 1 1(0, )uy p x ,   

 22v = 1 1 1( ) ( )xx g x g xα α+ − 1 1 1(0, )xy p x , 23v = 1 1(0, )p x− ,   

 24v = 2 1(0, )p x− , 

31v  = 1 1 1[ ( )y s y− + 1 1 1(0, )]uc p x , 32v = 1 1 1 1(0, )xy c p x ,  

 33v = 1 1 1( ) (0)s y q− − + 1 1 1(0, )c p x + 1 1 1( )y s y′ , 34v = 1 1(0)y q′− ,  

 44v = 2 (0)s− − 2 1( )q y + 2 2 1(0, )c p x . 

For 5V ;  

11v = ( , )uh u xɶ ɶ ɶ , 12v = ( ), )xuh u xɶ ɶ ɶ , 21v = 0 , 22v = ( )xxg xα ɶ ɶ , 



23v = 1( , )p u x− ɶ ɶ , 24v = 2 ( , )p u x− ɶ ɶ , 33v = 1 1 1 1(0) (0) ( , )s q c p u x− − + ɶ ɶ ,  

44v = 2 (0)s− − 2 (0)q + 2 2 ( , )c p u xɶ ɶ . 

For 6V ; 

11v = 2(0, )h x , 21v = 2 2 2(0, )uz p x− ,  

22v = 2 2( )xx g xα + 2 2 2 2( ) (0, )xg x z p xα − , 23v = 1 2(0, )p x− ,  

24v = 2 2(0, )p x− , 33v = 1 1 2(0) ( )s q z− − + 1 1 2(0, )c p x ,  

41v = 2 2 2 2(0, )uz c p x , 42v = 2 2 2 2(0, )uz c p x  

44v = 2 2( )s z− − 2 (0)q + 2 2 2(0, )c p x . 

For 7V ; 

11v = 3 3 3( , )uu h u x , 12v = 3 3 3( , )xu h u x , 21v = 0 3 1 3 3( , )uy p u x−  

22v = 3 3( )xx g xα + 3( )g xα − 3 1 3 3( , )xy p u x ,  

23v = 1 3 3( , )p u x− , 24v = 2 3 3( , )p u x−  

31v = 3 1 1 3 3[ ( , )]uy c p u x , 32v = 3 1 1 3 3( , )xy c p u x ,  

33v = 1 3 1( ) (0)s y q− − + 1 1 3 3( , )c p u x 3 1y s ′−  

 

34v = 3 1 (0)y q ′− , 44v = 2 (0)s− − 2 3( )q y + 2 2 3 3( , )c p u x . 

For 8V ;  

11v = 4 4 4( , )uu h u x , 12v = 4 4 4( , )xu h u x , 21v = 4 2 4 4( , )uz p u x− ,  

22v = 4 4( )xx g xα + 4( )g xα − 4 2 4 4( , )xz p u x , 23v = 1 4 4( , )p u x− ,  

24v = 2 4 4( , )p u x− , 33v = 1 1 4(0) ( )s q z− − + 1 1 4 4( , )c p u x ,  

41v = 4 2 2 4 4( , )uz c p u x , 42v = 4 2 2 4 4( , )z c p u x , 43v = 4 2 (0)z q ′− ,  

44v = 2 4( )s z− − 2 (0)q + 2 2 4 4 4 2 4( , ) ( )c p u x z s z′− . 
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For 9V ;  

11v = 5(0, )h x , 21v = 5 2 5(0, )uz p x− − 5 1 5(0, )uy p x ,  

22v = 4( )g xα − 5 1 5(0, )xy p x - 5 2 4(0, )xz p x , 23v = 1 5(0, )p x− ,  

24v = 2 4(0, )p x− , 31v = 5 1 1 5(0, )uy c p x , 32v = 5 1 1 5(0, )xy c p x ,  

33v = 1 5 1 5( ) ( )s y q z− − − 5 1 5( )y s y′ - 1 1 5(0, )c p x , 

41v = 5 2 2 5(0, )uz c p x , 42v = 5 2 2 5(0, )xz c p x , 43v = 5 2 5( )z q y′− ,  

44v = 2 5( )s z− − 2 5( )q y + 2 2 5 5 2 5(0, ) ( )c p x z s z′− . 

 

It is obvious to note that 10V is nothing but the general variational matrix V 

evaluated at 10 ( , , , )E u x y z
∗ ∗ ∗ ∗ . From the determination of eigenvalues of the 

above matrices, we can make the following statements about the local 

stability of the equilibrium points. 1V  having positive eigenvalues in u and x-

directions and negative in y nd z-directions is unstable. Near 1E , mutualist 

and prey populations grow while populations of both the predators decline. 

2V  have positive eigenvalue in x-direction and negative in u, y, and z-

directions, so unstable.  Here we may conclude that 2E  attract in u, y and z- 

directions and repels in x-direction. 

 

3V have positive eigenvalue in u-direction and negative along x-direction. 

The eigenvalues in y and z-directions are positive if we assume 

 

  (3)                  
(0)

(0, (0))
(0)

i
i

i

s
p K

c
>                                             

This assumption is ecologically reasonable, by noting that in the absence of 

mutualist and when the prey population is near its carrying capacity K (0), 

the population of predators y and z must multiply. Thus  3E  is unstable 

in
ux

+
ℝ . 

 



  The eigenvalue of 4V  in u-direction is 1(0, )h x , which is positive by (H1-

a).Thus the equilibrium 4E  is unstable, population of u near 4E  increases. 

The eigenvalue in z-direction is given by 
 

   (4)                 2 2 1 2 2 1(0) ( ) (0, )
z

s q y c p xλ = − − +                                

4E  is an interior equilibrium for a competitive predator-prey system, in the 

absence of mutualist. Freedman 
49 

has given the graphical analysis of this 

case and accordingly, we can state the following result for our system. Let 

us denote 

                    1( )H x = 1 1 1 1 1 1 1 1 1( ) ( ) (0, ) ( )
x x

x g x g x y p x y s yα α ′+ − −                    

 and  

         2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(x) (0, )[ (0, ) (0, ) (0, ) (0, ) (0, )]x x x xH y p x x g x g x y p x c y p x p xα α= + − +  

2 ( ) 0H x >  then we can state the following theorem: 
 

Theorem3.1. If 1( )H x  <0, then 4E  is asymptotically stable and unstable 

if 1( )H x >0. 
 

The eigenvalue of 5V  in y and z-directions are positive above, causing 

5E unstable, populations of predators in respective directions near 5E  

increases. The eigen values in u and x-direction is given  
 

 

 
1

2 2
1 1

[ ( , ) ( )] [( ( , ) ( )) 4 ( ) ( )]
2 2

u x u x u x
uh u x xg x uh u x x g x uxh x g xλ α α α± = + ± + −ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

 

    Now if we denote 
3( )H x = ( , ) ( , )

u x
h u x g u xɶ ɶ ɶ ɶ , then we have the following 

result: 

Theorem3.2. If 3 ( )H x >0, then the eigen values λ ±  have negative real 

parts and 5E  is asymptotically stable in positive u-x plane.  

                          Mutualistic Interactions Leading to Coexistence                               345



 346                             Bindhyachal Rai, Piyush Khare and Madhsudan Singh 

 

Eigen value of 6V  in u-direction is given by 2(0, )h x , which is positive 

(by H1-a).  This implies that 6E is unstable in u-direction, hence the 

population of mutualist increases near 6E .The eigen value in y-direction is 

given by      
 

(5)             1 1 1 2 1 2(0) (0, ) ( )
y

s c p x q zλ = − + −           

                                             

The eigen values in x and z-direction have negative real part. 

 

 If    4 2 2 2 2 2 2 2 2( ) ( ) (0, ) (0, ) ( ) 0
x x

H x x g x g x z p x s zα α ′= + − − <   

and 

         
5 2 2 2 2 2 2 2 2 2 2 2 2 2( ) [ ( ) ( ) (0, )] (0, ) (0, ) 0x x xH x s x g x g x z p x z c p x p xα α′= + − − < . 

Therefore, if the above two conditions are satisfied, then 6E  is 

asymptotically stable in x-z plane, but unstable in u-direction i.e., population 

of mutualist increases, while that of x and y decreases near point 6E . 
 

7 3 3 3( , , ,0)E u x y ,
8 4 4 4( , , 0, )E u x z , 

9 5 5 5(0, , , )E x y z are interior equilibria in respective 

planes, in the absence of fourth species, namely predator z in 7E , predator y 

in 8E , and the mutualist u in 9E . A detail analysis of these equilibria 

including   the interior equilibrium  10 ( , , , )E u x y z
∗ ∗ ∗ ∗  , applying Rough-

Hurwitz criteria .In this technique, the computations are very complicated 

and the results could not be interpreted ecologically. Therefore, we choose 

not to repeat them in this paper. Not much can be said 

about 10 ( , , , )E u x y z
∗ ∗ ∗ ∗ , of course, stability of interior equilibrium is not 

clear at this point.   

                  

3.3.2 Global stability of the interior equilibrium  
 

 In this section we will discuss the conditions for the global stability of 

the equilibrium point 10 ( , , , ).E u x y z∗ ∗ ∗ ∗  

 For mathematical convenience, we denote  10E   as E∗ .  Here we assume 

that E∗
, as defined earlier, exists. It is the purpose of this section is to derive 

criterion for E∗  to be globally stable i.e. E∗  to be asymptotically stable with 

domain of attraction the positive cone. For this, our technique will be to 

construct a Liapunov function 
50

, whose domain of validity is the positive 



cone. We have the following theorem, for the stability of interior 

equilibrium: 
 

Theorem 3.11   Let M (u, x, y, z) be a positive definite matrix for all 

points in the set 4

+Ω ∩ℝ , where Ω  is the region of attraction as discussed 

in theorem (1). Then the interior equilibrium E∗
is a globally asymptotically 

stable equilibrium of the system with respect to solutions initiating in 

the 4int +ℝ . 
 

Proof. Let { }(t), x(t), y(t), z(t)X u= be any solution of (1) 

and 4intX +Ω ∩ ℝ .  Since M is positive definite, ( ) 0v X ≤ɺ , the function V 

defines a Liapunov function. The set 
4{ : V( ) 0}X Int X+∈ Ω ∩ =ɺℝ

 is 

precisely 
E∗

.  
 

Therefore the largest invariant set in Ω
  

is the equilibrium point E
*
, and 

hence by LaSalle’s invariance principle , E∗  globally asymptotically stable.
 

Note. A necessary condition for the matrix M (u, x, y, z) to be positive 

definite is that 
ii

b =0, for all i, except at equilibrium values. 
 

3.4 Uniform Persistence  
 

 In this section, we shall obtain the criteria for our system to be uniformly 

persistence. Followed by Rai and Singh
51

, the sufficient conditions for the 

permanent co-existence or extinction of species of system (1) are obtained 

by the knowledge of various equilibria and by constructing average 

Liapunov function. Followed by Rai and Singh, we can state the following 

theorem for our system: 
  

Theorem 3.12.  Let the following conditions hold, in addition to those  
 

mentioned in the assumptions:  
 

1. (0) c (K,0)
i i i

s p< , i=1, 2,         2. 2 2 2 1(0) c (x ,0)s p<  
 

3.   1 1 1 2 1 2(0) c (x ,0) q (z )s p< −       4. 2 2 2 3 2 3(0) c (x ,0) q (y )s p< −
,
 

 then the system (1) is uniformly persistent. 
 

Now at this stage, the following corollary is obvious. 
 

 

Corollary 3.13 Let the assumptions (H1)-(H5) hold and conditions of 

the theorem (3.12) are satisfied then the interior equilibrium 

(u , x , y , z )E∗ ∗ ∗ ∗ ∗ exists. 
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At this point our analysis is greatly facilitated by graphical approach. We 

have plotted time verses interacting populations by Matlab software for 

different values of parameters for the system. It was found that, in the 

absence of mutualist and the predation is too high, then the predators may 

drive the prey population to zero (due to over exploitation) and as a 

consequence predators also go to extinction, due to non availability of prey 

species. Hence the entire system may collapse (Figure 1). But when the 

mutualist is allowed to interact in the system, there is a possibility to save 

the population of the prey species from going to extinction, by deterrence 

( 0
p

u

∂
≤

∂
) and the uniform persistence is possible (Figure 2). 

 

 
 

Fig. 1: Mutualist Absent 

 

 

u 

x 

y 

z 
 



 
 
 

Fig. 2: Mutualist Present 

 

3.5 An Example  
 

 In order to illustrate the above analysis we consider the following 

example. All coefficients and functions are taken for mathematical 

convenience, not exactly from a real ecological system. Mathematica (5.2), 

software, has been used for tedious calculations, and only approximate 

values have been considered.  
 

          (6)                    
0 0

1
1 1 0

2 2 2 0

[1 ],

[1 ] ,
1

[ s (1 y) (z) x],
1

[ s (1 ) (y) ]

u
u u

L x

x xy
x x xz

K mu

c
y y

mu

z z z c x

α γ δ

δ γ

δ δ


= − +


 = − − −

+


= − + − −
+

 = − + − −

ɺ

ɺ

ɺ

ɺ

                                              

 

Specific values of the parameters are taken as:  
 

         0 03, 4, 1L Kα γ δ= = = = = , 1 2 1 24, 1, 3, 4m c cδ δ= = = = =  

         1 2

1 1
, .

3 4
s s= =  

 

Various equilibrium points of the above system are listed as follows:   

u 

x 

y 

z 
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      1(0,0,0,0)E , 2 (3,0,0,0)E , 3 (0,5,0,0)E , 4

25 176
(0, , ,0)

49 49
E ,                    

     5 (8,5,0,0)E ,
6

25 316
(0, ,0, )

84 84
E , 7 (5.18759,4.9241,10.2726,0)E ,   

 
8
(3.8910,1,1132,0,0.3251)E ,

9

5 269 117
(0, , , )

37 37 137
E , (28.308,0.5251,0.1251,0.1254)E∗  

Since 
1 2 1 1(0) 0.333, (0) 0.25, 3, 4s s c c= = = = . 

 

 Here in this example, we observe that conditions (H1)-(H5), framed in 

the assumptions are satisfied and all the conditions of the theorem (3.12) are 

also satisfied and hence the considered system (6) is uniformly persistent. 
 

3.6 Summary  
 

    In this paper an ecological situation arising due to interactions of four 

species: two predators competing for the same prey and also in competition 

with each other and a mutualist to the prey species has been modelled and 

mathematically analyzed, where the mutualist possesses defensive 

mechanisms(deterrence in particular) against both the predators. After 

framing ecologically reasonable assumptions on the functions incorporated 

in the model, conditions for existence/ non-existence of equilibria were 

established, and the stability of these equilibria were determined. Also 

conditions for long term survival of all the species has been investigated in 

the form of uniform persistence. A specific numerical example has been 

discussed, in order to illustrate the results. 
 

 After analysis, it was found that by adding a mutualist to the system, the 

prey equilibrium value is increased. This establishes the effect in the case of 

a stable interaction of increasing the effective carrying capacity to the prey 

species. Further the carrying capacity of the mutualist is also increased, due 

to positive interaction with the prey. Finally, if the death rates of the 

predators are less than a certain threshold value, depending upon conversion 

efficiency and the competition by the rivals, the uniform persistence of all 

the four species of the system under consideration is possible. 
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