
ISSN 0974 - 9373

Vol. 15 No.4 (2011) Journal of International Academy of Physical Sciences pp. 455-466

Comparative Study of Complexity of Algorithms

for Iterative Solution of Non-Linear Equations

R. N. Jat
Department of Mathematics, University of Rajasthan, Jaipur

E-mail: khurkhuria_rnjat@yahoo.com

D. S. Ruhela

Department of Computer Application, S. M. L. (P.G.) College, Jhunjhunu (Raj.)

E-mail: dsruhela@yahoo.com

(Received December 22, 2010)

Abstract: In this paper algorithms for Bisection, Secant, Rugla-Falsi,

Newton Raphson and Adaptive Bisection methods to find the roots of

non-linear equation are studied for their complexity. Using RAM

(Random Access Machine) model the complexity of all algorithms are

calculated. In RAM model we count the primitive operations executed by

given algorithm and then find the time in function t(n). The complexity

can represent in the form of Big-Oh notation in term of time function. In

order to compare the adaptive Bisection method with Bisection method,

Secant method, Regula-Falsi method and Newton Raphson method a

variety of functions are used with same criteria i.e. 10-6. The time

complexity of all algorithms are O(n) where n is number of iteration. The

result shown in table shows that for function f(x) =ex-3x the number of

iteration in Bisection methods are 20 while in adaptive Bisection method

is 5. Since time complexity of both algorithms are O(n) , so Adaptive

bisection algorithm will execute faster to compare all other method and it

will take less time to run the program.

Keywords: Bisection method, RAM (Random Access Machine), Big-Oh.

1. Introduction

Computational complexity can be defined as a function of the size of

input resources required for computation
1
. The running time of an algorithm

or data structure operation typically depends on number of factors like input

size, hardware and software used
2
. We can study its running time on various

inputs and recording the actual time spent in each execution. Such

measurement can be taken in an accurate manner by using system calls built

in language for which algorithm is written. In general, we are interested in

determining the dependency of running time on size of input. In order to

determine this, we can perform several experiments on many different test

456 R. N. Jat and D.S. Ruhela

inputs of various sizes. Very often in engineering and mathematics, non-

linear equation are solved using iterative methods. The Bisection Method
3
 is

among the few iterative methods which guarantee convergence. Here we will

present the algorithm for iterative methods and then find the complexity for

it.

RAM Machine Model Definition 1.2

An approach of simply counting primitive operations gives rise to a

computational model called Random Access Machine (RAM)
2
. In this model

we define a set of high level primitive operations that are largely

independent from programming language used and can be defined also in the

pseudo-code. Primitive operation include following:

1. Assigning the value to variable.

2. Calling a method.

3. Performing an arithmetic operation.

4. Comparing two numbers.

5. Indexing into array.

6. Following an object reference.

7. Returning from a method.

Counting Primitive Operation 1.3

We now show to how count the number of primitive operations executed

by an algorithm, used for all methods. We do this analysis by focusing on

each step of the algorithm and counting primitive operation that it takes,

taking into consideration that some operation are repeated, because they are

enclosed in the body of a loop.

Asymptotic Notation
2

1.4

We have clearly gone into detail for evaluating the running time of

simple algorithms. Such an approach would clearly prove cumbersome if we

had to perform it for more complicated algorithms. In general, each step in

pseudo-code description and each statement in a high level language

implementation corresponds to small number of primitive operations that

does not depend on input size. Thus we can perform a simplified analysis

that estimates the number of primitive operation executed up to a constant

factor, by counting the steps of pseudo-code or the statements of high level

language executed. Fortunately, there is a notation that allows us to

characterize the main factor affecting an algorithm’s running time without

going into all detail of exactly how many primitive operations are performed

for each constant time of instructions.

Comparative Study of Complexity of Algorithms 457

The “Big-Oh” Notation
2

1.5

Let f (n) and g(n) be function mapping nonnegative integers to real

numbers. We say that f(n) is O(g(n)) if there is a real constant c>0 and an

integer constant n0>=1 such that f(n)<=cg(n) for every integer n>=n0. This

definition is referred to as “big-Oh” notation. Alternatively, we can also say

“f(n) is order g(n)
4
.

2. Bisection Method

The Bisection method (BM)
3
, is among few iterative method which gua-

rantee convergence which is in linear rate.

Algorithm for Bisection Method 2.1

To find the root of f(x) =0 with a prescribed tolerance say epsilon.

Given that ak and bk such that f(ak)*f(bk)<0. The value ck is used to store the

middle point of the interval.

1. Begin

2. Read ak,bk // Input the values of ak and bk

3. Read Epsilon //Input the tolerance

4. Repeat step 5 to 6 while((|ak-bk|/ak))<epsilon) and (f(ck)≠0))

5. ck=(ak+bk)/2

6. If(f(ak)*f(ck)<0) then

Set bk=ck

Else

Set ak=ck

End if

7. Write “The approximate root is”,ck

8. End

Counting Primitive Operation2.2

1. Reading the value of variable ak,bk contributes two unit of count.

2. Reading the value of epsilons contributes one unit of count.

3. Before entering the body of loop condition (ak-bk)/ak<epsilon is verified.

This action corresponds to three (one for subtraction, one for division

and one for comparison) primitive operation and performed n times.

4. At the beginning of loop ck is calculated. This action corresponds to

executing three primitive operations.

5. In the body of the loop, condition f(ak)*f(bk)<0 is verified. This action

corresponds to executing four operations.

458 R. N. Jat and D.S. Ruhela

6. As per result of verification one assignment statement will execute

requires one operation.

7. The body of loop is executed n times. Hence, at each iteration of loop,

nine primitive operations is performed 9n times.

8. Printing the value of Ck requires one operation.

To summarize, the number of primitive operations t (n) executed by

algorithm is at least.

t(n) = 2+1+(3+3+4+1)n+1=11n+4.

The “Big-Oh” Notation 2.3

By the big-Oh definition, we need to find a real constant c>0 and an

integer constant n0>=1 such that 11n+4 <=cn for every integer n>=n0. It is

easily see that a possible choice is c=15 and n0=1. The big- Oh notation

allows us to say that a function of n is “less than or equal to” another

function (by the equality “<=” in the definition), up to constant factor

eventually (by the statement “n>=n0” in the definition).

The number of primitive operations executed by algorithm for Bisection

method is at most 11n+4. We may therefore apply the big-Oh definition with

c=15 and n0=1 and conclude the running time of algorithm in O(n).

 =O(n). So the complexity of algorithm used for Bisection

method is O(n).

 In fact, any polynomial akn
k
+ak-1n

k-1
……+a0 will always be O(n

k
)

3. Regula-Falsi method

A way to avoid such pathology is to ensure that the root is bracketed

between the two starting values and remains between the successive pairs.

When this is done , the method is known as linear interpolation or method of

false position. This technique is similar to Bisection
3
 except the next iterate

is taken at the intersection of a line between the pairs of (x, f(x)) values and

the x-axis is rather than at the midpoint of x-values.

Algorithm for Regular –False method 3.1

1. Read x0 , x1 and epsilon

2. Repeat

3. Set x2=x1-f(x1)*(x0-x1)/(f(x0)-f(x1))

4. If f(x2) is opposite sign to f(xo) then

5. Set x1=x2

6. Else

Comparative Study of Complexity of Algorithms 459

7. Set x0=x2

8. Endif

9. Until absolute(f(x2)<epsilon

10. Print x2

11. End

Counting primitive operations 3.3

1. Reading the value of variable x0,x1 and epsilon contributes three unit of

count.

2. As per result of verification one x2 is calculated using 8 operations

3. The condition f(x0)*f(x2)<0 contributes 3 operation.

4. One operation for assignment statement after the condition.

5. Two operations are required for f(x2)<epsilon.

6. The body of loop is executed n times. Hence, at each iteration of loop,

[8+3+1+2] 14 primitive operations is performed 14n times.

7. Printing the value of x2 requires one operation.

To summarize, the number of primitive operations t (n) executed by

algorithm is at least.

t(n) = 2+1+14n+1=14 n+4.

The “Big-Oh” Notation 3.2

By the big-Oh definition, we need to find a real constant c>0 and an

integer constant n0>=1 such that 14n+4 <=cn for every integer n>=n0. It is

easily see that a possible choice is c=18 and n0=1. The big- Oh notation

allows us to say that a function of n is “less than or equal to” another

function (by the equality “<=” in the definition), up to constant factor

eventually (by the statement “n>=n0” in the definition).

The number of primitive operations executed by algorithm for Regula-

False method is at most 14n+4. We may therefore apply the big-Oh

definition with c=18 and n0=1 and conclude the running time of algorithm in

O(n).=O(n). So the complexity of algorithm used for Regula-Falsi method is

O(n).

4. The Secant method

The Secant method begins by finding two points on curve of f(x),

hopefully near to the root we seek. If f(x) were truly linear, the straight line

would intersect at the x-axis at root. But f(x) will never be exactly linear

because we would never use a root finding method on a linear function
.
 That

460 R. N. Jat and D.S. Ruhela

means the intersection of the line with x-axis is not at x=r but that it should

be close to it. From the obvious similar triangles we can write

(x1-x2)/f(x1)=(x0-x1)/f(x0)-f(x1),

and from this solve from x2

Because f(x) is not exactly linear x2 is not equal to r but it should closer

than either of the two points we begin with. If we repeat this we have:

 () ()
()

()() ()

1
1 ,

1

x n xn
x n xn f xn

f x n f xn

− −
+ = − ∗

− −

Because each newly computed value should be nearer to the root, we can do

it easily after second iterate has been computed, by always using the last two

computed points. But after the first point there aren’t “two last computed

points”. So we make sure to start with x1 closer to the root than x0 by testing

f(x0) and f(x1) and swapping if first functional value is smaller.

Algorithm for Secant method4.1

1. Read x0, x1 // that are near to the root to determine a root of f(x)=0

2. If |f(x0)|<|f(x1)| then swap x0, x1 //interchange x0 with x1

3. Repeat

4. Set x2=x1-f(x1)*(x0-x1)/(f(x0)-f(x1)

5. Set x0=x1

6. Set x1=x2

7. Until |f(x2)|< tolerance e

8. Print “root is” x2

9. End

Counting primitive operations 4.2

1. Reading the value of variable x1,x2,e,contributes three unit of count.

2. Step 2 requires four operations.

3. In the body of loop x2 is calculated which requires nine operations.

4. To compute x1 and x0 contributes two operations.

Comparative Study of Complexity of Algorithms 461

5. To check the condition |f(x2)|<e contributes two operations, and hence the

body of loop will execute n times, so (9+2+2) are executed n times..

6. Printing the value of x2 requires one operation.

To summarize, the number of primitive operations t (n) executed by

algorithm is at least.

 t(n) =3+2+13n+1=13n+6

The “Big-Oh” Notation 4.3

By the big-Oh definition, we need to find a real constant c>0 and an

integer constant n0>=1 such that 13n+6 <=cn for every integer n>=n0. It is

easily seen that a possible choice is c=19 and n0=1. The big- Oh notation

allows us to say that a function of n is “less than or equal to” another

function (by the equality “<=” in the definition), up to constant factor

eventually (by the statement “n>=n0” in the definition).

The number of primitive operations executed by algorithm for Secant

method is at most 13n+6. We may therefore apply the big-Oh definition with

c=19 and n0=1 and conclude that the running time of algorithm in

O(n).=O(n). So the complexity of algorithm used for Secant method is O(n).

5. Newton Rapson method

This method is based on a linear approximation of the function but does

so, using a tangent to the curve. Starting from a single initial value x0, that is

not too far from a root, we move along the tangent to its intersection with x-

axis, and take that the next approximation. This is continued until either the

successive x-values are sufficiently close or the value of the function is

sufficiently near zero.

 The general terms

()
()

()
1 ,

f xn
x n xn

f xn
+ = −

′
,

For n=0,1,2,3……

Algorithm5.1

To determine a root of f(x)=0, given x0 reasonably close to the root.

1. Read x0,e

2. If(f(x0)<>0) and f’(x0)<>0 then

462 R. N. Jat and D.S. Ruhela

3. Repeat

4. Set x=x0-f(x0)/f’(x0)

5. Set x1=x0

6. Until(Absolute(x1-x0)<e

7. Print x1

8. Endif

Counting primitive operations5.2

1. Reading the value of variable x0,e contributes two unit of count.

2. To compute f(x0) and f”’(x0) and compare with 0 contributes four

operation.

3. To compute x0 contributes one count.

4. To compute x1 contributes five operations to count.

5. To check the condition Absolute(x1-x0)<e contributes three operations.

The loop is executed n times, so (1+ 3+5) operations executed 9n times.

6. To print x1 contributes one operation.

To summarize, the number of primitive operations t (n) executed by

algorithm is at least.

t(n) =2+4+(1+5+3)n+1=9n+7.

The “Big-Oh” Notation5.3

By the big-Oh definition, we need to find a real constant c>0 and an

integer constant n0>=1 such that 9n+7 <=cn for every integer n>=n0. It is

easily see that a possible choice is c=16 and n0=1. The big- Oh notation

allows us to say that a function of n is “less than or equal to” another

function (by the equality “<=” in the definition), up to constant factor

eventually (by the statement “n>=n0” in the definition).

The number of primitive operations executed by algorithm for Secant

method is at most 9n+7. We may therefore apply the big-Oh definition with

c=16 and n0=1 and conclude the running time of algorithm in O(n).=O(n).

So the complexity of algorithm used for Newton Raphson method is O(n).

6. Adaptive Weighted Bisection Method (AWBM)

Let f be continuous and twice differentiable over the interval[a,b] and

f(a)*f(b)< 0 such that there exist a number r ϵ [a,b] where f(r)=0 and f’’(r) ≠

0 if we define the sequence { Ck; k=0,1,2,……} as
2

Program for Adaptive Bisection Method for x
3
+2

Comparative Study of Complexity of Algorithms 463

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#define f(x) (x*x*x+2)

#define f1(x) (3*x*x)

#define f11(x) (6*x)

#include<conio.h>

void main()

{

inti,k;

float r,a0,b0,c0,e,s,wk,wkopt;

clrscr();

printf("\nEnter first point of interval");

scanf("%f",&a0);

printf("Enter the second point of interval");

scanf("%f",&b0);

printf("Enter the prescribed tolrance");

scanf("%f",&e);

s=f(a0)*f(b0);

if(s>0)

 {

printf("Starting values are unsuitable");

getch();

exit(1);

 }

for(k=0;;++k)

 {

 if(((f1(b0)<0)&&(f11(b0)<0))||((f1(b0)>0) && (f11(b0)>0)))

 {

wk=-1*(f(b0)/(a0-b0))*f1(b0);

if((wk>0) && (wk<1)) wkopt=wk;

else

wkopt=1/2.0;

 c0=b0+wkopt*(a0-b0);

 }

else

 {

wk=-1*f(a0)/((b0-a0)*f1(a0));

if((wk>0) && (wk<1))

wkopt=wk;

464 R. N. Jat and D.S. Ruhela

else

wkopt=1.0/2.0;

 c0=a0+wkopt*(b0-a0);

 }

if(fabs(f(c0))<.000001)

 {

 r=c0;

printf("Root is %f",r);

printf("No of iteration is %d",k+1);

getch();

exit(1);

 }

If(f(a0)*f(c0)<0)

 b0=c0;

else

 a0=c0;

 }

printf("No of iteration=%d",k);

getch();

 }

Counting Primitive Operation 6.2

1. Reading the value of variable a0,b0 contributes two unit of count

2. Reading the value of epsilons contributes one unit of count.

3. At the beginning of loop sign of f’ (b0) and f’’(b0) compared. This action

corresponds to executing one primitive operation.

4. In the loop wk is calculated using assignment it takes one operation.

5. Wk is compared with 1 and 0 then chooses wkopt requires three

operations.

6. Ck is compared with e needs one operation and assigning ck to r requires

one operation, so two more operation is required.

7. At end f(a0) and f(c0) is calculated and compared with 0 need one

operation and then two more assignment are required for a0 and b0,

 total five operation is required.

8. The loop executed n+1 times. Hence each iteration of loop, 12 primitive

operations is performed.

To summarize, the number of primitive operations t(n) executed by

algorithm is at least. 3+12(n+1)t(n)=12n+15.

Comparative Study of Complexity of Algorithms 465

Table: 1

The “Big-Oh” Notation 6.3

By the big-Oh definition, we need to find a real constant c>0 and an

integer constant n0>=1 such that 12n+15 <=cn for every integer n>=n0. It is

easily see that a possible choice is c=27 and n0=1. The big Oh notation

allows us to say that a function of n is “less than or equal to” another

function (by the equality “<=” in the definition), up to constant factor

infinitely (by the statement “n>=n0” in the definition).

The number of primitive operations executed by algorithm for adaptive

Bisection method is at most 12n+15. We may therefore apply the big Oh

definition with c=27 and n0=1 and conclude the running time of algorithm is

O (n).

So the complexity of algorithm used for Adaptive Bisection method is

O(n).

7. Result and Conclusion

In order to compare the adaptive Bisection method with Bisection

method, Secant method, Regula False method and Newton Rapson method a

variety of functions are used with same criteria i.e. 10
-6

. The time complexity

of all algorithms are O (n) where n is number of iteration. The table shows

that for function f(x) =e
x-

3x the number of iteration in Bisection methods are

20 while in adaptive Bisection method is 5. Since time complexity of both

algorithms are O (n), so Adaptive bisection algorithm will execute faster

Function Initial

Interv

als

No of Iteration n

Bisecti

on

O(n)

Newton

Rapson

Method

O(n)

Secant

Method

False

Metho

d

Adaptive

Bisection

O(n)

F(x)=e
x
-3x [1,2] 20 8 9 19 5

F(x)=x
3
-x-1 [1,2] 20 6 7 17 5

f(x)=cos(x)-xe
x

[0,1] 17 6 7 13 4

f(x)=x
3
+2 [-2,2] 22 5 8 19 5

F(x)=3x-cos(x)-

1

[0,1] 23 4 5 5 3

466 R. N. Jat and D.S. Ruhela

compared to all other method and it will take less time. Similarly the same

result shows for function f(x) = x
3
-x-1.

References

1. H. Thomas Corner, Introduction to Algorithms, PHI, India.

2. T. Michael Goodrich and Roberto Tamassia, Algorithm Design, 2008.

3. H. John Mathews, Numerical Methods for Mathematics, Science and Engineering, 2n

ed, PHI, New Jersey, (1992) 54-63.

4. M. Z. Dauhoo and Soobhug, An Adaptive Weighted Bisection Method for Finding

Roots of Non-Linesr Equations, International Journal of Computer Mathematics,

(2003) 897-906.

5. F. Curtis, Gerald and O. Patrick Wheately, Applied Numerical Analysis, Person

Education, (2009) 33-43.

6. In-won Lee and Gill-Ho Jung A generalized Newton Rapson Method using curvature,

 Journal of Communication in Numerical Methods for Engineering, 11 (1995) 757-763.

