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Abstract: In this paper algorithms for Bisection, Secant, Rugla-Falsi, 

Newton Raphson and Adaptive Bisection methods to find the roots of 

non-linear equation are studied for their complexity. Using RAM 

(Random Access Machine) model the complexity of all algorithms are 

calculated. In RAM model we count the primitive operations executed by 

given algorithm and then find the time in function t(n). The complexity 

can represent in the form of Big-Oh notation in term of time function.  In 

order to compare the adaptive Bisection method with Bisection method, 

Secant method, Regula-Falsi method and Newton Raphson method a 

variety of functions are used with same criteria i.e. 10-6. The time 

complexity of all algorithms are O(n) where n is number of iteration. The 

result shown in   table shows that for function f(x) =ex-3x the number of 

iteration in Bisection methods are 20 while in adaptive Bisection method 

is 5. Since time complexity of both algorithms are O(n) , so Adaptive 

bisection algorithm will execute faster to compare all other  method and it 

will take less time to run the program. 

Keywords: Bisection method, RAM (Random Access Machine), Big-Oh. 

 

1. Introduction 
 

Computational complexity can be defined as a function of the size of 

input resources required for computation
1
. The running time of an algorithm 

or data structure operation typically depends on number of factors like input 

size, hardware and software used
2
. We can study its running time on various 

inputs and recording the actual time spent in each execution. Such 

measurement can be taken in an accurate manner by using system calls built 

in language for which algorithm is written. In general, we are interested in 

determining the dependency of running time on size of input. In order to 

determine this, we can perform several experiments on many different test 
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inputs of various sizes. Very often in engineering and mathematics, non-

linear equation are solved using iterative methods. The Bisection Method
3
 is 

among the few iterative methods which guarantee convergence. Here we will 

present the algorithm for iterative methods and then find the complexity for 

it.  
 

RAM Machine Model Definition 1.2 
 

An approach of simply counting primitive operations gives rise to a 

computational model called Random Access Machine (RAM)
2
. In this model 

we define a set of high level primitive operations that are largely 

independent from programming language used and can be defined also in the 

pseudo-code. Primitive operation include following: 
 

1. Assigning the value to variable. 

2. Calling a method. 

3. Performing an arithmetic operation. 

4. Comparing two numbers. 

5. Indexing into array. 

6. Following an object reference. 

7. Returning from a method. 
 

Counting Primitive Operation 1.3 
 

We now show to how count the number of primitive operations executed 

by an algorithm, used for all methods. We do this analysis by focusing on 

each step of the algorithm and counting primitive operation that it takes, 

taking into consideration that some operation are repeated, because they are 

enclosed in the body of a loop. 
 

Asymptotic Notation
2 

1.4 
 

We have clearly gone into detail for evaluating the running time of 

simple algorithms. Such an approach would clearly prove cumbersome if we 

had to perform it for more complicated algorithms. In general, each step in 

pseudo-code description and each statement in a high level language 

implementation corresponds to small number of primitive operations that 

does not depend on input size. Thus we can perform a simplified analysis 

that estimates the number of primitive operation executed up to a constant 

factor, by counting the steps of pseudo-code or the statements of high level 

language executed. Fortunately, there is a notation that allows us to 

characterize the main factor affecting an algorithm’s running time without 

going into all detail of exactly how many primitive operations are performed 

for each constant time of instructions. 
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The “Big-Oh” Notation
2 

1.5 
 

Let f (n) and g(n) be function mapping nonnegative integers to real 

numbers. We say that f(n) is O(g(n)) if there is a real constant c>0 and an 

integer constant n0>=1 such that f(n)<=cg(n) for every integer n>=n0. This 

definition is referred to as “big-Oh” notation. Alternatively, we can also say 

“f(n) is order g(n)
4
. 

 

2. Bisection Method 
 

The Bisection method (BM)
3
, is among few iterative method which gua- 

rantee convergence which is in linear rate.  
 

Algorithm for Bisection Method 2.1 
 

To find the root of f(x) =0 with a prescribed tolerance say epsilon.  

Given that ak and bk such that f(ak)*f(bk)<0. The value ck is used to store the 

middle point of the interval. 

 

1. Begin 

2. Read ak,bk  // Input the values of ak and bk 

3. Read Epsilon //Input the tolerance 

4. Repeat step 5 to 6  while((|ak-bk|/ak))<epsilon) and (f(ck)≠0)) 

5. ck=(ak+bk)/2 

6. If(f(ak)*f(ck)<0) then 

Set bk=ck 

Else 

Set ak=ck 

End if 

7. Write “The approximate root is”,ck 

8. End 
 

Counting Primitive Operation2.2 
 

1. Reading the value of variable ak,bk  contributes two unit of count. 

2. Reading the value of epsilons contributes one unit of count. 

3. Before entering the body of loop condition (ak-bk)/ak<epsilon is verified. 

This action corresponds to three (one for subtraction, one for division 

and one for comparison) primitive operation and performed n times. 

4. At the beginning of loop ck is calculated. This action corresponds to 

executing three primitive operations. 

5. In the body of the loop, condition f(ak)*f(bk)<0 is verified. This action 

corresponds to executing four operations.  
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6. As per result of verification one assignment statement will execute 

requires one operation. 

7. The body of loop is executed n times. Hence, at each iteration of loop, 

nine primitive operations is performed 9n times. 

8. Printing the value of Ck requires one operation. 
 

To summarize, the number of primitive operations t (n) executed by 

algorithm is at least. 
 

t(n) = 2+1+(3+3+4+1)n+1=11n+4. 
   

The “Big-Oh” Notation 2.3 
 

By the big-Oh definition, we need to find a real constant c>0 and an 

integer constant n0>=1 such that 11n+4 <=cn for every integer n>=n0. It is 

easily see that a possible choice is c=15 and n0=1. The big- Oh notation 

allows us to say that a function of n is “less than or equal to” another 

function (by the equality “<=” in the definition), up to constant factor 

eventually (by the statement “n>=n0” in the definition).  

The number of primitive operations executed by algorithm for Bisection 

method is at most 11n+4. We may therefore apply the big-Oh definition with 

c=15 and n0=1 and conclude the running time of algorithm in O(n). 

  =O(n). So the complexity of algorithm used for Bisection 

method is O(n). 

 In fact, any polynomial akn
k
+ak-1n

k-1
……+a0 will always be O(n

k
) 

 

3. Regula-Falsi method 
 

A way to avoid such pathology is to ensure that the root is bracketed 

between the two starting values and remains between the successive pairs. 

When this is done , the method is known as linear interpolation or method of 

false position. This technique is similar to Bisection
3
 except the next iterate 

is taken at the intersection of a line between the pairs of (x, f(x)) values and 

the x-axis is rather than at the midpoint of x-values. 
 

Algorithm for Regular –False method 3.1 
 

1. Read x0 , x1 and epsilon 

2. Repeat 

3. Set x2=x1-f(x1)*(x0-x1)/(f(x0)-f(x1)) 

4. If f(x2) is opposite sign to f(xo) then 

5.  Set x1=x2 

6. Else 
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7. Set x0=x2 

8. Endif 

9. Until absolute(f(x2)<epsilon 

10. Print x2 

11. End 
 

Counting primitive operations 3.3 
 

1. Reading the value of variable x0,x1 and epsilon contributes three unit of 

count. 

2. As per result of verification one x2 is calculated using 8 operations 

3. The condition f(x0)*f(x2)<0 contributes 3 operation. 

4. One operation for assignment statement after the condition. 

5. Two operations are required for f(x2)<epsilon. 

6. The body of loop is executed n times. Hence, at each iteration of loop, 

[8+3+1+2] 14 primitive operations is performed 14n times. 

7. Printing the value of x2 requires one operation. 

To summarize, the number of primitive operations t (n) executed by 

algorithm is at least.  
 

t(n) = 2+1+14n+1=14 n+4. 
 

The “Big-Oh” Notation 3.2 
 

By the big-Oh definition, we need to find a real constant c>0 and an 

integer constant n0>=1 such that 14n+4 <=cn for every integer n>=n0. It is 

easily see that a possible choice is c=18 and n0=1. The big- Oh notation 

allows us to say that a function of n is “less than or equal to” another 

function (by the equality “<=” in the definition), up to constant factor 

eventually (by the statement “n>=n0” in the definition).  

The number of primitive operations executed by algorithm for Regula-

False method is at most 14n+4. We may therefore apply the big-Oh 

definition with c=18 and n0=1 and conclude the running time of algorithm in 

O(n).=O(n). So the complexity of algorithm used for Regula-Falsi method is 

O(n). 

4. The Secant method 
 

The Secant method begins by finding two points on curve of f(x), 

hopefully near to the root we seek. If f(x) were truly linear, the straight line 

would intersect at the x-axis at root. But f(x) will never be exactly linear 

because we would never use a root finding method on a linear function
.
 That 
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means the intersection of the line with x-axis is not at x=r but that it should 

be close to it. From the obvious similar triangles we can write 
 

(x1-x2)/f(x1)=(x0-x1)/f(x0)-f(x1), 
 

and from this solve from x2 
 

                                

 

Because f(x) is not exactly linear x2 is not equal to r but it should closer 

than either of the two points we begin with. If we repeat this we have: 

 

                    ( ) ( )
( )

( )( ) ( )

1
1 ,

1

x n xn
x n xn f xn

f x n f xn

− −
+ = − ∗

− −
 

 

Because each newly computed value should be nearer to the root, we can do 

it easily after second iterate has been computed, by always using the last two 

computed points. But after the first point there aren’t “two last computed 

points”. So we make sure to start with x1 closer to the root than x0 by testing 

f(x0) and f(x1) and swapping if first functional value is smaller. 

 

Algorithm for Secant method4.1 
 

1. Read x0, x1 // that are near to the root to determine a root of f(x)=0 

2. If |f(x0)|<|f(x1)| then swap x0, x1   //interchange x0 with x1 

3. Repeat  

4. Set x2=x1-f(x1)*(x0-x1)/(f(x0)-f(x1) 

5. Set x0=x1 

6. Set x1=x2 

7. Until |f(x2)|< tolerance e 

8. Print “root is” x2 

9. End 

 

Counting primitive operations  4.2 
 

1. Reading the value of variable x1,x2,e,contributes three unit of count. 

2. Step 2 requires four operations. 

3. In the body of loop x2 is calculated which requires nine operations. 

4. To compute x1 and x0 contributes two operations. 
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5. To check the condition |f(x2)|<e contributes two operations, and hence the 

body of loop will execute n times, so (9+2+2) are executed n times.. 

6. Printing the value of x2 requires one operation. 

To summarize, the number of primitive operations t (n) executed by 

algorithm is at least. 
 

 t(n) =3+2+13n+1=13n+6 

 

The “Big-Oh” Notation 4.3 
 

By the big-Oh definition, we need to find a real constant c>0 and an 

integer constant n0>=1 such that 13n+6 <=cn for every integer n>=n0. It is 

easily seen that a possible choice is c=19 and n0=1. The big- Oh notation 

allows us to say that a function of n is “less than or equal to” another 

function (by the equality “<=” in the definition), up to constant factor 

eventually (by the statement “n>=n0” in the definition).  

The number of primitive operations executed by algorithm for Secant   

method is at most 13n+6. We may therefore apply the big-Oh definition with 

c=19 and n0=1 and conclude that the running time of algorithm in 

O(n).=O(n). So the complexity of algorithm used for Secant  method is O(n). 
 

5. Newton Rapson method 
 

This method is based on  a linear approximation of the function but does 

so, using a tangent to the curve. Starting from a single initial value x0, that is 

not too far from a root, we move along the tangent to its intersection with x-

axis, and take that the next approximation. This is continued until either the 

successive x-values are sufficiently close or the value of the function is 

sufficiently near zero. 

 The general terms 
 

( )
( )

( )
1 ,

f xn
x n xn

f xn
+ = −

′
, 

 

For n=0,1,2,3…… 

 

Algorithm5.1 
 

To determine a root of f(x)=0, given x0 reasonably close to the root. 
 

1. Read x0,e 

2. If(f(x0)<>0) and f’(x0)<>0 then 
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3. Repeat 

4. Set x=x0-f(x0)/f’(x0) 

5. Set x1=x0 

6. Until(Absolute(x1-x0)<e 

7. Print x1 

8. Endif 
 

Counting primitive operations5.2 
 

1. Reading the value of variable x0,e contributes two unit of count. 

2. To compute f(x0) and f”’(x0) and compare with 0  contributes four  

operation.  

3. To compute x0 contributes one count. 

4. To compute x1 contributes five operations to count. 

5. To check the condition Absolute(x1-x0)<e contributes three operations. 

The loop is executed n times, so (1+ 3+5) operations executed 9n times. 

6. To print x1 contributes one operation. 
 

To summarize, the number of primitive operations t (n) executed by 

algorithm is at least. 
  

t(n) =2+4+(1+5+3)n+1=9n+7. 
 

The “Big-Oh” Notation5.3 

 

By the big-Oh definition, we need to find a real constant c>0 and an 

integer constant n0>=1 such that 9n+7 <=cn for every integer n>=n0. It is 

easily see that a possible choice is c=16 and n0=1. The big- Oh notation 

allows us to say that a function of n is “less than or equal to” another 

function (by the equality “<=” in the definition), up to constant factor 

eventually (by the statement “n>=n0” in the definition).  

The number of primitive operations executed by algorithm for Secant   

method is at most 9n+7. We may therefore apply the big-Oh definition with 

c=16 and n0=1 and conclude the running time of algorithm in O(n).=O(n). 

So the complexity of algorithm used for Newton Raphson method is O(n). 

 

6. Adaptive Weighted Bisection Method (AWBM) 

 

Let f be continuous and twice differentiable over the interval[a,b] and 

f(a)*f(b)< 0 such that there exist a number r ϵ [a,b] where f(r)=0 and f’’( r) ≠ 

0 if we define the sequence { Ck;  k=0,1,2,……}  as
2 

 

Program for Adaptive Bisection Method for x
3
+2 
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#include<stdio.h> 

#include<math.h> 

#include<stdlib.h> 

#define f(x) (x*x*x+2) 

#define f1(x) (3*x*x) 

#define f11(x) (6*x) 

#include<conio.h> 

void main() 

{ 

inti,k; 

float r,a0,b0,c0,e,s,wk,wkopt; 

clrscr(); 

printf("\nEnter first point of interval"); 

scanf("%f",&a0); 

printf("Enter the second point of interval"); 

scanf("%f",&b0); 

printf("Enter the prescribed tolrance"); 

scanf("%f",&e); 

s=f(a0)*f(b0); 

if(s>0) 

 { 

printf("Starting values are unsuitable"); 

getch(); 

exit(1); 

 } 

for(k=0;;++k) 

  { 

     if(((f1(b0)<0)&&(f11(b0)<0))||((f1(b0)>0) && (f11(b0)>0))) 

       { 

wk=-1*(f(b0)/(a0-b0))*f1(b0); 

if((wk>0) && (wk<1)) wkopt=wk; 

else 

wkopt=1/2.0; 

         c0=b0+wkopt*(a0-b0); 

        } 

else 

       { 

wk=-1*f(a0)/((b0-a0)*f1(a0)); 

if((wk>0) && (wk<1)) 

wkopt=wk; 
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else 

wkopt=1.0/2.0; 

       c0=a0+wkopt*(b0-a0); 

    } 

if(fabs(f(c0))<.000001) 

     { 

       r=c0;  

printf("Root is %f",r); 

printf("No of iteration is %d",k+1); 

getch(); 

exit(1); 

     } 

If(f(a0)*f(c0)<0) 

       b0=c0; 

else 

      a0=c0; 

   } 

printf("No of iteration=%d",k); 

getch(); 

 } 
 

Counting Primitive Operation 6.2 
 

1. Reading the value of variable a0,b0  contributes two unit of count 

2. Reading the value of epsilons contributes one unit of count. 

3. At the beginning of loop sign of f’ (b0) and f’’(b0) compared. This action 

corresponds to executing one primitive operation. 

4. In the loop wk is calculated using assignment it takes one operation. 

5. Wk is compared with 1 and 0 then chooses wkopt requires three 

operations. 

6. Ck is compared with e needs one operation and assigning ck to r requires 

one operation, so two more operation is required.  

7. At end f(a0) and f(c0) is calculated and compared with 0 need one 

operation and then two more assignment are required for a0 and b0, 

       total five operation is required. 

8. The loop executed n+1 times. Hence each iteration of loop, 12 primitive 

operations is performed. 

To summarize, the number of primitive operations t(n) executed by 

algorithm is at least. 3+12(n+1)t(n)=12n+15. 
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Table: 1 
 

The “Big-Oh” Notation 6.3 
 

By the big-Oh definition, we need to find a real constant c>0 and an 

integer constant n0>=1 such that 12n+15 <=cn for every integer n>=n0. It is 

easily see that a possible choice is c=27 and n0=1. The big Oh notation 

allows us to say that a function of n is “less than or equal to” another 

function (by the equality “<=” in the definition), up to constant factor 

infinitely (by the statement “n>=n0” in the definition).  

The number of primitive operations executed by algorithm for adaptive 

Bisection method is at most 12n+15. We may therefore apply the big Oh 

definition with c=27 and n0=1 and conclude the running time of algorithm is 

O (n). 

So the complexity of algorithm used for Adaptive Bisection method is 

O(n). 

 

7. Result and Conclusion 
 

In order to compare the adaptive Bisection method with Bisection 

method, Secant method, Regula False method and Newton Rapson method a 

variety of functions are used with same criteria i.e. 10
-6

. The time complexity 

of all algorithms are O (n) where n is number of iteration. The table shows 

that for function f(x) =e
x-

3x the number of iteration in Bisection methods are 

20 while in adaptive Bisection method is 5. Since time complexity of both 

algorithms are O (n), so Adaptive bisection algorithm will execute faster 

Function Initial 

Interv

als 

No of Iteration n 

Bisecti

on 

O(n) 

Newton 

Rapson 

Method 

O(n) 

Secant 

Method 

False 

Metho

d 

Adaptive 

Bisection 

O(n) 

F(x)=e
x
-3x [1,2] 20 8 9 19   5 

F(x)=x
3
-x-1 [1,2] 20 6 7 17   5 

f(x)=cos(x)-xe
x 

[0,1] 17 6 7 13   4 

f(x)=x
3
+2 [-2,2] 22 5 8 19   5 

F(x)=3x-cos(x)-

1 

[0,1] 23 4 5 5   3 
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compared to all other method and it will take less time. Similarly the same 

result shows for function f(x) = x
3
-x-1. 
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