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Abstract: NTRU is a public-key cryptosystem based on 

polynomial rings over Z. Replacing Z with the ring of Kleinian 

integers yields KTRU. Kleinian integers have higher significant 

than simple integer such as NTRU. 
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1. Introduction 
 

The NTRU public key cryptosystem was proposed by J. Hoffstein, J. 

Pipher and J. H. Silverman1 in 1996. Its name NTRU (pronounced ‘ain't  

true") indicates the use of number theory and rings. Its security is based on 

the hardness of the short vector problem for some special lattice. Its strong 

points are short key size,speed of encryption and speed of decryption, two 

assets of crucial importance in embarked application like hand held devices 

and wireless systems.NTRU is viewed as a quantum-resistant cryptosystem. 

One weakness of NTRU is the possibility of decryption failure; however, 

parameters may be chosen to minimize or eliminate this error. 
 

NTRU keys are truncated polynomials with integer coefficients. An 

important direction for research about NTRU is the development and 

analysis of variants in which the integers are replaced by elements of 

another ring, such as the Gaussian integers2, integer matrices3  or quaternion 

algebras4. The current paper is motivated by the work of J. Hoffsteinet. al.5, 
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in which the integers are replaced with the ring of Kleinian integers, with 

the resulting cryptosystem named KTRU. In this paper we show that in the 

basic model ETRU is faster and has smaller key sizes than NTRU. 

 
2. NTRU Cryptosystem 

 

A simple description of the NTRU cryptosystem is summarized in this 

section6-10. The NTRU system is principally based on the ring of the 

convolution polynomials of degree 1N   denoted by    1nR Z x x  . It 

depends on three integer parameters ,N p and q such that  , 1p q  . Before 

going through NTRU phases, there are four sets used for choosing NTRU 

polynomials with small positive integers denoted by , ,m f gL L L  and .rL R It 

is like any other public key cryptosystem constructed through three phases: 

key generation, encryption and decryption. 

 
2.1.  Key Generation Phase 

 
To generate the keys, two polynomials f and g are chosen randomly 

from fL  and gL  respectively. The function f  must be invertible. The 

inverses are denoted by , ,p qF F R  such that 

 

1(mod )pF f p  and 1(mod ).qF f q   

 

The above parameters are private. The public key h is calculated by 

 

(1)             modqh p F g q  . 

 

Therefore, the public key is  , ,h p q  and the private key is , .pf F  

 

2.2.  Encryption Phase 

 
The encryption is done by converting the input message to a polynomial

mm L  and the coefficient of m  is reduced modulo p . A random 

polynomial r is initially selected by the system, and the cipher text is 

calculated as follows, 
 

(2)   (mod )e r h m q   . 
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2.3. Decryption Phase 
 

The decryption phase is performed as follows: the private key f is 

multiplied by the cipher text e such that 
 

 

  

 

 

 

mod

mod

mod

mod

mod .

q

a f e q

a f r h m q

a f h r f m q

a pf F g r f m q

a pg r f m q

 

   

    

     

   

 

 
The last polynomial has coefficientsmost probably within the interval 

 2, 2 ,q q  which eliminates the need for reduction mod q . This equation 

is reduced also by mod p  to give a term mod ,f m p  after diminishing of 

the first term .pg r Finally, the message m  is extracted after multiplying 

by 1,pF  as well as adjusting the resulting coefficients via the interval

 2, 2 .p p  

 

3. Proposed Cryptosystem 

 
3.1 The Kleinian integers and KTRU 
 

Let   be a complex number, where  1 7 2i   . The ring of Kleinian 

integers, denoted by  ,Z   is the set of complex numbers of the form m n   

with m  and n  rational integers or , .m n Q  For q m n   we have 
2 2 22 .q m n mn     Write n  for the cyclic subgroup of nth roots of unity in 

,C  then note that  2 3 4 5

6 1, , , , ,       and  2 3 4 5

12 1, , , , ,             are 

both contained in  .Z   
 

We have two choices of embeddings of  Z  into 2.R The first is using 

the isomorphism of additive groups   2Z Z   mapping m n  to  ,m n  

under this embedding, right multiplication by m n   is realized by the 

matrix 
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2m n

n m n


 
 
  

 

 

This is distinct from, and computationally more efficient to use than the 

isometric ring monomorphism of  Z   into C  (identified with 2R ) given by 

7
.

2 2

n n
m n m i

 
     

 

 

 

Theorem 3.1: The set 6  consists of exactly all units (invertible 

elements) of   .Z  The primes of  Z   are (up to multiplication by a unit): 

1 ;  rational primes p   satisfying 2 mod3;p and those  q Z   for which 

2q p  is a rational prime satisfying 1mod 3.p  
 

Thus the smallest kleinianprimes  are: 1 ,p    which has 
2

1, 2 3 ,p p     with 
2

19p   and 3 4 ,p    with 
2

37.p   

 

3.2 Example 

 

Find the closest vector problem (CVP) in the lattice   ,Z   which is solved 

as follows: 
 

First  find the closest vectors to the complex number 1q   on each of the 

rectangular lattice L  spanned by  1, 7i and on its coset ,L   by rounding 

each of  the coordinates of 1q   to the nearest integer multiples of 1  and 

7.i  More precisely, for s t    and ,q m n   we compute 

 

2 2

7
,

2

q x iy

q q q

  
   

 

where ,x y Z  are given by    2 4x s m n t m n    and .y tm sn   So 

 

    1 2 2
7.

2 2

x y
i

q q
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In Kleinian integers for coordinates,  1 0 1 12 .u u u    The calculation for 
1q     is similar, yielding   2 .Z  See Algorithm 1 for the full details. 

 

Algorithm 1: Solution to CVP for  Z   
 

First Phase: 
 

Input: s t   and q m n   

Output:  ,v   such that vq    and   is reduced modulo .q  

Use functions: 2 2 22c d c d cd    and 
c c c

d d


 , 

where  mod 2, 2c c d d d  
 

 

1 22 , 4m n m n      
 

2
, 2 .Q q d Q   

 

Second Phase: 
 

Compute the closest vector on the sublattice L : 

 

1 2 ,x s t   y tm sn   
 

0 ,
x

u
d

 
 
 

  
1

y
u

d

 
 
 

 

 

 1 0 1 12 ,v u u u    
 

 1 1 .q v Z      

 

Third Phase: 
 

Compute the closest vector on the coset L  : 
 

,X x Q  Y y Q   
 

0 ,
x

w
d

 
 
 

1

y
w

d

 
 
 

 

 

   2 0 1 12 1v w w w      
 

 2 2 .q v Z      
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Fourth Phase: 
 

Choose the closest: 
 

If 
2 2

1 2  return   1 1,v  , 

elseif 
2 2

1 2   return  2 2,v  , 

elseif 0 0u w     return 1 1,v  , 

else return  2 2,v   

 

3.4 Complexity of reduction modulo q in  Z   

 

We analyze the complexity of Algorithm 1 by estimating its cost in 

terms of integer multiplications, doubling and additions is denoted by (M), 

and squarings, subtractions is denoted by (A) 
 

The product of two Eisenstein integers a b  and c d is given by 

 ))()((2))(( acdcbabdacdcba  has cost 9M+2A 

and The norm function 
2 2 22q a b ab   has cost AM 25  . The sum of 

two kleinian integers    a b c d    has cost M3  We now turn to 

Algorithm 1. The first phase has cost ,318 AM   the second ,29 AM  the 

third AM 26   and the final comparison .4A  The total cost of AM 1133  is 

significantly higher than that of a simple integer modulus, but by a constant 

factor. 

 
 

3.5 On Comparing KTRU with NTRU 
 

Since each ETRU coefficient is a pair of integers, an instance of KTRU 

at degree N is comparable with an instance of NTRU of degree 2 .N N 

Each Kleinian integer coefficient of the polynomials ,f g and   in KTRU 

is stored as a pair  ,  m n of integers representing m n  and for coefficients 

in 12 , m and n  takes values in ,1, 0, 1  just as do all N coefficients of the 

polynomials for trinary NTRU. Only 7 pairs of trinary integers are used in 

the representation of   120 ,Z    whereas all 15 pairs occur in pairs of 

integers mod 3.Throughout we therefore compare KTRU with NTRU 

assuming that 2 .N N  In practice N' is odd, but where this is irrelevant we 

may simply set 2N N  to simplify the discussion. 
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