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1. Introduction 

 

Let  2),>(n ),( gM n
be an n-dimensional Riemannian manifold with 

Riemannian metric .g  A connection   is said to be symmetric connection if 

torsion tensor T of the connection vanishes otherwise it is called a non-

symmetric connection. In 1932, H. A. Hayden2 introduced the idea of semi-

symmetric connection. A connection   is said to be a metric connection if 

 

(1.1)     0g  , 

 

otherwise it is called a non-metric connection. The Riemannian manifold 

equipped with a semi-symmetric metric connection has been studied by O. 

C. Andonie3 , M. C. Chaki and A. Konar4, B. B. Chaturvedi and P. N. 

Pandey5, P. N. Pandey and B. B. Chaturvedi6,  7 and B. B. Chaturvedi and B. 

K. Gupta8, 9. 
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A. Friedman and J. A. Schouten10 considered a semi-symmetric metric 

connection   and Riemannian connection D associated with coefficients 
h

ij  and  h

ij
 respectively. According to them if the torsion tensor T of the 

connection   on  2),>(n ),( gM n
 satisfies 

 

(1.2)                         
i

h

jj

h

i

h

ijT   . 

 

Then 

 

(1.3)                           h

ijj

h

i

h

ij

h

ij g   , 

 

where 
h  are contravariant components of the generating vector h  such 

that t

thh g    and  

 

(1.4)                          j i j i i j ijD g       , 

 

where h

h  . 
 

A. Friedman and J. A. Schouten10 obtained the relation between 

curvature tensor with respect to semi- symmetric metric connection and 

Riemannian connection given by 

 

(1.5)              ,ijkm ijkm im jk jm ik jk im ik jmR R g g g g         

 

where  
 

(1.6)                    
1

.
2

jk j k j k jkg      

  

Transvecting (1.5) by ,img we get 

 

(1.7)                      ( 2) .jk jk jk jkR R n g      

 

Transvecting (1.7) by jkg , we get  

 

(1.8)              .)1(2  nRR  
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2. Non-Recurrent Torsion Tensor 

 
In 2001, U. C. De and J. Sengupta11 studied some properties of an almost 

contact manifold equipped with semi-symmetric metric connection whose 

torsion tensor satisfies a special condition. In the continuation of these 

developments H. B. Yilmaze, F. O. Zengin and S. A. Uysal1 studied a semi-

symmetric metric connection with a special condition on a Riemannian 

manifold. They considered a Riemannian manifold equipped with a semi-

symmetric metric connection whose torsion tensor T satisfies the following 

condition 

 

(2.1)   
ki

h

jik

h

j

h

ikj

h

ikj abgbbTaT   . 

 
Above developments motivated us to study a semi-symmetric space 

equipped with a non-recurrent torsion tensor. 
 

We define a non-recurrent torsion tensor by generalizing the expression 

of torsion tensor given by H. B. Yilmaze, F. O. Zengin and S. A. Uysal1 

 
(2.2)   

jk

h

iijk

h

ik

h

j

h

ikj

h

ikj gbbgbbgbbTaT  , 

 

where 
kl

k

l

lk

l

k gbbgbb  ,
 
and jj ba ,  are non-zero orthogonal vector fields. 

 

Contracting the indices h  and i  in (1.2), we get 

 
(2.3)   ( 1)h

hj jT n   . 

 
Taking covariant derivative with respect to semi-symmetric metric 

connection   of (2.3), we have 

 

(2.4)   
jk

h

hjk nT  )1( . 

 

Contracting the indices h  and i  in (2.2) and using lk

l

k gbb   and l

lbbb  , 

we get 

 

(2.5)   
jkkj

h

hkj

h

hkj bgbbTaT  2 , 
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From (2.3), (2.4) and (2.5), we get 

 

(2.6)   
11

2







n

bg
bb

n
a

jk

kjkjkj  . 

 

From (1.6) and (2.6), we get 
 

(2.7)    jkkj

jk

kjkjjk g
n

bg
bb

n
a

2

1

11

2






  . 

 

Defining 
 

(2.8)    jkkj

jk

kjjk g
n

bg
bb

n 2

1

11

2






   and ij

ij g  , 

 

and using (2.8) in (2.7), we have 

 

(2.9)   jkkjjk a   . 

 

Using (2.9) in (1.5), we get 

 

(2.10)   ijkh ijkh ih jk jh ik jk ih ik jhR R g g g g       
 

 

                             hjikhijkkijhkjih agagagag   . 

 

Transvecting (2.10) with
khg , we find 

 

(2.11)   
ijij RR  . 

 

Thus we conclude: 
 

Theorem 2.1:  If the torsion tensor of a Riemannian manifold 

( , )(n >2)nM g equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it 

satisfies (2.2)), then 
 

                                  ijij RR  , 

 

where  
ijR  and  ijR  are Ricci tensor with respect to the semi-symmetric 

metric connection and the Riemannian connection respectively. 
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Now we propose: 
 

Theorem 2.2:  If the torsion tensor of a Riemannian manifold 

( , )(n >2)nM g equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it 

satisfies (2.2)), then the curvature tensor of type (0,4) with respect to semi-

symmetric metric connection satisfies the following 

 

1.    ijkh jikhR R 
 
 i.e.  skew symmetric in first two indices, 

2.  0ijkh jkih kijhR R R   ,   if jkkj aa   . 

 

Proof: Interchanging the indices i  and j  in (2.10), we get 

 

(2.12)   
ihjkjhikjkihikjhjikhjikh ggggRR  

 
 

                               hijkhjikkjihkijh agagagag   . 

 
Adding (2.10) and (2.12), we get 

 

(2.13)   
jikhijkhjikhijkh RRRR  . 

 

Since in Riemannian manifold the curvature tensor satisfies 

 

(2.14)   0ijkh jikhR R  . 

 

Hence from (2.13) and (2.14) we get (i).  

 

Now interchanging ,i j  and k  cyclically in (2.10), we get 

 

(2.15)   
jhikihjkikjhjkihijkhijkh ggggRR    

 

hjikhijkkijhkjih agagagag   , 

 

(2.16)   
khijjhikjikhkijhjkihjkih ggggRR     

 

hkijhjikijkhikjh agagagag   ,  
 

and 
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(2.17)   
ihkjkhijkjihijkhkijhkijh ggggRR    

 

    hijkhkjijkihjikh agagagag   .              

 
Adding (2.15), (2.16) and (2.17), we have 

 
(2.18)   ( )ijkh jkih kijh ijkh jkih kijh jh i k k iR R R R R R g a a         

 

( ) ( )ih k j k j kh j i j ig a a g a a       .       

 
From (2.18), we get 

 

(2.19)   
kijhjkihijkhkijhjkihijkh RRRRRR   if jkkj aa   . 

 

Since in Riemannian manifold the curvature tensor satisfies the relation 

 
(2.20)   0 kijhjkihijkh RRR . 

 
Hence from (2.19) and (2.20), we get (ii). 

 

Now we propose:  
 

Theorem 2.3: If the torsion tensor of a Riemannian manifold 

( , )(n >2)nM g equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it 

satisfies (2.2)),  then the scalar curvature with respect to the semi- 

symmetric metric connection has the form 

 

          p

pannRR  )1(2)1(2  .              

 

Proof:  Now transvecting (2.10) with 
ihg , we get 

 

(2.21)   
jk

p

pjkkjjkjkjk gagannRR   )2()2( . 

 

Transvecting (2.21) with 
jkg  and using ngg jk

jk  , we get 

 

(2.22)   p

pannRR  )1(2)1(2  . 
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Now we propose: 
 

Corollary 2.1: If the torsion tensor of a Riemannian manifold 

( , )(n >2)nM g equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it 

satisfies (2.2)),  then the scalar curvature with respect to the semi- 

symmetric metric connection is equal to Riemannian scalar curvature if and 

only if  
 

                           p

pa   . 

   

Proof: If we take RR  then from equation (2.22), we have 

 

(2.23)   0))(1(2  p

pan  . 

 

Since 1n  then from (2.23), we get 

 

(2.24)         p

pa   . 

 

Let  p

pa       and using in (2.22), we get 

 

(2.25)   RR  . 

 

 

3. Conharmonic Curvature Tensor 

 

Definition 3.1: The Conharmonic curvature tensor L of type (0, 4) in a 

Riemannian manifold is defined as 

 

(3.1)   )(
2

1
ikjhihjkjhikjkihijkhijkh RgRgRgRg

n
RL 


 . 

 

The Conharmonic curvature tensor with respect to semi-symmetric metric 

connection is given by 

 

(3.2)   )(
2

1
ikjhihjkjhikjkihijkhijkh RgRgRgRg

n
RL 


 , 

 

using (2.10) and (2.21) in (3.2), we get 
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(3.3)   
ijkh ijkh ih jk jh ik jk ih ik jh

ih j k jh i k jk i h ik j h

L R g g g g

g a g a g a g a

   

   

    

     

 

                         

( ( 2) ( 2) )

( ( 2) ( 2) )1
.

2 ( ( 2) ( 2) )

( ( 2) ( 2) )

p

ih jk jk j k jk p jk

p

ik jh jh j h jh p jh

p

jk ih ih i h ih p ih

p

jh ik ik i k ik p ik

g R n n a g a g

g R n n a g a g

n g R n n a g a g

g R n n a g a g

   

   

   

   

      
 
       
 
        
 
 
        

 

              

                               

Equation (3.3) implies 

 

(3.4)  )(
2

1
ikjhihjkjhikjkihijkhijkh RgRgRgRg

n
RL 


  

 

2
( )( )

2

p

p jh ik jk iha g g g g
n

   


. 

 
Using (3.1) in (3.4), we have  

 

(3.5)        ))((
2

2
ihjkikjh

p

pijkhijkh gggga
n

LL 


  . 

 

Now from (3.5), we can say that 
ijkhijkh LL 

 
if  and only if p

pa    or  

ikjh gg  be symmetric in i  and j  or ikjh gg  be symmetric in k  and h . 

 

Thus we conclude: 
 

Theorem 3.1: If the torsion tensor of a Riemannian manifold 

( , )(n >2)nM g equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it 

satisfies (2.2)), then the Conharmonic curvature tensor with respect to 

Riemannian connection is equal to Conharmonic curvature tensor with 

respect to semi-symmetric metric connection if and only if at least one of the 

following holds 

 

i. p

pa   , 
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ii. jh ikg g  be symmetric in i and j . 
 

iii. jh ikg g  be symmetric in h and k . 
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