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1. Introduction

Let (M",g)(n>2), be an n-dimensional Riemannian manifold with
Riemannian metric g. A connection V is said to be symmetric connection if
torsion tensor T of the connection vanishes otherwise it is called a non-
symmetric connection. In 1932, H. A. Hayden? introduced the idea of semi-
symmetric connection. A connection V is said to be a metric connection if

(1.1) Vg =0,

otherwise it is called a non-metric connection. The Riemannian manifold
equipped with a semi-symmetric metric connection has been studied by O.
C. Andonie* , M. C. Chaki and A. Konar‘, B. B. Chaturvedi and P. N.
Pandey®, P. N. Pandey and B. B. Chaturvedi® " and B. B. Chaturvedi and B.
K. Gupta®®.
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A. Friedman and J. A. Schouten®™ considered a semi-symmetric metric
connection V and Riemannian connection D associated with coefficients

I and {L‘} respectively. According to them if the torsion tensor T of the
connection V on (M",g)(n> 2), satisfies

(1.2) T =60, -6,
Then
(1.3) thz{,'} }+5iha)j —gija)h,

where " are contravariant components of the generating vector @, such
that »" = g"w, and

(1.4) V,0=D, 0 -oo;+9,0,

J

where o = 0" w, .

A. Friedman and J. A. Schouten® obtained the relation between
curvature tensor with respect to semi- symmetric metric connection and
Riemannian connection given by

(1.5) ﬁijkm = Rin = IinT i + i — 9 Fim + G >
where

1
(1.6) 7y =V,0, - 0,0, +Egjka).

Transvecting (1.5) by g™, we get
(1.7) ﬁjkz Ry — (=27, —g; 7
Transvecting (1.7) by g*, we get

(1.8) R=R-2(n-1r.
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2. Non-Recurrent Torsion Tensor

In 2001, U. C. De and J. Sengupta™ studied some properties of an almost
contact manifold equipped with semi-symmetric metric connection whose
torsion tensor satisfies a special condition. In the continuation of these
developments H. B. Yilmaze, F. O. Zengin and S. A. Uysal* studied a semi-
symmetric metric connection with a special condition on a Riemannian
manifold. They considered a Riemannian manifold equipped with a semi-
symmetric metric connection whose torsion tensor T satisfies the following
condition

(2.1) VT, =aT +bb"g, +5/ba, .

Above developments motivated us to study a semi-symmetric space
equipped with a non-recurrent torsion tensor.

We define a non-recurrent torsion tensor by generalizing the expression
of torsion tensor given by H. B. Yilmaze, F. O. Zengin and S. A. Uysal*

(2.2) Vi =aT. +bb"g, +b"b.g; +bb"g,,,

where b, =b'g,,b' =b,g" and a;,b; are non-zero orthogonal vector fields.
Contracting the indices h and i in (1.2), we get

(2.3) Ti=(n-Do,.

Taking covariant derivative with respect to semi-symmetric metric
connection V of (2.3), we have

(2.4) vah? =(h-)V, ;.

Contracting the indices h and i in (2.2) and using b, =b'g, and b=b'b,,
we get

(2.5) V T =a;Ty +2b,b, +bg, ,
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From (2.3), (2.4) and (2.5), we get

2 bg j
(26) Vja)k=aja)k +Ebjbk +n—_11.
From (1.6) and (2.6), we get
2 by ; 1

(2.7) an :aia’k+n_1bjbk+n_1k1—a’ja’k +Egjka) :
Defining

2 bg; 1 )
(2.8) X zn__lbjkarn__]kl_a’ja’kJFEgjka) and o =5 9",

and using (2.8) in (2.7), we have
(2.9) Ty =a;0, +ay .

Using (2.9) in (1.5), we get

(2.10) Rijn = Rijn = 9in@j + 9 nic — 9 + i,

~ 0@ + 9,80 — Q3 8@, + 09w, .
Transvecting (2.10) with g*", we find

(2.11) R =R .

Thus we conclude:

Theorem 2.1: If the torsion tensor of a Riemannian manifold
(M",9)(n>2)equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it
satisfies (2.2)), then
=R,

ij ij

where ﬁij and R; are Ricci tensor with respect to the semi-symmetric
metric connection and the Riemannian connection respectively.
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Now we propose:

Theorem 2.2: If the torsion tensor of a Riemannian manifold
(M",9)(n>2)equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it
satisfies (2.2)), then the curvature tensor of type (0,4) with respect to semi-
symmetric metric connection satisfies the following

1. Ryn=-Ry, i.e. skew symmetric in first two indices,
2. Ryun+Rum+Ry =0, ifa,o =a0.
Proof: Interchanging the indices i and j in (2.10), we get
(2.12) ﬁjikh =Riin = 9jn %k T 9in® i — 9w ¥ + 9 i
— 00y + 05,80, — 0, 8,0, + 0 A0, .
Adding (2.10) and (2.12), we get
(2.13) Rin + Riin = Rign + Rjin-
Since in Riemannian manifold the curvature tensor satisfies
(2.14) Riin + Rjiey =0.
Hence from (2.13) and (2.14) we get (i).
Now interchanging i, j and k cyclically in (2.10), we get
(2.15) Rin = Rign = In @ + 950 @y — 95 + 93 &,
- 08,0, + 9,80, — 9,80, + 9,80,
(2.16) F_ijih =Ry — 90 + 9 — 9u X + 95 i
~gpao + 0,20, — 0,80, +g;3,0,,

and
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(2.17) Rkijh = Rkijh — 0% + 9in @ — 0 U + 94 A
~0nd0; + 0,80, —0;8,0, + 0,80, .

Adding (2.15), (2.16) and (2.17), we have
(2.18) Rin + Rian + Rein = Ry + Ryn + R + 90 (80, — 3, @)

+0i (B0 — 0 8)) + 9 (30 — ;&) .
From (2.18), we get
(2.19) Rie + Rin + R = Rin + Ry + R If 8,00 =80, .
Since in Riemannian manifold the curvature tensor satisfies the relation
(2.20) Rijkh +R iin + Rkijh =0.
Hence from (2.19) and (2.20), we get (ii).

Now we propose:

Theorem 2.3: If the torsion tensor of a Riemannian manifold
(M",9)(n>2)equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it
satisfies (2.2)), then the scalar curvature with respect to the semi-
symmetric metric connection has the form

R=R-2(n-Da-2(n-Na,o".
Proof: Now transvecting (2.10) with g™, we get
(2.21) Ry =Ry —(n—2)a;, —~(n-2)a,m, —ag;, —a,0"g, .
Transvecting (2.21) with g™ and using g* g, =n, we get

(2.22) R=R-2(n-)a-2(n-Ya "
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Now we propose:

Corollary 2.1: If the torsion tensor of a Riemannian manifold
(M",9)(n>2)equipped with a semi symmetric metric connection is non-

recurrent with respect to the semi-symmetric metric connection (i.e. it
satisfies (2.2)), then the scalar curvature with respect to the semi-
symmetric metric connection is equal to Riemannian scalar curvature if and
only if

az—apa)p.

Proof: If we take R = R then from equation (2.22), we have
(2.23) 2(n-1)(a+a,w”)=0.
Since n =1 then from (2.23), we get

(2.24) a=-aw".

p

Let a=-a,0" andusingin (2.22), we get

(2.25) R

I
0

3. Conharmonic Curvature Tensor

Definition 3.1: The Conharmonic curvature tensor L of type (0, 4) in a
Riemannian manifold is defined as

1
(3.1) Lijkh = Rijkh _E(gihRjk - gikth + 0 R, — O Rik)-

The Conharmonic curvature tensor with respect to semi-symmetric metric
connection is given by

_ _ 1 _ _ _ _
(3.2) Lijkh = Rijkh _E(gihRjk - gikth + 0 R, — Oin Rik)v

using (2.10) and (2.21) in (3.2), we get
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(3.3) Liin = Rijen = 9in @ + 9 n i — 95 + 9

—0ind;o + 9,80 — 0380, + 03,0,
_gih(Rjk _(n_z)ajk _(n_z)ajwk —aQj _apa)pgjk) |
—0x Ry, —(N-2)aj, - (N-2)a;m, — g, _apwpgjh)

n-2 +0 (Ry — (=2, —(N-2)a0, — g, _apa)pgih)

__gjh(Rik -(n=2), —(N-2a,0, — g, _apa)pgik) ]

Equation (3.3) implies
— 1
(3-4) Lijkh = Rijkh _E(gih Rjk — O th +J jk Rih -9 ih Rik)
2 p
_n_—2(a +a,w )(gjhgik - gjkgih) .
Using (3.1) in (3.4), we have
_ 2 )
(3.5) Liscn = Lijn _E(a_‘_apa) )(gjhgik _gjkgih)-

Now from (3.5), we can say that Ly, =Ly, if and only if a=-a " or
;.0 be symmetricin i and j or g;,g; be symmetricin k and h,

Thus we conclude:

Theorem 3.1: If the torsion tensor of a Riemannian manifold
(M",g)(n>2)equipped with a semi symmetric metric connection is non-
recurrent with respect to the semi-symmetric metric connection (i.e. it
satisfies (2.2)), then the Conharmonic curvature tensor with respect to
Riemannian connection is equal to Conharmonic curvature tensor with
respect to semi-symmetric metric connection if and only if at least one of the
following holds
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9,0, be symmetriciniand j.

9,0y be symmetricin hand k.
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