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Abstract: Reactions of n-Bu2SnCl2 with sodium salts of Schiff bases in 

different molar ratio in tetrahydrofuran-benzene solution afforded 

complexes of the types [(n-Bu)2Sn(sb)Cl]  and [(n-Bu)2Sn(sb)2],  

respectively, [where sb= Schiff bases:  salicylidene-1-aminobenzene 

(sabH), salicylidene-3-nitro-1-aminobenzene (snabH), and salicylidene-

2-amino-4-picoline(sapicH)]. All these coloured solid complexes are 

soluble in common organic solvents and were characterized by 

elemental (C, H, N, Cl and Sn) analysis and spectral [IR, (
1
H, 

13
C and 

119
Sn) NMR] and mass studies. On the basis of spectroscopic studies 

plausible structures have been proposed tentatively.  

Keywords: Schiff bases; organotin(IV) complexes; 
119

Sn NMR; 

antimicrobial activity. 

 

1. Introduction 
 

The studies of organotin(IV) complexes have gained considerable 

interest due to their various biological and industrial applications
1, 2

. The 

organotin(IV) complexes have been extensively studied because of its 

versatile chemistry and its potential as biological activity. The chemistry of 

organotin(IV) complexes
3
 of Schiff bases has been extensively studied due 

to its thermal stability, structural variety, and important antitumor, 

antimicrobial, antifungal, antibacterial, antioxidant or anti-inflammatory 

properties. However, the mode of biological activities of the organotin(IV) 

compounds is not completely known. The structure of the organotin(IV) 

complexes, its coordination number, the extent of alkylation and the nature 

of the organic groups attached to the tin atom are the main factors deciding 

the biological activities of the tin complexes
4-6

. As part of our investigations 

on organotin(IV) complexes containing, N-arylsalicylaldiminate
7-11

 Schiff 

bases, we report in this paper synthesis and physicochemical 
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characterization studies of di-n-butyltin(IV) complexes derived from Schiff 

bases such as sabH, snabH and sapicH.  

 

2. Experimental 

 

2.1. Materials and Physical Measurements 
 

All the chemicals used throughout the present course of 

experimental work were of G.R/Analar grade. Di-n-butyltin(IV)dichloride 

(Fluka), m-nitroaniline, aniline, Salicyldehyde (Loba), 2-amino-4-picoline 

(Merck) were used without further purification. Benzene (AR Merck), 

tetrahydrofuran (AR Merck), n-hexane (AR Merck) were dried according to 

standard literature procedures
12

. Elemental analyses were performed with a 

Haraeus Carlo Erba 1108 elemental analyzer. Chlorine was estimated 

volumetrically by using Volhard method
13

. Tin was estimated 

gravimetrically as SnO2. Infrared spectra were recorded on a Perkin-Elmer 

100 FT-IR spectrometer in the range 4000-400 cm
-1

. 
1
H, 

13
C and 

119
Sn NMR 

spectra were recorded on Bruker DRX-300 spectrometer in CDCl3 / DMSO-

d6 solvent and chemical shifts were given in ppm relative to tetramethyl 

silane for carbon, hydrogen and tetramethytin for tin. A mass spectrum was 

recorded on TOF MS MS spectrometer. 
 

2.2. Synthesis of Schiff bases  
 

The Schiff bases were prepared according to the method described in 

some of our earlier publications
9
. 

 

2.3. Synthesis of complexes 
 

Similar procedure was used for the synthesis of the complexes (1-6), 

therefore, general synthetic details are given below: To a benzene (~ 20 ml) 

solution of n-Bu2SnCl2, sodium salt of Schiff base [prepared by the reaction 

of equimolar amounts of sodium metal and a Schiff base (HL) in 

tetrahydrofuran ( ~ 30 ml)] in appropriate (1:1 and 1:2) molar ratios was 

added dropwise with constant stirring. The reaction mixture was refluxed 

for  ~ 5 h. The precipitated NaCl was removed by filtration. The solvent was 

removed by distillation. The solid products were dried under reduced 

pressure and recrystallized from a mixture of THF/n-hexane (20:80) at -

20
°
C.  

 

[(n-Bu)2Sn(sab)Cl](1): Yield: 78%, yellow solid, m.p. 78-79 
°
C. Anal. 

Found: C, 51.55; H, 5.82; N, 5.98; Cl, 7.52; Sn, 25.36% Calc. For 

C21H28ClNOSn: C, 54.29; H, 6.07; Cl, 7.63; N, 3.01; Sn, 25.55. 
1
H NMR 

(CDCl3) (ppm): 8.61 (1H, s, CH=N), 6.35-7.84 (m, 8H, Ar-H) 1.25-1.68 

(12H, m, Sn-(CH2)3-), 0.86-0.81 (6H, m, CH3). 
13

C NMR (CDCl3) (ppm): 
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163.62 (s, CO), 160.19 (s, CN), 146.64-118.64, (s, Ar-C, Py-C), 26.73, 

20.92, 20.35, 12.86 (s, Sn-Bu
n
). 

119
Sn NMR (DMSO-d6) (ppm): -148.62. IR 

(KBr, cm
-1

) 1617 (νC=N), 1276 (νC-O), 671 (νSn-C), 528 (νSn-O), 407 (νSn-N). 

 [(n-Bu)2Sn(sab)2](2): Yield: 80%. dark yellow solid, m.p. 126-127
°
C. Anal. 

Found: C, 61.23; H, 5.72; N, 8.88; Sn, 18.86% Calc. For C34H38N2O2Sn: C, 

65.30; H, 6.12; N, 4.48; Sn, 18.98. 
1
H NMR (CDCl3) (ppm): 8.66 (2H, s, 

CH=N), 6.45-7.86 (m, 16H, Ar, Py) 1.32-1.59 (12H, m, Sn-(CH2)3-), 0.84-

0.71 (6H, m, CH3). 
13

C NMR (CDCl3) (ppm):  164.72 (s, CO), 161.74 (s, 

CN), 148.52-117.69 (s, Ar-C, Py-C), 25.53, 25.13, 25.71, 13.56 (s, Sn-Bu
n
). 

119
Sn NMR (DMSO-d6) (ppm): -359. IR (KBr, cm

-1
) 1622 (νC=N), 1274 (νC-

O), 668 (νSn-C), 524, (νSn-O), 412 (νSn-N). 
 

  [(n-Bu)2Sn(snab)Cl](3): Yield: 79%, yellow solid, m.p. 76-78 
°
C. Anal. 

Found: C, 55.17; H, 6.28; N, 2.90; Cl, 7.38; Sn, 24.76% Calc. For 

C21H27ClN2O3Sn: C, 49.49; H, 5.34; Cl, 6.96; N, 5.50; Sn, 23.29. 
1
H NMR 

(CDCl3) (ppm): 8.74(1H, s,CH=N), 6.78-7.61(m, 8H, Ar-H), 1.22-

1.69(12H, m, Sn-(CH2)3-), 0.93-0.81(6H, m, CH3). 
13

C NMR (CDCl3) 

(ppm): 165.73 (s, CO), 162.46 (s, CN), 143.83-118.46, (s, Ar-C), 28.54, 

27.65, 26.19, 13.42 (s, Sn-Bu
n
). 

119
Sn NMR (DMSO-d6) (ppm): -142.64. IR 

(KBr, cm
-1

) 1616 (νC=N), 1277 (νC-O), 659 (νSn-C), 518 (νSn-O), 416 (νSn-N). 
  

[(n-Bu)2Sn(snab)2](4): Yield: 80%, yellow solid, m.p. 116-119 
°
C. Anal. 

Found: C, 66.13; H, 6.42; N, 4.22; Sn, 18.17% Calc. For C34H36N4O6Sn: C, 

57.08; H, 5.07; N, 7.83; Sn, 16.59. 
1
H NMR (CDCl3) (ppm): 8.80 (2H, s, 

CH=N), 6.54-7.21(m, 16H, Ar-H), 1.24-1.44 (12H, m, Sn-(CH2)3-), 0.78-

0.90 (6H, m, CH3). 
13

C NMR (CDCl3) (ppm): 165.32 (s, CO), 162.52 (s, 

CN), 148.28-118.43 (s, Ar-C), 26.18, 25.73, 25.14, 13.28 (s, Sn-Bu
n
). 

119
Sn 

NMR (DMSO-d6) (ppm): -377. IR (KBr, cm
-1

) 1618 (νC=N), 1278 (νC-O), 624 

(νSn-C), 519 (νSn-O), 409 (νSn-N). 
  

[(n-Bu)2Sn(sapic)Cl](5): Yield: 80%, brown solid, m.p. 87-88 
°
C. Anal. 

Found: C, 51.55; H, 5.82; N, 5.98; Cl, 7.52; Sn, 25.36% Calc. For 

C21H29ClN2OSn: C, 52.59; H, 6.09; Cl, 7.39; N, 5.84; Sn, 24.75. 
1
H NMR 

(CDCl3) (ppm): 9.90(1H, s,CH=N), 8.51(d, 1H, Py-H), 6.34-7.67(m, 7H, 

Ar, Py) 1.31-1.68 (12H, m, Sn-(CH2)3-), 0.87-0.81(6H, m, CH3). 
13

C NMR 

(CDCl3) (ppm): 164.35 (s, CO), 162.12 (s, CN), 145.84-116.17, (s, Ar-C, 

Py-C), 26.73, 24.87, 24.64, 13.32 (s, Sn-Bu
n
). 

119
Sn NMR (DMSO-d6) 

(ppm): -143 IR (KBr, cm
-1

) 1622 (νC=N), 1280 (νC-O), 674 (νSn-C), 532 (νSn-O), 

413 (νSn-N). 
 

[(n-Bu)2Sn(sapic)2](6):  Yield: 84%. dark brown solid, m.p. 146-147
°
C. 

Anal. Found: C, 61.23; H, 5.72; N, 8.88; Sn, 18.86% Calc. For 

C34H40N4O2Sn: C, 62.31; H, 6.15; N, 8.55; Sn, 18.11. 
1
H NMR (CDCl3) 
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(ppm): 9.93 (2H, s, CH=N), 8.52 (d, 2H, Py-H), 6.38-7.84 (m, 14H, Ar, Py) 

1.26-1.46(12H, m, Sn-(CH2)3-), 0.78-0.71(6H, m, CH3). 
13

C NMR (CDCl3) 

(ppm):  165.32 (s, CO), 161.42 (s, CN), 149.89-116.54 (s, Ar-C, Py-C), 

25.53, 25.51, 25.43, 12.14 (s, Sn-Bu
n
). 

119
Sn NMR (DMSO-d6) (ppm): -356 

IR (KBr, cm
-1

) 1615 (νC=N), 1282 (νC-O), 673 (νSn-C), 529, (νSn-O), 407 (νSn-N). 

 

3. Results and Discussion 
 

Organotin(IV) complexes (1-6) have been synthesized by the reactions 

of  di-n-butyltin(IV)dichloride with sodium salts of Schiff bases in 1:1 and 

1:2 molar ratios in THF-C6H6 mixture (Scheme 1). All these complexes are 

coloured solids, soluble in polar solvents (e. g.  methanol, ethanol, THF, 

DMF and DMSO). 
 

3.1. Infrared spectral studies 
 

  The following salient features appear to be significant from the point of 

view of structural elucidation: The disappearance of stretching vibration 

band of phenolic (O-H) group in the region 3436-3350 cm
-1

, may be 

assigned to be due to replacement of phenolic proton by the metal [4a]. The 

metallation of phenolic proton is also supported by shifting of νC-O toward 

higher frequency in the region 1282-1274 cm
-1

 with respect to that observed 

in Schiff bases
9
 and appearance of new bands in the region 532-518 cm

-1
 

which are assignable to νSn-O. In complexes the ν(C=N), occurring between 

1622-1615 cm
-1

, is considerably shifted towards lower frequencies with 

respect to that of the parent Schiff bases 1638-1635 cm
-1

, confirming the 

coordination of the azomethine  nitrogen to dibutyltin(IV) moiety
9
. The 

weak intensity bands observed in the 416-407 cm
-1

 region may be due to 

ν(Sn-N) vibration
11

. The ν(Sn-C) bands were observed at 673-624 cm
-1

. On 

the basis of the observations the structures of the complexes displayed in 

Scheme 1 are more acceptable. 
  

3.2. 1H NMR spectral studies 
  

The bidentate (O, N) connectivity
7-11

 of the Schiff bases to Bu2Sn- 

moiety in complexes (1-6) is consistent with the (i) The 
1
H NMR spectra of 

tin(IV) complexes exhibit an absence of signal due to OH group  of Schiff 

bases in the region 13.18-12.40 ppm, which is indicative of metallation of 

the OH group, (ii) The presence of signals in the region 9.93-8.61 ppm for 

azomethine hydrogen, which is shifted down field, compared to the parent 

Schiff bases (9.37-8.40 ppm) is supportive of the coordination of 

azomethine nitrogen to tin atom. The butyl group attached to tin showed two  

broad peaks in the 0.93-0.71 and 1.69-1.22  ppm regions, respectively due to 
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 –CH3 and (–CH2-)3 groups of butyl chain. 
 

3.3. 13
C NMR spectral studies 

 

The azomethine carbon signals which are observed in the region 159.93-

158.70 ppm for free Schiff base ligands, are present in the region 162.52-

160.19 ppm for tin (IV) complexes such downfield shift is in support of 

coordination of azomethine nitrogen to the tin atom
11

. The signals for 

phenolic carbon in the region 150.83-148.26 ppm for free Schiff base 

ligands are shifted downfield 165.72-163.62 ppm in the complexes, 

supporting the bonding through phenolic oxygen and the formation of 

metal-oxygen bond
11

. 
  

3.4. 119
Sn NMR spectral studies 

 

The organotin(IV) complexes (1, 3, 5) and (2, 4, 6) exhibit a single sharp 
119

Sn resonance (see Experimental Section) in the  -148 to -143  and   -377 

to -356 ppm regions consistent with penta- and hexa- coordinated tin atoms,  

respectively
2
.  

 

3.5. Mass spectral studies 
 

     The mass spectral data for the complexe [(n-Bu)2Sn(sab)Cl] (1) was 

recorded and different fragmentation patterns has been suggested (Schemes 

2). For complexe (1) most of the fragment ions were observed in the form of 

group of peaks due to the presence of various isotopes of tin
7-11

. In the 

spectra of (1) (Figure 1) the molecular ion peaks are observed at m/z 

465.8573 (calculated mass = 465.0881]. In spectrum of the complex (1), the 

base peak was observed due to the formation of phenoxy cation [C6H5O]
+ 

at 

m/z 93.0461, and other important peaks were also observed at m/z 

408.0177, 388.0490, 362.0459, 350.9473, 315.9784, 304.9755, 247.9051, 

238.9393, 212.9362 and 119.9022 due to the formation of various radicals 
n
Bu

•
, Cl

•
, C6H5

•
, CHN, C6H6O

•
, Sn

•
  in complex (1). 

 

4. Conclusion 
 

Synthesis of five- and six- coordinate di-n-butyltin(IV) complexes have 

been achieved by the reactions of di-n-butyltin(IV)dichloride with 

appropriate sodium salt of Schiff base ligands in 1:1 and 1:2 molar ratios, 

respectively and investigated by a variety of physicochemical methods.  
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Scheme 1. General method for synthesis of Schiff bases and di-n-butyltin(IV) complexes 
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1 C H H 

2 C H H 

3 C NO2 H 

4 C NO2 H 

5 N H CH3 

6 N H CH3 
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Fig. 1. TOF-MS spectrum of complex [(n-Bu)2Sn(sab)Cl] (1) 
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Scheme 2. Fragmentation pattern of complex [(n-Bu)2Sn(sab)Cl] (1) 
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