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Abstract:  Many engineering design problems can be formulated as 

constrained optimization problems. Solving constrained engineering 

design problems via evolutionary algorithms has attracted increasing 

attention in the past decade. So far, penalty function methods have been 

the most popular methods for constrained optimization due to their 

simplicity and easy implementation. However, it is often not easy to set 

suitable penalty factors. This paper proposes an alternative hybrid 

approach (namely DPD) to efficient solving for constrained engineering 

design optimization problems combining by differential evolution (DE) 

and particle swarm optimization (PSO) algorithms. DPD is based on tri-

break-up concept of population. Initially all individual in the population 

are divided into three groups – Inferior Group, Mid Group and Superior 

Group; according to their increasing order of function value. Initially 

the suitable mutation operators for both DEs used in DPD are 

investigated. The investigated mutation combination for DEs in DPD 

algorithm is shown to enhance the local search ability of the basic DE. 

Moreover, two strategies Elitism and Non-redundant search improve the 

quality of the solutions in the memory of each individual. Under the 

guidance of the bracket operator penalty (exterior penalty), the 

algorithm quickly finds better feasible solution. This algorithm has been 

applied to two constrained engineering optimization problems reported 

in the specialized literature. DPD compared with respect to algorithms 

representative of the state-of-the-art in the area. The results indicate that 

the DPD is a powerful optimization technique that may yield better 

solutions to engineering problems. 
 

Keywords: Differential Evolution; Particle Swarm Optimization; Non-

redundant search; Elitism; Engineering design problem 
 

 

1. Introduction 
 

Nowadays, economy plays an important role in all aspects of human life. 

Since engineering projects are time, energy, and cost consuming. Economy 

has a great influence on them and optimization is an inevitable part of 
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engineering design problem. Many engineering design problems can be 

formulated as constrained optimization problems, which involve a number 

of constraints that the solutions had to satisfy. Generally, a constrained 

optimization problem can be described as follows: 

/   ,  X = { } n

1 2 3 nMinimize Maximize f(X) x ,x ,x ,.......,x R  

              Subject to 

                                 
..i

j

L L

d i d

g (X) 0;        i = 1,2, ....., p

h (X)= 0;        j = 1, 2,......,m

a x b ;   d = 1, 2,......,n 



 

 

 

where  1 2 3, ,   ,....., nX x x x x is an n dimensional position vector, ( )f X is an 

objective
 

function, ( )ig X 0  is p inequality constraints,
 ( )ih X 0  is m 

equality constraints respectively. Values  and bL L

d da  are the lower and upper 

boundaries of ix respectively.  As equality constraints are difficult to be 

tackled in the optimization problems.  All equality constraints ( ) 0jh x   

could be broken into two inequalities with ≤ and ≥ sign. Again ≤ sign can be 

modified into ≥ sing by multiplying (-1), both sides. 

In recent years, many evolutionary algorithms (EAs) have been 

proposed for solving constrained engineering optimization problems. EAs 

possess a number of exclusive advantages: generality, reliable and robust 

performance, little information requirement for the problem to be solved, 

easy implementation, etc. Especially, Differential Evolution (DE)
1
 and 

Particle Swarm Optimization (PSO)
2
 are two formidable population-based 

optimizers that follow different philosophies and paradigms, which are 

successfully and widely applied in scientific and engineering research. 

Because of the individual shortcomings of each of DE and PSO, the solution 

leads to a premature convergence or getting stack in some local optima. The 

“no free lunch theorem
3
” states that no individual optimization algorithm is 

better than all the other optimization algorithms for all classes of 

optimization problems. However, from the literature, there is no single EA 

algorithm which is able to solve a wide range of constrained optimization 

problems consistently. Hence, researchers started working on the 

hybridization techniques between DE and PSO in order to maintain a proper 

balance between exploration and exploitation in the search space. The 

hybridization between DE and PSO represents a promising way to create 

more powerful optimizers, especially for specific problem solving. 

In past decade, many hybrid algorithms have been proposed for solving 

constrained engineering optimization problems. Liu et al.
4
 used a hybrid 
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PSO called PSO-DE to solve constrained numerical and engineering 

optimization problems. In PSO-DE, DE is incorporated to update the 

previous best positions of PSO particles to force them to jump out of local 

attractor in order to prevent stagnation of population. The PSO-DE 

integrates PSO with differential evolution (DE) to obtain a good 

performance. Khamsawang et al.
5
 proposed an improved hybrid algorithm 

based on conventional particle swarm optimization and differential 

evolution (called PSO-DE) for solving an economic dispatch (ED) problem 

with the generator constraints.  

Recently, Nwankwor et al.
6
 proposed a hybrid version of PSO and DE 

for the optimal well placement problem.  The combination of PSO and DE 

seems to be very effective as suggested in the report by Xin et al.
7
. The said 

approach moves around the enhancement of capabilities of PSO and DE in 

various aspects. Yadav and Deep
8
 proposed a new co-swarm PSO 

(CSHPSO) for constrained optimization problems, which is obtained by 

hybridizing the recently proposed shrinking hypersphere PSO (SHPSO) 

with the differential evolution (DE) approach. The total swarm is subdivided 

into two sub swarms in such a way that the first sub swarms uses SHPSO 

and second sub swarms uses DE. CSHPSO apply in benchmark problems, 

power system optimization problem with valve point effects. The results 

demonstrate that the proposed CSHPSO algorithm shows better 

performance in comparison to the state-of-the-art algorithms. It can be 

concluded that the hybridization of DE and PSO came out as a giant 

optimizer for the optimization problems. 

In view of the above problems, this paper puts forward a new algorithm 

hybridizing differential evolution (DE) with particle swarm optimization 

(PSO). DPD combines DE with PSO on the basis of an optimal information 

sharing mechanism firstly. In this study, the process of hybridization is 

being emphasized with a tri-breakup of the population. The novel hybrid 

algorithm thus proposed is named as DE-PSO-DE for solving constrained 

engineering optimization problems. 

The rest of the paper is organized as follows. Section II introduces the 

different components of the proposed hybrid system. Section III represents 

the proposed algorithm. The experimental setting is reported in section IV. 

Section V contains the results and discussions. The Conclusion and future 

works is drawn at the last section VI. 

 

2. The Framework of Proposed Hybrid Approach 
 

Constrained Handling Technique 

An efficient and adequate constraint-handling technique is a key element 

in the design of optimization algorithm. Due to the simplicity, the penalty 
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function method has been considered as the most popular technique to 

handle problem-specific constraints. Although the use of penalty functions 

is the most common technique for constraint-handling. Use of penalty 

functions has been commonly reported in literature for use in constrained 

optimization. Michalewicz
9
 summarized several constraint-handling 

techniques, and it was pointed out that the penalty function is the most 

widely used technique to handle constraints due to its simple principle and 

easy implementation. Two basic types of penalty functions exist; exterior 

penalty functions, which penalize infeasible solutions, and interior penalty 

functions, which penalize feasible solutions. In the EAs community exterior 

Penalty function method is preferred to the interior Penalty function 

approach. The reason is that interior function approach requires an initial 

feasible solution, which is the main drawback of this method. Exterior 

Penalty function method starts with infeasible or feasible solution. If it starts 

with infeasible solution then penalty function forces the algorithm to move 

towards the feasible solution and if it starts with feasible solution the penalty 

function becomes zero so it does not affect the value of the objective 

function. The main advantage of the use of penalty functions is their 

simplicity; however, their main shortcoming is that penalty function 

methods require the fine-tuning of the penalty function parameters, to 

discourage premature convergence, whilst maintaining an emphasis on 

optimality. There are various forms of penalties reported in the literature, 

like parabolic penalty, Infinite barrier penalty, Log penalty, and Inverse 

penalty, Bracket operator penalty. Overall, Penalty function methods are 

simple and convenient, which don’t strictly require problem itself, but how 

to determine the suitable penalty factors is a tough problem. At present, 

there has not been a generally effective method for solving constrained 

optimization problem. 

In this paper, fitness function of each individual in the population find 

by using the bracket operator penalty (exterior penalty). This penalty is 

mostly used in handling inequality constraints
10

. The constrained 

optimization problem transformed into unconstrained problem is of the form 

 
( ) ( ) ( ) ( ) ( ) ( ) t t t t t tF(x ,R )= f(x )+ (R ,g ,h ) , 

 

where, F stands for the objective function and Ω stands for penalty term 

which is given by 

 

2 0,   0
 = R (x)      where  = 

,   0

if
g

if




 


 


. 
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Differential Evolution (DE) 

Differential Evolution (DE) is a population-based optimization 

algorithm which is similar to the genetic algorithm. But the sequence of 

applying them is different. DE works with three major steps such as 

Mutation, Crossover and Selection. 
 

(a) Mutation:  It is a central/core operator in DE. There are many mutation 

strategies in DE. Some well-known mutation operators are listed as 

follows: 
 

1) “DE/rand/1/bin”    
                                                                 

               
1 2 3

 ( ),
i

V x F x xr r r     

2) “DE/rand/2/bin” 
 

               
1 2 3 4 5

    ( ) ( )i r r r r rV F Fx x x x x      , 

3) “DE/best/1/bin” 
 

    
2 3

  ( )best r riV Fx x x   , 

4) “DE/best/2/bin” 
 

             
52 3 4

( ) ( )
i best

V x F x x F x xr r r r       , 

5) “DE/rand-to-best/1/bin” 
 

            
1 1 2 3

( ) ( )i r best r r rV F Fx x x x x      , 

6) “DE/current-to-best” 
 

 
2 3

( ) ( )i i best i r rV F Fx x x x x      ,    

7) “DE/rand-to-best/2/bin” 
 

1 1 2 3 4 5
( ) ( ( ))i r best r r r r rV F F Fx x x x x x x         , 

8) “DE/current-to-best/2/bin”   
        

2 3 4 5
( ) ( ) ( )i i best i r r r rV F F Fx x x x x x x         , 
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where a random number [0,1]F  is the mutation coefficient, 
bestx  

represents the best individual in the current generation 

 1 2 3 4 5 6 1,...., pi r r r r r r N       ix is referred to the target vector; vi is the 

mutant vector. 

 

(b) Crossover: After mutant vectors generated, DE introduce the crossover 

operation which increases the diversity of the target vectors. Then 

crossover operation, generates the population of candidates as follows: 

 

 , , 1

, ,

;  if  ( )  or ( )

, , 1  ;  if  ( )  or ( )
j i G j rand

j i G j rand

V rand CR j j

j i G X rand CR j jU   

  
, 

 

where  j=1,  2,..,D;  randj ∈ [0,1]; CR is the crossover  constant  takes  

values  in  the  range [0,1] and jrand ∈ (1,2,.., D) is the randomly chosen 

index.  

 

(c) Selection:- The vector having better fitness value is then selected as a 

promising individual for the next generation according to the following 

rule: 

 , 1; , 1 ,

,

if ( ) ( )

, 1 ; otherwise
i G i G i G

i G

U f U f X

i G Xx   

  . 
  

Particle Swarm Optimization (PSO) 

PSO is a robust stochastic optimization technique based on the 

movement and intelligence of swarms. PSO also starts with an initial 

population with the population size. Each individual in the population is 

called particle that involves with a position x and velocity v. The x and v of 

the i
th 

particle are respectively given as 1 2( ........ )i i i iNx x ,x , ,x  and 

1 2( ........ )i i i iNv v ,v , ,v  where N stands for the dimensions of the problem. 

During the evolution, each particle flies to its previous best position pBest 

and the global best position g Best found so far. Hence, a particle’s velocity 

and position are updated as follows: 
   

. ( ) ( )1 1 2 2v wv c r pBest x c r gBest x     , 
 

                            ( 1)iN iN ix t x (t)+v (t+1)  , 

 

where ω is the “inertia weight”, c1 and c2 are positive constants, 

“acceleration coefficients”, r1 and r2 are random numbers that are uniformly 

distributed in the interval [0, 1].  
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Elitism 

If crossover or mutation performed in an evolutionary algorithm (EA) 

then good candidates may be lost in offspring that are weaker than the 

parents. Often the EA will re-discover these lost improvements in a 

subsequent generation but there is no guarantee. To combat this we can use 

a feature known as elitism. Elitism is therefore is a mechanism to retain the 

overall best individuals. At the end of iteration both the populations 

(obtained before and after the iterations) are combined and the best half is 

considered for next generation.  

 NRS (Non-Redundant Search) 

In proposed algorithm, Non-redundant search (NRS)
11

 is used as a local 

search. The NRS algorithm works as follows: 

a. Deletion of individuals with the same chromosome in the current 

population.  

b. Addition of new individuals selected randomly instead of these 

redundant ones.  

Consequently, non-redundant search improves the search ability to find the 

optimal solution.  

3. Proposed Method DE-PSO-DE 

 

Inspiration: 

Han,et. al.
12

 developed a dynamic group-based differential evolution (GDE) 

algorithm for global optimization problems, which has both exploitation and 

exploration abilities. The GDE algorithm provides a generalized evolution 

process based on two mutation operations to enhance search capability. In GDE 

algorithm, initially all individuals in the population are grouped into a superior 

group and an inferior group based on their fitness. The two groups perform 

different mutation operations. The local mutation model is applied in the 

superior group, to search for better solutions near the current best position. The 

global mutation model is applied to the inferior group, which is composed of 

individuals with lower fitness values, to search for potential solutions. The GDE 

algorithm performs two mutation operations based on different groupings to 

effectively search for the optimal solution. 
 

Observation/Motivation of DPD: 

Particle swarm optimization (PSO) and Differential evolution scheme is the 

contemporary, both swarm intelligence and evolutionary process. The 

motivation behind the hybridization of DE and is PSO to take advantage for 

providing better solution, simultaneously
4-8

. Due to the robust behavior of 

mutation operators, DE has the ability to balance exploration and exploitation, 

over search space. As. Han,et. al.
12

, DE works better at two different situations 
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where the local search or the global search is essential. However, due to the 

inherent shortcomings of DE, sometimes, stacking in some local minimal or 

choosing the path to premature convergence is unavoidable. Hence many a time 

the diversity in the population need to be maintained. Therefore introduction of 

another mechanism becomes essential in the group based hybridization 

methods, proposed in. Han et al.
12

. It is also observed that the behavior of PSO 

is to wildly seek the potential solution. It diversifies the candidate solutions in a 

better way and probably also helps in avoiding some shortcomings of DE, in the 

hybrid system.  

Hybridization process hopefully helps to get rid of falling in premature 

convergence and getting trapped in local optima. According to Liang et al.
13

 the 

idea of this kind of hybridization gets more importance, when we are solving 

some complex constrained optimization problems where the ratio of the feasible 

region and search region is very small. It is found to be very tough to find the 

global solution of these problems.  
 

Idea of the hybridization: 

The purpose of incorporating these two giant techniques in a single one is to 

provide a better and more robust algorithm for solving constrained optimization 

problems. This kind of hybridization between DE and PSO could provide us a 

better solution for global optimization problems. Keeping in view the above 

observations and inspired by the concept of GDE, a tri-breakup-population 

based mechanism is proposed in this paper and applied in constrained 

engineering design problem. It initiates with a random population. Then find the 

fitness function of each individual in the population by using the bracket 

operator penalty. The strings are then sorted according to the increasing order of 

their function value. Now the population is being allowed to break in to three 

different groups A, B and C namely inferior group (first 1/3rd of the 

population), mid group (middle 1/3rd of the population) and superior group (last 

1/3rd of the population), respectively. Of course the population size is kept 

fixed to a multiple of 3 to favor the tri-breakup mechanism. According to the 

local and global searching behavior of DE (as observed above), it is allowed to 

being employed in both the inferior and superior groups (i.e. to A and C). At the 

same time Particle Swarm Optimization (PSO) is used in the mid-group (i.e. to 

B) to overcome the shortcomings of DE. Therefore the synergy of DE-PSO-DE 

(DPD) is the hybrid method proposed in this paper.  
 

4. Experimental Setup 
 

Selection of Mutation operators for DEs in DPD 

In DE Algorithm, the role of mutation operator is as a kernel operator 

that has the ability in the search of potential solutions. On the basis of 
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review of the past literature, researchers used many mutation strategies in 

the DE algorithm. For DE, selecting a mutation operator is indeed a difficult 

task. Therefore, in the present study, 8 different strategies of most efficient 

mutation operators have been reconsidered for analysis. The list of those 

strategies is reported in section II (B). While dealing with DPD, DE is being 

used two times in a generation. Hence, all combinations of mutation 

strategies are considered as: 
 

DE (with 8 different strategies of mutation) + PSO + DE (with 8 different 

strategies of mutation) = DPD 
 

Therefore a total of 8X8 = 64 combinations with all possible permutation of 

mutation operators, are generated by considering one case at a time and 

keeping PSO fixed. Some experiments are carried out so as to identify the 

top four combinations are (3, 3), (3, 7), (3, 5), (3, 1). Finally out of top four 

combinations check the performance which is defined in
14

. Top 4 

combinations (i.e. all forms of DPD) are tested in two constrained 

engineering design problems reported in
15

 include with different number of 

decision variables and a range of types (linear inequalities, nonlinear 

equalities, and nonlinear inequalities) and number of constraints. For this 

100 independent runs with 10000 function evaluations are fixed to start the 

simulation with same parameter setting according to IV (B). Hence, to 

measure the winner combination, a Performance and its extended form is 

used and is defined as below: 

 

 Performance ,
pN

i i i

1 1 2 2 3 3
i=1p

1
= + +   

N
k a k a k a  

 

                       subject to 1     1 2 3 1 2 3
 + +  and  k k k k k k   , 

                        where 

                                     

for    ,

i
i

i1

i
i

i i

2
i

i
i

i i

3

i

p

Sr
= 

Tr

Mo
,   if  Sr > 0

= Ao

0,         if  Sr 0

Mf
,   if  Sr > 0

Af=

0,         if  Sr 0

 i = 1,2,...............,N










 








 

iSr = Number of successful runs of i
th

 problem 
iTr = Total number of runs of i

th
 problem 
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iMo = Mean optimal objective function value obtained by an algorithm of i
th

    

         problem 
iAo = Minimum of mean optimal objective function value obtained by all  

         the algorithms of i
th

 problem 
iMf = Average number of function evaluations of successful runs required  

         by an algorithm in obtaining the solution of i
th

 problem 
iAf = Minimum of average number of function evaluations of successful   

          runs required by all algorithms in obtaining the solution of i
th

 problem 

pN = Total number of problems. 
 

Out of top 4 mutation combinations {(3, 3), (3, 7), (3, 5), (3, 1)} the 

performance of (3, 3) combination are better than other three shown in Fig.1. 

Hence, this combination i.e. (3, 3) is considered for further study. 

 

 
 

Fig.1. Performance evaluation for top 4 combinations (Under 2 engineering design problem) 
 

Engineering Design Problem and Parameter Setting 

A set of two well-known constrained engineering design problems
15

 are 

carried out to evaluate the performance of DPD.  
 

(1) E01: Welded Beam design problem 

 

(2) E02:  Pressure Vessel design problem 
 

These problems have been previously solved using a variety of other 

techniques, which is useful to show the validity and effectiveness of the 

proposed algorithm. For each problem, 100 independent runs are performed 

and statistical results which give information about the robustness of the 

algorithm. Moreover, the statistical results provided by DPD were compared 

with some algorithms used in literature. For PSO, the acceleration constants 

C1 and C2 are both set to 2.0, the inertial weights (w) are set to 0.7298. 
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However for DE in DPD, the mutation factor in group 1 i.e. FA=0.5 and for 

group 3 i.e. FC=0.8; and the crossover weight CRA=CRC=0.9. The 

population size for DPD is set to a value, multiple of 3; it kept fixed to 51 

for all problems to favour the population-tri-breakup system. As the 

problems studied in this work are minimization ones, the penalty function 

just adds a very high value (R=1e
10

) to the objective function. This penalty 

value was empirically chosen to be considerably bigger than the objective 

function values generated by the tested problems. Maximum numbers of 

function evaluation DPD are set as 10000. Values in “bold face” in tables 

represent the best obtained in the listed comparisons. The DPD are coded in 

C-Free Standard 4.0 and implemented on CORE i3, 2.8 GHz machine with 

2GB of RAM, Environment. 

 

5. Stimulation Results and Discussion for Two  

Engineering Design Problems 
 

The best results and statistical results of the DPD on the two engineering 

design problems are summarized in Table (1-2) and Table 3 respectively. It 

includes the best, mean, worst and standard deviations over 100 independent 

runs. In Table 3, it shows that DPD can generate best solutions for all 100 

runs. However, all problems deliver best value with low standard deviations. 

This illustrated that the results generated by DPD is robust. Values in “bold 

face” in tables represent the best obtained in the listed comparisons.  

 
Table  1. Best solutions obtained for welded beam problem 

 

 

Design 

variables 

Methods 

Lee and 

Geem16 

Gandomi 

et al.17 

Kazemzadeh 

Azad et al.18 

SOPT DPD 

x1 0.2442 0.2015 0.2054 0.20573 0.205724  
x2 6.2231 3.562 3.4783 3.47050 3.253253 

x3 8.2915 9.0414 9.0386 9.03663 9.036644 

x4 0.2443 0.2057 0.2057 0.20573 0.205729 
f(x) 2.38 1.73121 1.72576 1.72485 1.695255 

maxNFEs 110,000 50,000 20,000 10,000 10,000 
 

 

Table 2. Best solutions obtained for pressure vessel problem 
 

Design 

variables 

Methods 

Kazemzadeh  Azad et al.18 SOPT DPD 

x1 1.125 1.125 0.7781 

x2 0.625 0.625 0.3846 
x3 58.2895 58.2902 40.3196 

x4 43.6964 43.6927 200.0000 

f(x) 7199.412 7199.359 5884.689986 
maxNFEs 25,000 10,000 10,000 

 

 

 

 



162                                 Raghav Prasad Parouha and Kedar Nath Das 
 

Table  3. Statistical results for Engineering design problems by different methods 
 

 

In order to show the effectiveness and superiority of DPD, it is compared 

with
16-18

 and SOPT
15

. The results provided by compared approaches were 

directly taken from SOPT
15

. The best solution reported by DPD algorithm 

for welded beam design problem is f(X) = 1.695255 corresponding to 

decision variable X = [0.205724, 3.253253, 9.036644, 0.205729] and 

constraints [g1(X), g2(X), g3(X), g4(X), g5(X), g6(X), g7(X)] = [-0.179754, -

0.186979, -0.000005, -3.452407, -0.080724, -0.228310, -0.039577]. Also 

the best solution obtained by DPD for Pressure Vessel design problem f(X) 

= 5884.689986 corresponding to decision variable X = [0.7781, 0.3846, 

40.3196, 200.0000] and constraints [g1(X), g2(X), g3(X), g4(X)] = [-2.95E-

11, -7.15E-11, -1.35E-06, -40.0000]. Out of two engineering design 

problems DPD delivered best result compared to other algorithms in all 

manners.  
 

 
 

Fig. 2(a). Convergence for welded beam design problem 
 

 
 

Fig. 2(b). Convergence for Pressure vessel design problem 

 
Problems 

 

Performance 
Methods 

K. Azad et al.18 SOPT DPD 

E01 

Best 1.72576 1.72485 1.695255 
Average 1.773 1.72491 1.695255 

Worst 2.1376 1.72570 1.695255 

STD 0.0824 0.0001 0.000E+00 

E02 

Best 7199.412 7199.359 5884.689986 

Average 7347.105 7208.215 5884.689986 

Worst 9770.499 7342.977 5884.689986 
STD 420.07 29.16 0.000E+00 
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As a conclusion, on the comparison above, DPD shows a very 

competitive performance with other algorithms in terms of the quality, the 

robustness, and the efficiency of search. Also, DPD is able to consistently 

find the best value with a very small standard deviation which indicates that 

the proposed DPD has a remarkable ability to solve constrained problems. 

Overall, among non-DPD
16-18

 and SOPT
18

 performs better, but it is worse 

than DPD. Therefore, SOPT is considered for convergence comparison 

graph with DPD in two engineering design problem. Staring from the same 

seed, SOPT and DPD algorithms allowed running over function evaluation 

for a fair comparison, it implies all the methods start from same initial 

population. For the above two engineering problems, the convergence 

graphs are shown in Fig 2(a-b). Undoubtedly from Fig 2(a-b), it is clear that 

for each of engineering problems DPD converges faster than SOPT. 

Additionally it can be observed that the DPD algorithm requires less 

computational effort (according to NFEs) than the other algorithms. 

Therefore, it is considered the fastest one with the least maximum number 

of function evaluation. 

Conclusion and Future Works 

This paper proposes a novel algorithm named DPD, which integrates 

PSO with DE. By using global information obtained from DE and PSO, the 

exploration and exploitation abilities of DPD algorithm are balanced. DPD 

uses an information exchange mechanism that helps to avoid the premature 

convergence and violating particles are reproduced from a memory in which 

some of the so far best design variables are saved. An investigated mutation 

strategy for DEs in DPD, enhance the local search ability and advance the 

convergence rate. The two strategies Elitism and NRS illustrate the 

attractiveness of the proposed method. 

In order to demonstrate the effectiveness of the proposed method, it is 

applied to solve two well-known engineering design problems. The 

simulation results and comparisons provide evidence that the proposed DPD 

is superior in terms of various performance evaluation criteria such as mean, 

best, worst and standard deviation. The computation cost represented by the 

number of function evaluations of DPD is less than other existing 

techniques reported in literature. In general, it is very effective for solving 

constrained engineering optimization problems. Also, it is simple, robust, 

converges fast, and able to find the optimum solution in almost every run. 

Therefore, tri-beak-up technology for the population really makes the DE-

PSO-DE faster and robust. Thus, DPD technique can be used as a good 

alternative for solving constrained engineering design problems. However, 

there are still some things to do in the future. Firstly, we will further validate 

DPD in the case of higher dimensions. Secondly, we also will take some 
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measures to improve the convergence speed during the evolutionary 

process. Additionally, different hybrid models of DE and PSO algorithm 

will be studied. 
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