Some Properties of a Finsler Space with the
 Metric $L(x, y)=\gamma(x, y) \phi\left(\frac{\beta}{\gamma}\right)$

Shivalika Saxena and P. N. Pandey
Department of Mathematics
University of Allahabad, Allahabad-211002, India
E-mails: mathshivalika@gmail.com; pnpiaps@gmail.com

Suresh K. Shukla
Department of Pure \& Applied Mathematics
Guru Ghasidas Vishwavidyalaya, Bilaspur (C. G.)-495009, India
Email: shuklasureshk@gmail.com

(Received October 14, 2013)

Abstract

In the paper, we consider an n-dimensional Finsler space $F^{n}(n>2)$ with the metric $L(x, y)=\gamma(x, y) \phi(s)$, where $s=\frac{\beta}{\gamma}$ and $\phi(s)$ is a differentiable function with respect to s, β is a differential one form and γ is cubic metric. We obtain expressions for the fundamental metric tensor, Cartan tensor, geodesic spray coefficients and the equation of geodesics in a Finsler space with the above metric. Some other properties of such space have also been discussed.

Keywords: Finsler space, cubic metric, geodesics, one form metric.
Mathematics subject classification: 53B40

1. Introduction

The notion of an $\mathrm{m}^{\text {th }}$-root metric was introduced by H. Shimada ${ }^{1}$ in 1979. By introducing the regularity of the metric, various fundamental quantities of a Finsler metric could be found. In particular, the Cartan connection of a Finsler space with $\mathrm{m}^{\text {th }}$-root metric was introduced from the theoretical standpoint. M. Matsumoto and K. Okubo ${ }^{2}$ studied Berwald connection of a Finsler space with $\mathrm{m}^{\text {th }}$-root metric and gave main scalars in two dimensional case and defined higher order Christoffel symbols. The $\mathrm{m}^{\text {th }}$-root metric is used in many problems of theoretical physics ${ }^{3}$. T. N.

Pandey et. al^{4} studied three dimensional Finsler space with $\mathrm{m}^{\text {th }}$-root metric. To discuss general relativity with the electromagnetic field, G. Randers ${ }^{5}$ introduced a metric of the form $L(x, y)=\alpha(x, y)+\beta(x, y)$, where α is a square root metric and β is a differential one form. In his honor, this metric is called Randers metric, and it has been extensively studied by several geometers and physicists ${ }^{6-8}$. Recently P. N. Pandey and Shivalika Saxena ${ }^{9}$ studied a Finsler space with the metric L of the form $L(x, y)=F(x, y)+\beta(x, y)$, where F is an $\mathrm{m}^{\text {th }}$-root metric and called the space with this metric as an R-Randers $\mathrm{m}^{\text {th }}$-root space and obtained many results related to it. In 2010, Ryozo Yoshikawa and Katsumi Okubo ${ }^{10}$ studied S3-like Finsler spaces with the metric $L(x, y)=\alpha(x, y) \phi\left(\frac{\beta}{\alpha}\right)$.

The aim of the present paper is to study a more general space with the metric $L(x, y)=\gamma(x, y) \phi(s)$, where $s=\frac{\beta}{\gamma}$ and $\phi(s)$ is a differentiable function with respect to s, β is a differential one form and γ is cubic metric. The paper is organized as follows. Section 2 deals with some preliminary concepts required for the discussion of the following sections. In section 3, we derive certain identities satisfied in a Finsler space with the above metric. We obtain the fundamental metric tensor $g_{i j}$, its inverse $g^{i j}$ and the Cartan tensor $C_{i j k}$ for a Finsler space with the metric $L(x, y)=\gamma(x, y) \phi(s)$. In section 4, we obtain the spray coefficients of a Finsler space with this metric. It also includes the equations of the geodesics in a Finsler space equipped with the above metric.

2. Preliminaries

Let $F^{n}=(M, L(x, y))(n>2)$ be an n-dimensional Finsler space. The $\mathrm{m}^{\text {th }}$-root metric on M is defined as $L^{m}=a_{i_{1} i_{2} i_{3} \ldots i_{m}}(x) y^{y_{1}} y^{i_{2}} \ldots . . y^{i_{m}}$, where $a_{i i_{2} j_{3} \ldots, i_{m}}(x)$ are components of an $\mathrm{m}^{\text {th }}$ order covariant symmetric tensor. In case of $m=2$, the metric L is Riemannian. For $m=3$ and $m=4$ these metrics are called cubic and quartic respectively.
The covariant symmetric metric tensor $g_{i j}$ of $F^{n}=(M, L(x, y))$ is defined by

$$
\begin{equation*}
g_{i j}=: \frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}, \quad \quad \dot{\partial}_{i} \equiv \frac{\partial}{\partial y^{i}} \tag{2.1}
\end{equation*}
$$

This tensor is positively homogeneous of degree zero in y^{i}. From the metric tensor $g_{i j}$, we construct the Cartan tensor $C_{i j k}$ by

$$
\begin{equation*}
C_{i j k}=: \frac{1}{2} \dot{\partial}_{k} g_{i j} . \tag{2.2}
\end{equation*}
$$

The tensor $C_{i j k}$ is symmetric in its lower indices and is positively homogeneous of degree -1 in y^{i}. Due to its homogeneous and symmetric properties, it satisfies the following

$$
\begin{equation*}
C_{i j k} y^{i}=C_{k i j} y^{i}=C_{j k i} y^{i}=0 . \tag{2.3}
\end{equation*}
$$

The angular metric tensor of a Finsler space is given by

$$
\begin{equation*}
h_{i j}=g_{i j}-l_{i} l_{j}, \tag{2.4}
\end{equation*}
$$

where $l_{i}=\dot{\partial}_{i} L$.
The geodesic of a Finsler space is given by ${ }^{1}$

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}}+2 G^{i}=0 \tag{2.5}
\end{equation*}
$$

where G^{i} are the geodesic spray coefficients given by

$$
\begin{equation*}
2 G^{i}=\frac{1}{2} g^{i j}\left\{y^{k} \dot{\partial}_{j} \partial_{k} L^{2}-\partial_{j} L^{2}\right\}, \quad \partial_{j} \equiv \frac{\partial}{\partial x^{j}} . \tag{2.6}
\end{equation*}
$$

The nonlinear connection of a Finsler space is defined as

$$
\begin{equation*}
N_{j}^{i}=\dot{\partial}_{j} G^{i} . \tag{2.7}
\end{equation*}
$$

In the present paper, we study the space whose fundamental function is given by

$$
\begin{equation*}
L(x, y)=\gamma(x, y) \phi(s) \tag{2.8}
\end{equation*}
$$

where
(2.9) $\quad \gamma=\sqrt[3]{a_{l m n}(x) y^{l} y^{m} y^{n}}$ is a cubic metric
(2.10) $\beta=b_{i}(x) y^{i}$,
is a differential one form and $s=\frac{\beta}{\gamma}$.

3. Fundamental Metric Tensor and Cartan Tensor

In this section, we find the fundamental metric tensor $g_{i j}$, its inverse $g^{i j}$ angular metric tensor $h_{i j}$ and the Cartan tensor $C_{i j k}$ for a Finsler space with the metric (2.8).
Differentiating (2.9) partially with respect to y^{i}, we get

$$
\begin{equation*}
\dot{\partial}_{i} \gamma=\gamma^{-2} a_{i}, \tag{3.1}
\end{equation*}
$$

where $a_{i}=a_{i j k} y^{j} y^{k}$.
Differentiating (2.10) partially with respect to y^{i}, we find

$$
\begin{equation*}
\dot{\partial}_{i} \beta=b_{i} . \tag{3.2}
\end{equation*}
$$

Differentiating (2.8) partially with respect to y^{i} and using (3.1) and (3.2), we have

$$
\begin{equation*}
\dot{\partial}_{i} L=\rho a_{i}+\rho_{0} b_{i}, \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \rho_{0}=\phi^{\prime}=L_{\beta}, \tag{3.4}\\
& \rho=\gamma^{-2}\left(\phi-s \phi^{\prime}\right) \tag{3.5}
\end{align*}
$$

and the subscripts denote the degree of homogeneity of the corresponding entities with respect to y^{i}.
Differentiating (3.4) and (3.5) partially with respect to y^{i} and using (3.1) and (3.2), we respectively get

$$
\begin{equation*}
\dot{\partial}_{i} \rho_{0}=\rho_{-1} b_{i}+\rho_{-3} a_{i}, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\partial}_{i} \rho=\rho_{-3} b_{i}+\rho_{-5} a_{i}, \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{-1}=L_{\beta \beta}=\gamma^{-1} \phi^{\prime \prime}, \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{-3}=\gamma^{-1} L_{\gamma \beta}=-s \gamma^{-3} \phi^{\prime \prime} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{-5}=\gamma^{-4}\left(L_{\gamma}-2 \gamma^{-1} L_{\gamma}\right)=\gamma^{-5}\left(s^{2} \phi^{\prime \prime}-2 \phi+2 s \phi^{\prime}\right) . \tag{3.10}
\end{equation*}
$$

Thus, we have
Proposition 3.1. In a Finsler space with the metric (2.8), the following identities hold

$$
\dot{\partial}_{i} \rho_{0}=\rho_{-1} b_{i}+\rho_{-3} a_{i} \text { and } \dot{\partial}_{i} \rho=\rho_{-3} b_{i}+\rho_{-5} a_{i} \text {. }
$$

Differentiating (3.3) partially with respect to y^{i} and using (2.6) and (2.7), we get

$$
\begin{equation*}
\dot{\partial}_{j} \dot{\partial}_{i} L=2 \rho a_{i j}+\rho_{-1} b_{i} b_{j}+\rho_{-3}\left(a_{i} b_{j}+a_{j} b_{i}\right)+\rho_{-5} a_{i} a_{j} . \tag{3.11}
\end{equation*}
$$

From (2.1), we have

$$
\begin{equation*}
g_{i j}=\left(\dot{\partial}_{i} L\right)\left(\dot{\partial}_{j} L\right)+L\left(\dot{\partial}_{j} \dot{\partial}_{i} L\right) . \tag{3.12}
\end{equation*}
$$

Using (3.3) and (3.11), (3.12) yields

$$
\begin{align*}
g_{i j}=\left(\rho a_{i}+\rho_{0} b_{i}\right)\left(\rho a_{j}+\rho_{0} b_{j}\right)+L\left(2 \rho a_{i j}+\rho_{-1} b_{i} b_{j}\right. & +\rho_{-3}\left(a_{i} b_{j}+a_{j} b_{i}\right) \tag{3.13}\\
& \left.+\rho_{-5} a_{i} a_{j}\right) .
\end{align*}
$$

Take $d_{i j}=2 \rho a_{i j}$ and $c_{i}=q_{0} b_{i}+q_{-2} a_{i}$, where q_{0} and q_{-2} satisfy
$q_{0}{ }^{2}=L \rho_{-1}+\rho_{0}{ }^{2}, q_{-2}{ }^{2}=\rho^{2}+L \rho_{-5}, q_{0} q_{-2}=\rho \rho_{0}+L \rho_{-3}$.
Then (3.13) takes the form

$$
\begin{equation*}
g_{i j}=L d_{i j}+c_{i} c_{j} . \tag{3.14}
\end{equation*}
$$

Thus, we have
Theorem 3.2. The fundamental metric tensor $g_{i j}$ of a Finsler space with the metric (2.8), is given by (3.14).

Theorem 3.3. In a Finsler space with the metric (2.8), the inverse $g^{i j}$ of the fundamental metric tensor $g_{i j}$, is given by

$$
\begin{equation*}
g^{i j}=\frac{1}{L}\left(d^{i j}-\frac{1}{L+c^{2}} c^{i} c^{j}\right), \tag{3.15}
\end{equation*}
$$

where $c^{i}=d^{i j} c_{j}$ and $c^{2}=c^{i} c_{i}$.

Proof. Let $\left(d^{i j}\right)$ be the inverse of nonsingular matrix $\left(d_{i j}\right)$. Suppose that $\left(g^{i j}\right)$ is given by (3.15).
Now,

$$
\begin{aligned}
g_{i j} g^{j k} & =\left(L d_{i j}+c_{i} c_{j}\right) \frac{1}{L}\left(d^{j k}-\frac{1}{L+c^{2}} c^{j} c^{k}\right) \\
& =d_{i j} d^{j k}-\frac{d_{i j}}{L+c^{2}} c^{j} c^{k}+\frac{1}{L} c_{i} c_{j} d^{j k}-\frac{1}{L\left(L+c^{2}\right)} c_{i} c_{j} c^{j} c^{k} \\
& =\delta_{i}^{k}-\frac{c_{i} c^{k}}{L+c^{2}}+\frac{1}{L} c_{i} c^{k}-\frac{1}{L\left(L+c^{2}\right)} c^{2} c_{i} c^{k} \\
& =\delta_{i}^{k} .
\end{aligned}
$$

Therefore, $g^{i j}$ given by (3.15) is the inverse of the matrix $g_{i j}$. This also shows that $\left(g_{i j}\right)$ is non-degenerate.
Using (3.3) and (3.13) in (2.4), we get the angular metric tensor of a Finsler space with the metric (2.8)

$$
\begin{equation*}
h_{i j}=L\left\{2 \rho a_{i j}+\rho_{-1} b_{i} b_{j}+\rho_{-3}\left(a_{i} b_{j}+a_{j} b_{i}\right)+\rho_{-5} a_{i} a_{j}\right\} \tag{3.16}
\end{equation*}
$$

Thus, we have
Theorem 3.4. In a Finsler space F^{n} with the metric (2.8), the angular metric tensor $h_{i j}$ is given by (3.16).

Differentiating (3.8), (3.9) and (3.10) partially with respect to y^{i}, we respectively get

$$
\begin{align*}
& \dot{\partial}_{i} \rho_{-1}=\rho_{-2} b_{i}+\rho_{-4} a_{i}, \tag{3.17}\\
& \dot{\partial}_{i} \rho_{-3}=\rho_{-4} b_{i}+\rho_{-6} a_{i} \tag{3.18}
\end{align*}
$$

and

$$
\begin{equation*}
\dot{\partial}_{i} \rho_{-5}=\rho_{-6} b_{i}+\rho_{-8} a_{i}, \tag{3.19}
\end{equation*}
$$

where $\quad \rho_{-2}=\gamma^{-2} \phi^{\prime \prime \prime}, \quad \rho_{-4}=-\gamma^{-4}\left(\phi^{\prime \prime}+s \phi^{\prime \prime \prime}\right), \quad \rho_{-6}=\gamma^{-6}\left(s^{2} \phi^{\prime \prime \prime}+4 s \phi^{\prime \prime}\right) \quad$ and $\rho_{-8}=-\gamma^{-8}\left(s^{3} \phi^{\prime \prime \prime}+9 s^{2} \phi^{\prime \prime}+10 \phi^{\prime}-10 \phi\right)$.

Thus, we have the following
Proposition 3.5. In a Finsler space F^{n} with the metric (2.8), the following hold good

$$
\dot{\partial}_{i} \rho_{-1}=\rho_{-2} b_{i}+\rho_{-4} a_{i}, \dot{\partial}_{i} \rho_{-3}=\rho_{-4} b_{i}+\rho_{-6} a_{i}, \dot{\partial}_{i} \rho_{-5}=\rho_{-6} b_{i}+\rho_{-8} a_{i}
$$

Differentiating (3.13) partially with respect to y^{k}, we get

$$
\begin{align*}
\dot{\partial}_{k} g_{i j}= & {\left[2 \rho_{0}\left(\dot{\partial}_{k} \rho_{0}\right)+\left(\dot{\partial}_{k} b\right) \rho_{-1}+L\left(\dot{\partial}_{k} \rho_{-1}\right)\right] b_{i} b_{j} } \\
& +\left(\rho \rho_{0}+L \rho_{-3}\right)\left(b_{j} \dot{\partial}_{k} a_{i}+b_{i} \dot{\partial}_{k} a_{j}\right) \\
& +\left(a_{i} b_{j}+a_{j} b_{i}\right)\left\{\rho\left(\dot{\partial}_{k} \rho_{0}\right)+\rho_{0}\left(\dot{\partial}_{k} \rho\right)+\rho_{-3}\left(\dot{\partial}_{k} L\right)+L\left(\dot{\partial}_{k} \rho_{-3}\right)\right\} \tag{3.20}\\
& +\left\{2 \rho\left(\dot{\partial}_{k} \rho\right)+\rho_{-5}\left(\dot{\partial}_{k} L\right)+L\left(\dot{\partial}_{k} \rho_{-5}\right)\right\} a_{i} a_{j} \\
& +\left(\rho^{2}+L \rho_{-5}\right)\left\{a_{j}\left(\dot{\partial}_{k} a_{i}\right)+a_{i}\left(\dot{\partial}_{k} a_{j}\right)\right\} \\
& +2\left(\dot{\partial}_{k} L\right) \rho a_{i j}+2 L\left(\dot{\partial}_{k} \rho\right) a_{i j}+2 L \rho\left(\dot{\partial}_{k} a_{i j}\right)
\end{align*}
$$

Partial differentiation of a_{i} and $a_{i j}$ with respect to y^{k} yield

$$
\begin{equation*}
\dot{\partial}_{k} a_{i}=2 a_{i k} \text { and } \dot{\partial}_{k} a_{i j}=2 a_{i j k} \tag{3.21}
\end{equation*}
$$

If we use (3.3), (3.6), (3.7), (3.17), (3.18), (3.19) and (3.21) in (3.20), on simplification it follows that

$$
\begin{align*}
2 C_{i j k}= & \mu_{-1} b_{i} b_{j} b_{k}+\mu_{-7} a_{i} a_{j} a_{k}+\mu_{-3} \underset{(i j k)}{\sigma} b_{i} b_{j} a_{k} \tag{3.22}\\
& +\mu_{-5} \underset{(i j k)}{\sigma} a_{i} a_{j} b_{k}+\mu_{-2} \underset{(i j k)}{\sigma} a_{i j} b_{k}+\mu_{-4} \underset{(i j k)}{\sigma} a_{i j} a_{k}+2 L \rho a_{i j k}
\end{align*}
$$

where

$$
\begin{aligned}
& \mu_{-1}=3 \rho_{0} \rho_{-1}+L \rho_{-2}, \mu_{-2}=2\left(\rho \rho_{0}+L \rho_{-3}\right) \\
& \mu_{-3}=2 \rho_{0} \rho_{-3}+\rho \rho_{-1}+L \rho_{-4}, \mu_{-4}=2\left(\rho^{2}+L \rho_{-5}\right) \\
& \mu_{-5}=2 \rho \rho_{-3}+\rho_{0} \rho_{-5}+L \rho_{-6}, \mu_{-7}=3 \rho \rho_{-5}+L \rho_{-8}
\end{aligned}
$$

and $\underset{(i j k)}{\sigma}$ denotes the interchange of indices $i, j \& k$ and addition.
Thus, we have
Theorem 3.6. In a Finsler space with the metric (2.8), the Cartan tensor $C_{i j k}$ is given by (3.22).

4. Spray and Equation of Geodesics

In this section, we discuss about the spray of a Finsler space with the metric (2.8) and obtain its local coefficients. We also obtain the equation of geodesics in such space.
If we differentiate (2.9) partially with respect to x^{l}, we get

$$
\begin{equation*}
\partial_{l} \gamma=\frac{1}{3} \gamma^{-2} A_{l}, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{l}=\left(\partial_{l} a_{i j k}\right) y^{i} y^{j} y^{k} . \tag{4.2}
\end{equation*}
$$

Differentiating (2.10) partially with respect to x^{l}, we get

$$
\begin{equation*}
\partial_{l} \beta=B_{k}, \tag{4.3}
\end{equation*}
$$

where $B_{k}=\left(\partial_{l} b_{i}\right) y^{i}$. If we differentiate (2.8) partially with respect to x^{k} and use (4.1) and (4.3), it follows that

$$
\begin{equation*}
\partial_{k} L^{2}=\frac{1}{3} v_{-1} A_{k}+v_{1} B_{k}, \tag{4.4}
\end{equation*}
$$

where

$$
v_{-1}=\gamma^{-1}\left(2 \phi^{2}-2 s \phi \phi^{\prime}\right) \text { and } v_{1}=2 \phi \phi^{\prime} \gamma .
$$

Further, differentiating (4.4) partially with respect to y^{j}, we have

$$
\begin{equation*}
\dot{\partial}_{j} \partial_{k} L^{2}=v_{-4} A_{k} a_{j}+v_{-2}\left(\frac{1}{3} A_{k} b_{j}+B_{k} a_{j}\right)+v_{0} B_{k} b_{j}+v_{-1} A_{k j} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& v_{-4}=-\frac{1}{3} \gamma^{-4}\left(2 \phi^{2}-2 s^{2} \phi^{\prime 2}-2 s^{2} \phi \phi^{\prime}\right), v_{-2}=\gamma^{-2}\left(2 \phi \phi^{\prime}-2 s \phi^{\prime 2}-2 s \phi \phi^{\prime \prime}\right), \\
& v_{0}=2\left(\phi^{\prime 2}+\phi \phi^{\prime \prime}\right) .
\end{aligned}
$$

In view of (4.4) and (4.5), (2.6) gives
(4.6) $2 G^{i}=\frac{1}{2} g^{i j}\left[v_{-4} A_{0} a_{j}+v_{-2}\left(\frac{1}{3} A_{0} b_{j}+B_{0} a_{j}\right)+v_{0} B_{0} b_{j}+v_{-1} A_{0 j}-\frac{1}{3} v_{-1} A_{j}-v_{1} B_{j}\right]$,
where $A_{0}=A_{k} y^{k}, B_{0}=B_{k} y^{k}, A_{0 j}=A_{k j} y^{k}$ and $g^{i j}$ is given by (3.15).

Thus, we have
Theorem 4.1. In a Finsler space equipped with the metric (2.8), the spray coefficients are given by (4.6).
In view of (2.5) and Theorem 4.1, we have
Corollary 4.1. In a Finsler space with the metric (2.8), the equation of geodesics is given by

$$
\frac{d^{2} x^{i}}{d t^{2}}+2 G^{i}=0
$$

where the spray coefficients G^{i} are given by (4.6).

References

1. H. Shimada, On Finsler Space with the Metric $L=\sqrt[3]{a_{i i_{1}, \ldots i_{m}}(x) y^{i_{1}} y^{i_{2}} \ldots . y^{i_{m}}}$, Tensor, N. S., 33 (1979) 365-372.
2. M. Matsumoto and K. Okubo, Theory of Finsler Spaces with $\mathrm{m}^{\text {th }}$-root Metric: Connections and Main Scalars, Tensor, N. S., 56 (1995) 93-104.
3. P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publications, Dordrecht/Boston/London,1993.
4. T. N. Pandey, V. K. Chaubey and B. N. Prasad, Three-dimensional Finsler Spaces with $\mathrm{m}^{\text {th }}$ Root Metric, J. Int. Acad. Phys. Sci., 12 (2008) 139-150.
5. G. Randers, On an Asymmetrical Metric in the Fourspace of General Relativity, Phys. Rev., 59(2)(1941) 195-199.
6. B. D. Kim and H. Y. Park, The $\mathrm{m}^{\text {th }}$-root Finsler Metrics Admitting (α, β)-types, Bull. Korean Math. Soc., 41(1) (2004) 45-52.
7. H. S. Park, H. Y. Park and B. D. Kim, On a Finsler Space with (α, β)-Metric and Certain Metrical Non-linear Connection, Commun. Korean Math. Soc., 21(1) (2006) 177-183.
8. V. S. Sabau and H. Shimada, Classes of Finsler Spaces with (α, β)-Metrics, Reports on Math. Phys., 47(1) (2001) 31-48.
9. P. N. Pandey and Shivalika Saxena, On an R-Randers $\mathrm{m}^{\text {th }}$-root Space, Geometry, 2013, Article ID 649168, 7 pages, (2013) doi:10.1155/2013/649168.
10. Ryozo Yoshikawa and Katsumi Okubo, S3-like Finsler Spaces with the Metric $L(x, y)=\alpha(x, y) \phi\left(\frac{\beta}{\alpha}\right)$, Tensor $N . S ., 72(1)(2010) 70-78$.
11. P. L. Antonelli (ed.), Handbook of Finsler Geometry, Kluwer Acad. Publ., Dordrecht, 2001.
