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Abstract: This paper deals with the instability of superposed, viscous 

fluids saturating porous medium in the presence of horizontal magnetic 

field. Using linear theory and normal mode technique the dispersion 

relation so obtained is analyzed mathematically for the stable 

configuration. The effects of medium porosity, medium permeability 

and magnetic field, on the growth rate (imaginary) of the most unstable 

mode have been investigated numerically. The square of the Alfven 

velocity and medium permeability have stabilizing effect on the system 

and kinematic viscosity of lower and upper fluid and medium porosity 

have destabilizing effect on the system. All these numerical results have 

been depicted graphically.  
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1. Introduction 

 

Kelvin-Helmholtz instability occurs when we consider the character of 

the equilibrium of a stratified heterogeneous fluid in which different layers 

are in relative motion. The most important case is when two superposed 

fluids flow one over the other with a relative horizontal velocity, the 

instability of the plane interface between the two fluids when it occurs in 

this instance, is known as Kelvin-Helmholtz instability.  The experimental 

demonstration of the Kelvin-Helmholtz instability has been given by 

Francis
1
. The effect of rotation and a general oblique magnetic field on the 

Kelvin-Helmholtz instability has been studied by Sharma and Srivastava
2
. 

mailto:veena_math_hpu@yahoo.com


 

Michael
3
 has discussed the stability of a combined current and vortex sheet 

in a perfectly conducting fluid, while the effect on the Kelvin-Helmholtz 

instability of a magnetic field transverse to the direction of streaming has 

been considered by Northrop
4
. There are diverse applications of the Kelvin-

Helmholtz instability like: to examine the horizontal and temporal 

variability of the out-of-cloud vertical velocity, the stratospheric gravity 

wave response to the convection to determine the vertical and spatial extent 

of turbulence due to gravity wave breaking, to provide a more realistic 

evolving background flow and convective initiation. A regional scale 

forecast model is used to force the cloud model the time evolution of the 

bulent region, effects of model resolution, wave instability and trapping. It is 

also used in understanding of CIT-generating mechanisms which is 

extremely important for commercial and other high-altitude aircraft flying 

above developing convection. The instability of the plane interface 

separating two uniform superposed streaming fluids under varying 

assumptions of hydrodynamics and hydromagnetics has been discussed in a 

treatise by Chandrasekhar
5
 . Alterman

6
 has studied the effect of surface 

tension to the Kelvin-Helmholtz instability of two rotating fluids. Reid
7
 

studied the effect of surface tension and viscosity on the stability of two 

superposed fluids. Bellman and Pennington
8
 further investigated in detail 

illustrating the combined effects of viscosity and surface tension. Cavus and 

Kazkapan
9
 have studied magnetic Kelvin-Helmholtz instability in the solar 

atmosphere and have found that the growth rate of instability increases with 

velocity shear, it needs higher values of magnetic field in order to stabilize 

as said in Lapenta and Knoll
10

. We further notice that the uniform magnetic 

field along the direction of shear flow parallel to interface can have 

stabilizing effect as given in Ofman and Thompson
11

 . The medium has 

been assumed to be non-porous in these studies. 

The flow through porous medium has been of considerable importance 

in recent years particularly among geophysical fluid dynamics, recovery of 

crude oil from the pores of reservoir rocks, chemical engineering 

(absorption, filtration), petroleum engineering, hydrology, soil physics and 

biophysics etc. The physical properties of comets, meteorites and 

interplanetary dust strongly suggest the significance of the effect of porosity 

in astrophysical context given by McDonnel
12

. The gross effect, as the fluid 

slowly percolates through the pores of the rock, is represented by Darcy’s 

law which states that the usual viscous term in the equations of motion is 

replaced by the resistance term 
1k


 q , where   is the viscosity of the fluid, 

1k  the permeability of the medium (which has the dimension of length 

squared), and q  the filter (seepage) velocity of the fluid. Sunil and Chand
16
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have investigated the effect of permeability of the porous medium on 

different stability problems.  

Sharma et al.
13

 have studied the Kelvin-Helmholtz instability through 

porous medium of two superposed plasmas. The instability of the plane 

interface between two uniform superposed and streaming fluids through 

porous medium has been studied theoretically and analytically by Sharma 

and Sapnos
14

.  

Sharma and Kumari
15

 have studied the stability of stratified fluid in 

porous medium in the presence of suspended particles and variable magnetic 

field. Some solar activities in the solar atmosphere are created by a Kelvin-

Helmholtz instability in the presence of magnetic field and subsequent 

reconnection processes and Kelvin-Helmholtz instability plays an important 

role in energy transfer mechanism in the solar atmosphere. The effect of the 

Kelvin-Helmholtz instability is shown to convert shear flow in compression 

flow that derives reconnection. Khalil Elcoot
16

 has studied the new 

analytical approximation forms for non-linear instability of electric porous 

media. Asthana et al.
17

  have been studied Kelvin-Helmholtz instability of 

two viscous fluids in porous medium for two dimensional flow. Rudraiah et 

al.
18

 have studied the study of surface instability of Kelvin-Helmholtz type 

in a fluid layer bounded above by a porous layer and below by a rigid 

surface. The effect of porosity in astrophysical context and the plasma 

outflow occur in regions which are created by the Kelvin-Helmholtz 

vortices. We believe that the mechanism presented here opens promising 

possibilities of further investigation. However a clear understanding of the 

role of the Kelvin-Helmholtz instability in reconnection requires a fully 

three-dimensional flows. 

Keeping in view, the diverse applications stated earlier, a study has been 

therefore, investigated to examine the effect of the magnetic field, medium 

porosity and the medium permeability on the instability of electrically 

conducting, streaming viscous three dimensional fluids saturating porous 

medium numerically using the software Mathematica version-5.2. 

 

2. Formulation of the Problem and Perturbation Equations 
 

The initial state whose stability we wish to examine is that of an 

incompressible, electrically infinitely conducting viscous fluid in which 

there is a horizontal streaming in the x  - direction with a velocity  zU  

through a homogeneous and isotropic porous medium of medium porosity   

and medium permeability 1k . A uniform horizontal magnetic field H  and 

acceleration due to gravity  0, 0, , gg pervade the system. Then the 
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equations of motion, continuity, incompressibility for the viscoelastic fluid 

and the Maxwell’s equations saturating porous media are  

       

(2.1)     
1

1 1
.

4
p

t k

 


  

 
         

 

U
U U g U H H ,       

                        

(2.2)         . 0,    U   

    

(2.3)          . 0,
t


 


  


U  

                         

(2.4)          . 0, H   

                         

(2.5)           ,
t




  


H
U H  

 

where   ,0,0 ,   ,   ,   ,   U z p  U g  and ( , 0, 0)HH  denote, respectively, the 

fluid velocity, fluid pressure, fluid density, acceleration due to gravity, 

viscosity and magnetic field.  sz z   denotes Dirac’s delta function and 

the magnetic permeability is assumed to be unity. The initial stationary state 

solution is given by  

 

(2.6)             , 0,0 ,    ,  , ( , 0, 0)U z z p p z H   U H  .  
           

In other words, in the perturbed state at any point  ,   ,  x y z , we have 
 

               density =   , 
                

               pressure = p p , 
 

               magnetic field = ( ,  ,  )x y zH h h h  H h , 

               velocity of the hydromagnetic fluid =  ,   ,   .U u v w  U u  
 

This initial state is given a small disturbance. As a consequence of this, let 

   , , ,   , , ,   ,  x y zu v w h h h p u h  and  ( , , )sz x y t , denote, the perturbations 

in fluid velocity   ,  0, 0U zU , magnetic field H , pressure p  and density 

 , respectively. 

Using the initial stationary state solutions given by (2.6) and the linear 

theory (i.e. neglecting the product of perturbations and higher order 
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perturbations), the equations (2.1) – (2.5) in the linearized perturbed form 

become 

 

(2.7)      
1

( ),
u U u w U

p u U
t x z x k

 


  

    
      

    
     

                     

(2.8)      
1

,
4

y x
h hv U v H

p v
t x y k x y

 


  

    
       

       
 

 

(2.9)      
1 4

xz hhw U w H
p w g

t x z k x z

 
 

  

     
         

       
, 

 

(2.10)     
 

0,
u U v w

x y z

   
  

  
 

 

(2.11)      
dρ

dz
U w

t x
 
  
   

  
, 

 

(2.12)      0
yx z

hh h

x y z

 
  

  
,  

 

(2.13)      x x
z

h h u U
U H h

t x x z

    

   
    

, 

 

(2.14)      
y yh h v

U H
t x x


   

  
   

, 

                                    

(2.15)     .z zh h w
U H

t x x

   

  
   

 

 

The disturbances are analyzed into normal modes by seeking solutions of 

the above equations, whose dependence on , x y  and  t   is of the form 
 

(2.16)     exp  x yi k x k y nt               

where  n  is the growth rate,  
1/2

2 2

x yk k k    is the resultant wave number 

and    ,  x yk k  are the horizontal wave numbers. 
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Using expression (2.16), equations (2.7)-(2.15) become 

  

(2.17)  
2

1

x x

i U dU
n k u w ik p

k dz

  


  

  
      

  
, 

                                                                                                                                                                          

(2.18)        
1 4

x y x y y x

i U H
n k v ik p ik h ik h

k

 


  

  
       

  
,              

           

(2.19)     
1

,
4

x x z x

i U H
n k w p ik h h g

k z z

 
 

  

      
          

     
        

          

(2.20)     0x yik u ik v Dw   , 

                                                        

(2.21)       x

d
i n Uk w

dz


    , 

                                           

(2.22)       x x x zi n k U h ik Hu h DU    , 

                                          

(2.23)       x y xi n k U h ik Hv   ,                                            

                                      

(2.24)       x z xi n k U h ik Hw   , 

                                           

(2.25)      0x x y y zik h ik h Dh   .                                            

 . 

Multiplying equation (2.17) by xik  and (2.18) by yik  and adding the 

resulting equations and using (2.20), we get 

 

(2.26)     2 2

1 4
x x y y y x

i U H
n k Dw k p k k h k h

k

 


  

  
       

  
.             

           .                                    

Eliminating ,   ,  ,  ,  ,x y zu v h h h   and p  from equations (2.20)-(2.25) and 

using (2.19) and (2.26), we obtain after a little algebra,  

114                 Veena Sharma, Radhe Shyam, Sumit Gupta and Abhishek Sharma



  

 

 

 

 

 

 
 

 

2 2 2

2

1

2 2

1

2

2 2 2
2

22

2 2

2

1

4

1
(2.27)

4 4

4

x x x

x

x

x

x

x

x
x y

x
x

x
x

k U ik ik H ki
D n Dw wDU w

k n k U

k Ui w
k n w igk D

k n k U

k DU
k Dw w

n k U

H k Hik D ik DU w
n k U n k U

ik Hi
n k U

k

 

    

 


  





    

 


 

   
      

   

  
     

  

 


 
  

   

  
 

 

 
 

2 2

1

2 2

2

1

0,
4

4

x

x y

x
x

x

n k U

DU w
ik k H k

ik Hi
n k U

k n k U





 


  

  
  
  
  

  
  
  
  
  
    

 
 
  
 

   
                 

         

where  
d

D
dz

 . 

                                                                                                                          

3. Two Uniform Streaming Fluids Separated by a Horizontal Boundary 
 

Let two uniform fluids of densities 1   and 2  be separated by a 

horizontal boundary at z = 0 and the density 2  of the upper fluid be less 

than the density 1  of the lower fluid so that, in the absence of streaming, 

the configuration is stable one. Let the two fluids be streaming with 

velocities 1U  and 2U . Then in each region of constant ,      and ,U  

equation (2.27) reduces to 

 

(3.1)            2 2 0.D k w        

                                                                   

The boundary conditions to be satisfied are 

(i)  w  must be bounded both when z   (in the upper fluid) and 

z   (in the lower fluid). 

(ii) Since U is discontinuous at 0z  , the uniqueness of the normal 

displacement of any point on  the interface implies, according to (16), that  
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(3.2)       
 x

w

n k U 
                                                                

must be continuous at the interface.                                                                    

(iii) Integrating equation (2.27) between sz   and sz   passing to the 

limit 0,    we obtain in view of (2.29), the jump condition  

  

(3.3)  
 

 

2 2

1

2

4

,  for 

x x
s s

x

s s

x

k U ik Hi Dw
n Dw

k n k U

w
igk z z

n k U

 

   




   
     

    

 
     

 




 

while the equation valid everywhere else 0z   is 

  

(3.4) 
 

 

 
 

2 2
2 2 2

1 1

2

4

,

x x x

x

x

k U k U ik Hi i
D n Dw k n w D k

k k n k U

w
igk D

n k U

   

     




       
            

       

 
    

   

                   

where      0 0 00 0z f f z f z     is the jump which a quantity 

experiences at the interface 0z   and the subscript 0  distinguishes the 

value, a quantity known to be continuous at an interface, takes at 0z  . 

Since 
 x

w

n k U 
 must be continuous on the surface 0z   and w  cannot 

increase exponentially on either side of the surface, the solutions appropriate 

for the two regions are  

 

(3.5)          1 1   ,     0kz

xw A n k U e z                                  

                        

(3.6)           2 1   ,     0kz

xw A n k U e z                                                       
 

where  A  is a constant. 

Applying the boundary condition (3.3) to the solutions (3.5) and (3.6), 

the general characteristic equation for frequency is obtained for magnetized 

case saturating a porous medium is    
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 (3.7) 

   

      

2

1 1 2 2 1 1 2 2

1

2
2 2 2 2

1 1 2 2 1 1 1 2 2 2 2 12

1

2

2 0,

x

x x
x A

k i
n U U n

k

k ik
U U U U k V gk

k


    



      


 
    
 

 
        
 

 

    

where  1 1 1/    and  2 2 2   /    are the kinematic viscosities of 

fluids 1 and 2, respectively. 
 

1 2
1 2

1 2 1 2

,   
 

 
   

 
 

  and 
 

2
2

1 24
A

H
V

  



is the square of Alfv e

¶

n 

velocity.  
 

Now the special case in which the lower and upper fluids are streaming with 

velocities  1U U  and 2( )U U  , respectively is considered. Then the 

equation (3.7) reduces to 

 

(3.8) 

   

 
    

2

1 2 1 1 2 2

1

2 2

1 2 2 2

1 1 2 2 1 2

1

2

2 g 0.

x

x x
x A

k i
n U n

k

k U ik
U k V k

k


    



 
    



 
    
 

 
       
 

     

                          

 Since the perturbations most sensitive to Kelvin-Helmholtz instability are in 

the direction of streaming, so xk k . The frequency can be decomposed as 

  r in n in  , where rn  and in  are real; in equation (3.8) and equating real 

and imaginary parts on both sides, we get 

 

(3.9)    

     

    

2 2

1 2 1 1 2 2

1

2 2
2 2

1 2 1 2

2

2 0

x
r i r i

x
x A

k
n n U n n

k

k U
k V gk


    



   
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and  

(3.10)      1 2 1 1 2 2 1 1 2 2

1 1

2
2 0 .x x

i r r i

k k
U n n n n U

k k


       



    
          

     
        

 

On solving equations (3.9) and (3.10), we get 
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(3.11)     
   

 

4 3 2 2 2 3 2

2 2

4  8  5 4 4 

0

r r r rn An A B C n A AB AC n

D ABD A C

      

    
 

and 

 

(3.12)      
   

 

4 2 3 2 2 2 3 2

2 2

4  8   5  4     4 

  0,

i i i in A Bn B A C n B A B BC n

D ABD B C

      

   
               

                                                                 

where   

(3.13)                          
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   

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


  





 

 

In particular, if n  is real, expression (3.12) simply represents the oscillatory 

waves so that the system is stable. However if n  has imaginary part, it 

represents a perturbation which grows exponentially with time that the 

system is unstable. 

In the remaining part of this paper, the analysis of Kelvin-Helmholtz 

instability mechanism is done by in  obtained from equation (3.12) for 

astrophysical situation in porous medium. 

 

4. Numerical Results and Discussion 
 

Some solutions of equation (3.12) for astrophysical situation saturating 

porous medium using software Mathematica version-5.2. We have chosen 

the values of physical parameters from earlier studies by Chandrasekhar and 

many other authors while studying the Kelvin-Helmholtz instability in 

hydrodynamics/hydromagnetics/plasma in porous or non-porous medium. 

However the imaginary growth rate decreases slightly with the increase in 

1  for a fixed wavenumber. The imaginary growth rates of the imaginary 
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unstable mode have been examined numerically satisfying equations (3.12). 

In figure1, the imaginary growth rate in  has been plotted versus 

wavenumber k  for fixed permissible values of the parameters  
2

1 1 2 22,   980 /    0.95,   1.8,   0.9,   2, ,k g cm sec           300 / ,U cm sec  

2

1 210,    0.35,    0.65,AV     / 2xk k for three different values of the 

medium porosity 1 2,  8, 1  5  , respectively. It is clear from the graph that 

growth rate in  starts to increase with increase in k , showing thereby the 

destabilizing effect of medium porosity on the system.  

Similarly, in figure 2, the imaginary growth rate in  has been plotted 

versus wavenumber k  for fixed permissible values of the parameters 
2

1 1 2 12,   980 / ,   0.95,    1.8,    0.9,   2,  300 / , k g cm sec U km sec         

2

1 210,    0.35,    0.65, AV     / 2xk k  for three different values of the 

kinematic viscosity of the lower fluid 2 2,  8, 1  4  , respectively. It is clear 

from the graph that growth rate in  starts to increase as k  increase, showing 

thereby the destabilizing effect of kinematic viscosity of the upper fluid on 

the system, which is exactly the same result in case of the lower fluid. 
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  The imaginary growth rate in  has been plotted versus wavenumber k  in 

figure 3 for three different values of the medium porosity 0.2,  0.4,  0.9  , 

respectively. It is clear from the graph that growth rate in  very slightly with 

the increases in medium porosity  , showing thereby the destabilizing effect 

of medium porosity on the system. 

Figure 4 has been plotted for the imaginary growth rate in  versus 

wavenumber k  for the values of the medium permeability  1 2,  6, 1  0k  , 

respectively. It is clear from the graph that growth rate in  decreases as k  

increase, showing thereby the stabilizing effect of medium permeability on 

the system. 
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The plot of in  is given w.r.t wavenumber k  in figure 5 for the values of the 

square of Alfv e
¶

n velocity 2 10,  50, 1  00AV   respectively. The graph shows 

that the square of Alfv e
¶

n velocity has stabilizing effect on the system. The 

system is unstable for the small values of the wavenumber and it becomes 

completely stable  . . 0ii e n   at the value of the square of Alfv e
¶

n velocity 

2 100AV  . Thus critical wavenumber here is  3.0ck  and max . 1 5k  . 
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5. Conclusions 
 

A study has been made to investigate numerically the effects of 

kinematic viscosities of lower and upper fluid, square of the Alfv e
¶

n 

velocity, the medium porosity and the medium permeability on the 

instability of superposed viscous fluids in hydromagnetics saturating porous 

medium. The principal conclusions drawn are as follows: 

(i) The imaginary growth rate of the perturbations increases with the 

increase in kinematic viscosities of the lower and upper fluid implying 

thereby destabilizing effects on the system. 

(ii) The imaginary growth rate of the perturbations decreases with the 

increase in the square of Alfv e
¶

n velocity and medium permeability 

parameter, respectively. The magnetic field dissipates the energy of any 

disturbance more than that carried out by medium permeability. In other 

words, the role of medium permeability parameter shows stability on the 

Kelvin-Helmholtz instability problem, while the magnetic field plays the 

fundamental role to generate the complete stability. 
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