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Abstract: In the present paper, we have studied about Nevanlinna
summability of Fourier series. We have proved the theorems of
derived Fourier series by generalizing the theorems of

Bosanguer'2 Samal? for absolute Nevalinna summability.
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1. Introduction

1. Definitions and Notations: Given a series Zun, let F(w)= Zun

n<w

Let gs=q;(t) be defined for0<r<1.
The N(qy) transform N(F,q;) of F is defined by
1

N(Fa%)(w):j%(t)F(Wt)dt'

0

The series Z u, is said to be summable by the method N (q;) to the sum s if

lim N(F,qs)(w)=s.

w—>o0

It is said to be absolutely summable by the method N (q4)and we shall write
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Su, €N (g;) i N(F.q;)(w)e BV (A.)

For some A >0, which is indeed equivalent to

=

d

For the regularity, we need

IQ6 ()dt=1

The parameter & will be a non-negative real number. We have

further two sets of restriction ong;: one for 0<0 <1 and the
other foro >1.
In the case 0< §<1,¢,(r) is increasing forO<t< 1.

In the case § 2 1,¢, satisfies following ¢, (¢) 1s decreasing for

0 <t< 1 with p =[J], the integral part of &,

[ir as (1)e A c[0.1]

dt

H%}k%@)} =0, k=012....(p-1)

t=1

1y (4] w20

and is increasing

Also for & = 0, p

- [6 :|, Wwe assume

0; ()

S-p+l
t p

e L(0,1).

where
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1
— (p)
t)= _[ 45"
(1-1)

Let f(¢) be a periodic function with period 2n and Lebesgue intregrable

over (—z,7) and let

(2.1) f(t)~%ao+i(ancosnt+bnsinnt)

n=1

The first differentiated series of (2.1 ) at t=x is

(2.2) i b, cosnx—a, sin nx) :i x) we get
0= Ar (ern) £ (x=0))
(=4

oQ
—
s
= |
~
I
. —_— N ™

(y_t)n—“ COS (ny —%de,

where h =[], the integral part of &

T d
H (n,t, CL' —
(n -!dvg
and H(n,t)=H"(n,t,0)

3. Generalizing the theorems of Bosanquet"*, Samal’ has

proved the following theorem .

Theorem A: Let 1>c¢ >0 . Let the function q, satisfy the

Conditions

J-Ol%(t)zl

and 0=5=1.¢.(z) isincreasing for 0=:<1 and let
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0, (t)/t" e L(0,1)  then

do(r)|<e=3|N(q.)

A
fi

0

In 2000 Dikshit* extended the above result for absolute Nevanlinna
summability of Fourier series as follows * :

Theorem B: Let & > 0and let the functions q, satisfy the

conditions

_[%(t)dtzl

0

for 620, p=[5], we assume

() ;o)

t5—p+l

where
1
0,(1)= J. qﬁ(p)(x)dx :
(1-1)

with §=a. If ¢,(t)e BV (0,7),then at t = x the fourier series

of fis summable by the method ‘N (g, )‘

The object of the present paper is to extend the above theorems

for absolute Nevalinna summability of derived Fourier series :

Main Theorem: We establish our result in the form of

the following theorem :

1 _
Theorem : 1et ccz01<p=2 &=>=— and
B

let the functions q, satisfy the conditions
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ford 20, p =[J], we assume 0,(1) e L(0,1).

té‘—p+1

where
(42)  05()= [ ¢ (x)ax.
(=)

and y(t) is of bounded variation in (0,7) such that

@3) LWy o (1 > +0)

240 logl
t

then at t = x the derived series of a Fourier series of f is

summable by the method ‘N (4,)

Proof: Let 7, (x) denote the sum of

the first n terms of the series ( 1.2 ) at the point 7= x.
Then we have

i J sin(n+;j(x—u)
14 (9= 2 ()= £ (oo L () (o)

27y, dt sin— ¢
2

where N (F,qs)(w)is the Nevanlinna mean of the sequence {sinnt}.

Now, on integration by parts, we obtain

| sin(n+;)t
T (x)= 5 [ 22 N (F.g,) () { f (x+1) = £ (x-1)}
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| sin(n+;jt |
T,/‘(x)=gf ——S (N (F.q5)(w)dg (1) + f (x)

)

By using definitions, we obtain

Tn—f'(x)=j(t)§qs(k){rﬁk(x)—f'('x)}l(log ! j

x| (1-x)

-
¢ COS(%Sm(% + 2}}1\7(1:,%)(@@)(1%(1II)J

for(0< <)
(5.1)T,— f (x)=1,+1,+0(1) say

Now
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I
fo'idg(t)kz:)%(k)cos(n_“2th(F QJ)(W)(I) [ 1 j

(2) (1-1)

I, =
27Q (n)

J.‘dg log 1t)
r b
_lnt
1
Lol
o ! }
| x(n)
(5.2) 1,=0(1)
Now, for Jl_.-:_ci‘ we have
1
. cos| n—k+— |t
0 ) (e o 5

k=0 cos (tJ
2
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-1 1 . "
=o0|t Q4| - || by virtue of conditions.
t

I,=

_0[;]j;|dg(;)|gqa(k)cos(n +2th(F’%)(W)Gjlog[ : J

05(n)

o[ gl e} ao( oo 1

VR
~ | =
N
)
VR
~ | —
N—
~
—_
-~
N—
=

—_

~

N

N—

—_~

S

~
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=O(I(ln)j+0(ﬂt(")lQ§(n)}ro(Q;(n)ij H(n’{?N(ff )

(5.3) I, =0(1) by the virtue of conditions of theorem.

Finally the proof of the theorem is completed by considering ( 5.1), (5.2)
and (5.3).
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