A Note on Special Projective Semi-Symmetric Connection

S. K. Pal
Department of Mathematical Sciences, A.P.S. University, Rewa, India, 486003
E-mail: skpalmath85@gmail.com
M. K. Pandey
Department of Mathematics, University Institute of Technology Rajiv Gandhi Proudyogiki Vishwavidyalaya Bhopal, India, 462036
E-mail: mkp_apsu@rediffmail.com
\section*{R. N. Singh}
Department of Mathematical Sciences, A.P.S. University, Rewa, India, 486003
E-mail: rnsinghmp@rediffmail.com

(Received January 05, 2014)

Abstract

In the present paper, we have studied some properties of curvature tensor and Ricci tensor of special projective semisymmetric connection. It has been shown that if torsion tensor of M^{n} is covariant constant, then manifold admits a parallel vector field.

AMS Mathematics Subject Classification (2010): 53C12.
Keywords and phrases: Projective semi-symmetric connection, curvature tensor.

1. Introduction

The idea of semi-symmetric connection was introduced by A. Friedmann and J. A. Schouten ${ }^{1}$ in 1924. In 1932, H. A. Hayden ${ }^{2}$ studied semi-symmetric metric-connection. It was K. Yano ${ }^{3}$ who started systematic study of semi-symmetric metric connection and this was further studied by T. Imai ${ }^{4}$, R. S. Mishra and S. N. Pandey ${ }^{5}$, U. C. De and B. K. De ${ }^{6}$ and several other mathematicians ${ }^{7,8}$, In 2001, P. Zhao and H. Song ${ }^{9}$ studied a semi-symmetric connection which is projectively equivalent to Levi-Civita connection. Such a connection is called as projective semi-symmetric connection. They found an invariant under the transformation of projective semi-symmetric connection and showed that this invariant could degenerate into the Weyl projective curvature tensor under certain conditions. After this various papers ${ }^{\mathbf{1 0 , 1 1 , 1 2}}$ on projective semi-symmetric metric connection have appeared.

The organization of the paper is as follows. After introduction we give some preliminary results in section 2 . In section 3, we present a brief account of special projective semi-symmetric connection and some results concerning torsion tensor, Ricci tensor and curvature tensor.

2. Preliminaries

Let M^{n} be an n-dimensional ($n>2$) Riemannian manifold equipped with a Riemannian metric g and ∇ be the Levi-Civita connection associated with metric g. A linear connection $\bar{\nabla}$ on M^{n} is said to be semisymmetric connection if its torsion tensor \bar{T}, given by

$$
\begin{equation*}
\bar{T}(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y] \tag{2.1}
\end{equation*}
$$

satisfies the condition

$$
\begin{equation*}
\bar{T}(X, Y)=\pi(Y) X-\pi(X) Y \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g\right)(Y, Z)=0, \tag{2.3}
\end{equation*}
$$

where π is a 1 - form on M^{n} associated with vector field ρ i.e.,

$$
\begin{equation*}
\pi(X)=g(X, \rho) \tag{2.4}
\end{equation*}
$$

If the geodesic with respect to $\bar{\nabla}$ are always consistent with those of ∇, then $\bar{\nabla}$ is called a connection projectively equivalent to ∇. If $\bar{\nabla}$ is projective equivalent connection to ∇ as well as semi-symmetric, then $\bar{\nabla}$ is called projective semi- symmetric connection. We also call $\bar{\nabla}$ as projective semi- symmetric transformation.

In this paper, we study a type of projective semi-symmetric connection $\bar{\nabla}$ introduced by P.Zhao and H. Song ${ }^{9}$. The connection is given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\psi(Y) X+\psi(X) Y+\phi(Y) X-\phi(X) Y, \tag{2.5}
\end{equation*}
$$

where 1 -forms ϕ and ψ are given as

$$
\begin{equation*}
\phi(X)=\frac{1}{2} \pi(X) \text { and } \psi(X)=\frac{n-1}{2(n+1)} \pi(X) . \tag{2.6}
\end{equation*}
$$

It is easy to observe that torsion tensor of projective semi-symmetric transformation is same as given by the equation (2.2) and also that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g\right)(Y, Z)=\frac{1}{n+1}[2 \pi(X) g(Y, Z)-n \pi(Y) g(Z, X)-n \pi(Z) g(X, Y)] . \tag{2.7}
\end{equation*}
$$

i.e., the connection $\bar{\nabla}$ is a non metric one.

Let \bar{R} and R be the curvature tensors of the manifold relative to the projective semi-symmetric connection $\bar{\nabla}$ and Levi-Civita connection ∇ respectively. It is known that ${ }^{9}$

$$
\begin{equation*}
\bar{R}(X, Y, Z)=R(X, Y, Z)+\beta(X, Y) Z+\alpha(X, Z) Y-\alpha(Y, Z) X, \tag{2.8}
\end{equation*}
$$

where $\beta(X, Y)$ and $\alpha(X, Y)$ are given by the following relations

$$
\begin{equation*}
\beta(X, Y)=\Psi^{\prime}(X, Y)-\Psi^{\prime}(Y, X)+\Phi^{\prime}(Y, X)-\Phi^{\prime}(X, Y), \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\alpha(X, Y)=\Psi^{\prime}(X, Y)+\Phi^{\prime}(Y, X)-\psi(X) \phi(Y)-\phi(X) \psi(Y), \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\Psi^{\prime}(X, Y)=\left(\nabla_{X} \psi\right)(Y)-\psi(X) \psi(Y) \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\Phi^{\prime}(X, Y)=\left(\nabla_{X} \phi\right)(Y)-\phi(X) \phi(Y) . \tag{and}
\end{equation*}
$$

Contracting X in the equation (2.8), we get a relation between Ricci tensors $\bar{R} i c(Y, Z)$ and $\operatorname{Ric}(Y, Z)$ of manifold with respect to the connections $\bar{\nabla}$ and ∇ respectively as

$$
\begin{equation*}
\bar{R} i c(Y, Z)=\operatorname{Ric}(Y, Z)+\beta(Y, Z)-(n-1) \alpha(Y, Z) . \tag{2.13}
\end{equation*}
$$

If \bar{r} and r are scalar curvatures of manifold with respect to connections $\bar{\nabla}$ and ∇ respectively, then from the equation (2.13), we get

$$
\begin{equation*}
\bar{r}=r+b-(n-1) a, \tag{2.14}
\end{equation*}
$$

where

$$
b=\sum_{i=1}^{n} \beta\left(e_{i}, e_{i}\right) \text { and } a=\sum_{i=1}^{n} \alpha\left(e_{i}, e_{i}\right) .
$$

3. Main Results

In this section, we consider a type of projective semi-symmetric connection $\bar{\nabla}$ given by the equation (2.5) whose associated 1 -form π is closed, i.e.,

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right) Y=\left(\bar{\nabla}_{Y} \pi\right) X . \tag{3.1}
\end{equation*}
$$

In this case $\bar{\nabla}$ is called special projective semi-symmetric connection ${ }^{9}$.
It is easy to verify that both the 1 -forms ϕ and ψ are closed as the 1 -form π is closed and we easily get the tensors Φ^{\prime} and Ψ^{\prime} both are symmetric. Consequently, we get

$$
\begin{equation*}
\beta(X, Y)=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(X, Y)=\alpha(Y, X) . \tag{3.3}
\end{equation*}
$$

In view of the equations (3.1) and (3.2) the expressions (2.8), (2.13) and (2.14) reduces to

$$
\begin{equation*}
\bar{R}(X, Y, Z)=R(X, Y, Z)+\alpha(X, Z) Y-\alpha(Y, Z) X \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\operatorname{R}} i c(Y, Z)=\operatorname{Ric}(Y, Z)-(n-1) \alpha(Y, Z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{r}=r-(n-1) a . \tag{3.6}
\end{equation*}
$$

It is easy to observe that the Ricci tensor $\overline{\operatorname{R}} i c(Y, Z)$ is symmetric.
Consequently, from the equations (2.6) and (2.10), we have

$$
\begin{equation*}
\alpha(X, Y)=\frac{1}{2}(c+1)\left[\left(\nabla_{X} \pi\right)(Y)-\frac{1}{2}(c+1) \pi(X) \pi(Y)\right] . \tag{3.7}
\end{equation*}
$$

Differentiating the torsion tensor of the connection $\bar{\nabla}$ given by the equation (2.2) covariantly with respect to the connection $\bar{\nabla}$, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \bar{T}\right)(Y, Z)=\left(\bar{\nabla}_{X} \pi\right)(Z) Y-\left(\bar{\nabla}_{X} \pi\right)(Y) Z . \tag{3.8}
\end{equation*}
$$

Now, due to the equations (2.5) and (2.6), we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right) Y=\left(\nabla_{X} \pi\right)(Y)-c \pi(X) \pi(Y) \tag{3.9}
\end{equation*}
$$

where $c=\frac{n-1}{n+1}$.

Theorem 3.1 The torsion tensor of special projective semi-symmetric connection satisfies

$$
\left(\bar{\nabla}_{X} \bar{T}\right)(Y, Z)=0
$$

if and only if $\alpha(X, Y)=m \pi(X) \pi(Y)$, where $m=\frac{c^{2}-1}{4}$.

Proof: First suppose that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \bar{T}\right)(Y, Z)=0 \tag{3.10}
\end{equation*}
$$

Therefore from the equation (3.8), we have

$$
\left(\bar{\nabla}_{X} \pi\right)(Z) Y-\left(\bar{\nabla}_{X} \pi\right)(Y) Z=0
$$

which on contraction, gives

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Y)=0 \tag{3.11}
\end{equation*}
$$

Now from the equation (3.9), we get

$$
\left(\nabla_{X} \pi\right)(Y)=c \pi(X) \pi(Y)
$$

Again using this in the equation (3.7), we have

$$
\begin{equation*}
\alpha(X, Y)=m \pi(X) \pi(Y) \tag{3.12}
\end{equation*}
$$

Conversely, we suppose that α satisfies the equation (3.12). Now, using equation (3.12) in the equation (3.7), we get

$$
\left(\nabla_{X} \pi\right)(Y)=c \pi(X) \pi(Y)
$$

which on using in the equation (3.9), gives $\left(\bar{\nabla}_{X} \pi\right)(Y)=0$.
Thus, due to this the equation (3.8), gives $\left(\bar{\nabla}_{X} \bar{T}\right)(Y, Z)=0$.
This completes the proof.

Theorem 3.2 The associated 1-form of special projective semi-symmetric connection satisfies $\left(\bar{\nabla}_{X} \pi\right) Y=\frac{1-c}{2} \pi(X) \pi(Y)$ if and only if tensor α vanishes.

Proof: If Ricci tensor of a flat Riemannian manifold with respect to special projective semi-symmetric connection vanishes, then from the equation (3.5) , we have

$$
\begin{equation*}
\alpha(Y, Z)=0 \tag{3.13}
\end{equation*}
$$

Thus, the equation (3.7) reduces to $\left(\nabla_{X} \pi\right)(Y)=\frac{1}{2}(c+1) \pi(X) \pi(Y)$.
Using this in the equation (3.9), we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right) Y=\frac{1-c}{2} \pi(X) \pi(Y) \tag{3.14}
\end{equation*}
$$

Conversely, suppose that (3.14) holds. Then from equation (3.9), we have

$$
\left.\left(\nabla_{X} \pi\right)(Y)=\frac{1}{2}(c+1) \pi(X) \pi(Y)\right]
$$

Using this in the equation (3.7), we get $\alpha(X, Y)=0$.
This competes the proof.

Theorem 3.3 The Ricci tensor of special projective semi-symmetric connection vanishes if and only if $W(X, Y, Z)=\bar{R}(X, Y, Z)$.

Proof: The Weyl curvature tensor of Riemannian manifold ${ }^{\mathbf{1 3}}$ is given by

$$
\begin{equation*}
W(X, Y, Z)=R(X, Y, Z)-\frac{1}{n-1}\{\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y\} \tag{3.15}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
W(X, Y, Z)=\bar{R}(X, Y, Z) \tag{3.16}
\end{equation*}
$$

Then from the equation (3.15), we have

$$
\bar{R}(X, Y, Z)=R(X, Y, Z)-\frac{1}{n-1}\{\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y\}
$$

In view of equation (3.4), above equation takes the form

$$
[\operatorname{Ric}(Y, Z)-(n-1) \alpha(Y, Z)] X=[\operatorname{Ric}(X, Z)-(n-1) \alpha(X, Z)] Y
$$

Using the equation (3.5) in above equation, we have

$$
\bar{R} i c(Y, Z) X=\bar{R} i c(X, Z) Y
$$

which on contraction, gives $\overline{\operatorname{R}} i c(Y, Z)=0$.
Conversely, suppose that

$$
\bar{R} i c(Y, Z)=0 .
$$

Then from the equation (3.5), we have

$$
\operatorname{Ric}(Y, Z)=(n-1) \alpha(Y, Z) .
$$

Using this in the equation (3.15), we have

$$
W(X, Y, Z)=R(X, Y, Z)+\alpha(X, Z) Y-\alpha(Y, Z) X,
$$

which in view of the equation (3.4) gives

$$
W(X, Y, Z)=\bar{R}(X, Y, Z) .
$$

This completes the proof.
Theorem 3.4 The torsion tensor of special projective semi-symmetric connection in manifold M^{n} is recurrent if and only if 1-form π is recurrent with respect to special projective semi-symmetric connection.

Proof: Suppose that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \bar{T}\right)(Y, Z)=\pi(X) \bar{T}(Y, Z) \tag{3.18}
\end{equation*}
$$

Using the equations (2.2) and (3.8) in above equation, we have

$$
\left(\bar{\nabla}_{X} \pi\right)(Z) Y-\left(\bar{\nabla}_{X} \pi\right)(Y) Z=\pi(X)[\pi(Z) Y-\pi(Y) Z] .
$$

In view of equation (3.9) , above equation takes the form

$$
\left(\nabla_{X} \pi\right)(Z) Y-\left(\nabla_{X} \pi\right)(Y) Z=(c+1) \pi(X)[\pi(Z) Y-\pi(Y) Z],
$$

which on contraction, gives

$$
\begin{equation*}
\left(\nabla_{X} \pi\right)(Z)=(c+1) \pi(X) \pi(Z) . \tag{3.19}
\end{equation*}
$$

The above equation can be written as

$$
\left(\nabla_{X} \pi\right)(Z)-c \pi(X) \pi(Z)=\pi(X) \pi(Z) .
$$

Using the equation (3.9) in above, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \pi\right)(Z)=\pi(X) \pi(Z) \tag{3.20}
\end{equation*}
$$

which shows that 1 -form π is recurrent with respect to special projective semi-symmetric connection.

Conversely, suppose that the equation (3.20) holds. Then we have

$$
\left(\bar{\nabla}_{X} \pi\right)(Z) Y-\left(\bar{\nabla}_{X} \pi\right)(Y) Z=\pi(X) \pi(Z) Y-\pi(X) \pi(Y) Z
$$

Now, using the equations (3.8) and (2.2) in the above equation, we get

$$
\left(\bar{\nabla}_{X} T\right)(Z, Y)=\pi(X) \bar{T}(Y, Z) .
$$

This completes the proof.
Theorem 3.5 If the torsion tensor of special projective semi-symmetric connection is recurrent with π as 1 -form of recurrence, then

$$
\left(\nabla_{X} \bar{R}\right)(Y, Z, U)+\left(\nabla_{Y} \bar{R}\right)(Z, X, U)+\left(\nabla_{Z} \bar{R}\right)(X, Y, U)=0 .
$$

Proof: Let torsion tensor of special projective semi-symmetric connection is recurrent with respect to $\bar{\nabla}$ with π as 1 -form of recurrence, then from the equations (3.7) and (3.19), we have

$$
\begin{equation*}
\alpha(X, Z)=\frac{(c+1)^{2}}{4} \pi(X) \pi(Z) . \tag{3.21}
\end{equation*}
$$

Differentiating above equation covariantly with respect to ∇, we have

$$
\left(\nabla_{U} \alpha\right)(X, Z)=\frac{(c+1)^{2}}{4}\left[\left(\nabla_{U} \pi\right)(X) \pi(Z)+\pi(X)\left(\nabla_{U} \pi\right) Z\right]
$$

which due to the equation (3.19) , reduces to

$$
\begin{equation*}
\left(\nabla_{U} \alpha\right)(X, Z)=\frac{(c+1)^{3}}{2} \pi(U) \pi(X) \pi(Z) . \tag{3.22}
\end{equation*}
$$

Interchanging U and X in the above equation, we have

$$
\begin{equation*}
\left(\nabla_{X} \alpha\right)(U, Z)=\frac{(c+1)^{3}}{2} \pi(X) \pi(U) \pi(Z) . \tag{3.23}
\end{equation*}
$$

In virtue of equations (3.22) and (3.23), we have

$$
\begin{equation*}
\left(\nabla_{U} \alpha\right)(X, Z)=\left(\nabla_{X} \alpha\right)(U, Z) \tag{3.24}
\end{equation*}
$$

Now, differentiating the equation (3.4) covariantly with respect to the ∇, we have

$$
\begin{equation*}
\left(\nabla_{X} \bar{R}\right)(Y, Z, U)=\left(\nabla_{X} R\right)(Y, Z, U)+\left(\nabla_{X} \alpha\right)(Y, U) Z-\left(\nabla_{X} \alpha\right)(Z, U) Y \tag{3.25}
\end{equation*}
$$

Writing two more equations by the cyclic permutations of X, Y and Z from above equation and adding them to equation (3.25), we get

$$
\begin{gathered}
\left(\nabla_{X} \bar{R}\right)(Y, Z, U)+\left(\nabla_{Y} \bar{R}\right)(Z, X, U)+\left(\nabla_{Z} \bar{R}\right)(X, Y, U)=\left\{\left(\nabla_{X} \alpha\right)(Y, U) Z-\left(\nabla_{Y} \alpha\right)(X, U) Z\right\} \\
+\left\{\left(\nabla_{Y} \alpha\right)(Z, U) X-\left(\nabla_{Z} \alpha\right)(Y, U) X\right\}+\left\{\left(\nabla_{Z} \alpha\right)(X, U) Y-\left(\nabla_{X} \alpha\right)(Z, U) Y\right\}
\end{gathered}
$$

which on using equation (3.24) , gives

$$
\left(\nabla_{X} \bar{R}\right)(Y, Z, U)+\left(\nabla_{Y} \bar{R}\right)(Z, X, U)+\left(\nabla_{Z} \bar{R}\right)(X, Y, U)=0 .
$$

This completes the proof.
Theorem 3.6 If the curvature tensor of special projective semi-symmetric connection vanishes and torsion tensor is recurrent with respect to $\bar{\nabla}$ with π as 1-form of recurrence, then manifold M^{n} satisfies the condition

$$
\left(\nabla_{X} \operatorname{Ric}\right)(Y, Z)=B(X) \operatorname{Ric}(Y, Z),
$$

where $B(X)=2(c+1) \pi(X)$.
Proof: Let torsion tensor of special projective semi-symmetric connection is recurrent with respect to $\bar{\nabla}$ with π as 1 -form of recurrence, then from equations (3.21) and (3.23), we have

$$
\begin{equation*}
\left(\nabla_{X} \alpha\right)(Y, Z)=B(X) \alpha(Y, Z), \tag{3.26}
\end{equation*}
$$

i.e., tensor α is recurrent.

Suppose curvature tensor of special projective semi-symmetric connection is vanishes, i.e.,

$$
\begin{equation*}
\bar{R}(X, Y, Z)=0 . \tag{3.27}
\end{equation*}
$$

Now, in view of equation (3.27) , the equation (3.5) gives

$$
\operatorname{Ric}(Y, Z)=(n-1) \alpha(Y, Z) .
$$

Differentiating above equation covariantly with respect to ∇ and using equation (3.26), we get

$$
\left(\nabla_{X} \operatorname{Ric}\right)(Y, Z)=B(X) \operatorname{Ric}(Y, Z)
$$

This completes the proof.

Theorem 3.7 If the torsion tensor of special projective semi-symmetric connection in M^{n} is covariant constant with respect to Levi-Civita connection, then manifold admits a parallel vector field.
Proof: Suppose torsion tensor of special projective semi-symmetric connection in M^{n} is covariant constant with respect to ∇, i.e.,

$$
\left(\nabla_{X} \bar{T}\right)(Y, Z)=0,
$$

then from the equation (2.2), we get

$$
\left(\nabla_{X} \pi\right)(Z) Y-\left(\nabla_{X} \pi\right)(Y) Z=0,
$$

which on contraction, gives

$$
\begin{equation*}
\left(\nabla_{X} \pi\right)(Z)=0 \tag{3.28}
\end{equation*}
$$

Differentiating the equation (2.4) covariantly with respect to ∇, we get

$$
\begin{equation*}
\left(\nabla_{X} \pi\right)(Z)=g\left(Z, \nabla_{X} \rho\right) . \tag{3.29}
\end{equation*}
$$

From the equations (3.28) and (3.29), we have $\nabla_{x} \rho=0$, which shows that vector field ρ is parallel vector field.

References

1. A. Friedmann and J. A Schouten, Uber die geometrie der halbsymmetrischen Ubertragungen, Math. Zeitschr., 21(1), (1924) 211-223.
2. H. N. Hayden, Subspaces of space with torsion, Proc. London Math. Soc., 34, (1932) 27-50.
3. K. Yano, On semi-symmetric metric connection, Revue Roumaine de Math. Pure et Appliquees, 15, (1970) 1579-1581.
4. T. Imai, Notes on semi-symetric metric connections, Tensor N. S., 24, (1972) 293-296.
5. R. S. Mishra, and S. N. Pandey., Semi-symmetric metric connection in an almost contact manifold, Indian J. Pure Appl. Math., 9(6), (1978) 570-580.
6. U.C. De and B. K De, On a type of semi-symmetric connection on a Riemannian manifold, Ganita, 47(2), (1996) 11-24.
7. Y. Liang., Some Properties of the Semi-symmetric Metric Connection, J of Xiamen University (Natural Science), 30(1), (1991) 22-24.
8. P. Zhao and L. Shangguan, On semi-symmetric connection, J. of Henan Normal University (Natural Science), 19(4), (1994) 13-16.
9. P. Zhao and H. Song, An invariant of the projective semisymmetric connection, Chinese Quarterly J. of Math., 17(4), (2001) 48-52.
10. Fu. Fengyun and P. Zhao, A property on geodesic mappings of pseudo-symmetric Riemannian manifolds, Bull. Malays. Math. Sci. Soc.(2), 33(2), (2010) 265-272.
11. Y. Han, H. Yun and P. Zhao, Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat, 27(4), (2013) 679-691.
12. P. Zhao, Some properties of projective semi-symmetric connections, Int. Math.Forum, 3(7), (2008) 341-347.
13. R. S Mishra, Structures on a differentiable manifolds and their applications, Chandrama Prakashan, Allahabad, 1984.
