Vol. 18 No.1 (2014)

A Note on Special Projective Semi-Symmetric Connection

S. K. Pal

Department of Mathematical Sciences, A.P.S. University, Rewa, India, 486003 E-mail: <u>skpalmath85@gmail.com</u>

M. K. Pandey

Department of Mathematics, University Institute of Technology Rajiv Gandhi Proudyogiki Vishwavidyalaya Bhopal, India, 462036 E-mail: <u>mkp_apsu@rediffmail.com</u>

R. N. Singh

Department of Mathematical Sciences, A.P.S. University, Rewa, India, 486003 E-mail: <u>rnsinghmp@rediffmail.com</u>

(Received January 05, 2014)

Abstract: In the present paper, we have studied some properties of curvature tensor and Ricci tensor of special projective semisymmetric connection. It has been shown that if torsion tensor of

 M^n is covariant constant, then manifold admits a parallel vector field.

AMS Mathematics Subject Classification (2010): 53C12.

Keywords and phrases: Projective semi-symmetric connection, curvature tensor.

1. Introduction

The idea of semi-symmetric connection was introduced by A. Friedmann and J. A. Schouten¹ in 1924. In 1932, H. A. Hayden² studied semi-symmetric metric-connection. It was K. Yano³ who started systematic study of semi-symmetric metric connection and this was further studied by T. Imai⁴, R. S. Mishra and S. N. Pandey⁵, U. C. De and B. K. De⁶ and several other mathematicians^{7,8}, In 2001, P. Zhao and H. Song⁹ studied a semi-symmetric connection which is projectively equivalent to Levi-Civita connection. Such a connection is called as projective semi-symmetric connection and showed that this invariant could degenerate into the Weyl projective curvature tensor under certain conditions. After this various papers^{10,11,12} on projective semi-symmetric metric connection have appeared.

The organization of the paper is as follows. After introduction we give some preliminary results in section 2. In section 3, we present a brief account of special projective semi-symmetric connection and some results concerning torsion tensor, Ricci tensor and curvature tensor.

2. Preliminaries

Let M^n be an *n*-dimensional (n > 2) Riemannian manifold equipped with a Riemannian metric g and ∇ be the Levi-Civita connection associated with metric g. A linear connection $\overline{\nabla}$ on M^n is said to be semisymmetric connection if its torsion tensor \overline{T} , given by

(2.1)
$$\overline{T}(X,Y) = \overline{\nabla}_X Y - \overline{\nabla}_Y X - [X,Y]$$

satisfies the condition

(2.2)
$$\overline{T}(X,Y) = \pi(Y)X - \pi(X)Y$$

and

(2.3)
$$(\overline{\nabla}_X g)(Y,Z) = 0,$$

where π is a 1 - form on M^n associated with vector field ρ i.e.,

(2.4)
$$\pi(X) = g(X, \rho).$$

If the geodesic with respect to $\overline{\nabla}$ are always consistent with those of ∇ , then $\overline{\nabla}$ is called a connection projectively equivalent to ∇ . If $\overline{\nabla}$ is projective equivalent connection to ∇ as well as semi-symmetric, then $\overline{\nabla}$ is called projective semi- symmetric connection. We also call $\overline{\nabla}$ as projective semi-symmetric transformation.

In this paper, we study a type of projective semi-symmetric connection $\overline{\nabla}$ introduced by P.Zhao and H. Song ⁹. The connection is given by

(2.5)
$$\overline{\nabla}_{X}Y = \nabla_{X}Y + \psi(Y)X + \psi(X)Y + \phi(Y)X - \phi(X)Y,$$

where 1-forms ϕ and ψ are given as

(2.6)
$$\phi(X) = \frac{1}{2}\pi(X) \text{ and } \psi(X) = \frac{n-1}{2(n+1)}\pi(X).$$

It is easy to observe that torsion tensor of projective semi-symmetric transformation is same as given by the equation (2.2) and also that

(2.7)
$$(\overline{\nabla}_X g)(Y,Z) = \frac{1}{n+1} [2\pi(X)g(Y,Z) - n\pi(Y)g(Z,X) - n\pi(Z)g(X,Y)].$$

i.e., the connection $\overline{\nabla}$ is a non metric one.

Let \overline{R} and R be the curvature tensors of the manifold relative to the projective semi-symmetric connection $\overline{\nabla}$ and Levi-Civita connection ∇ respectively. It is known that ⁹

(2.8)
$$\overline{R}(X,Y,Z) = R(X,Y,Z) + \beta(X,Y)Z + \alpha(X,Z)Y - \alpha(Y,Z)X,$$

where $\beta(X,Y)$ and $\alpha(X,Y)$ are given by the following relations

(2.9)
$$\beta(X,Y) = \Psi'(X,Y) - \Psi'(Y,X) + \Phi'(Y,X) - \Phi'(X,Y),$$

(2.10)
$$\alpha(X,Y) = \Psi'(X,Y) + \Phi'(Y,X) - \psi(X)\phi(Y) - \phi(X)\psi(Y),$$

(2.11)
$$\Psi'(X,Y) = (\nabla_X \psi)(Y) - \psi(X)\psi(Y)$$

and

(2.12)
$$\Phi'(X,Y) = (\nabla_X \phi)(Y) - \phi(X)\phi(Y).$$

Contracting X in the equation (2.8), we get a relation between Ricci tensors $\overline{R}ic(Y,Z)$ and Ric(Y,Z) of manifold with respect to the connections $\overline{\nabla}$ and ∇ respectively as

(2.13)
$$\operatorname{Ric}(Y,Z) = \operatorname{Ric}(Y,Z) + \beta(Y,Z) - (n-1)\alpha(Y,Z).$$

If \overline{r} and r are scalar curvatures of manifold with respect to connections $\overline{\nabla}$ and ∇ respectively, then from the equation (2.13), we get

(2.14) $\bar{r} = r + b - (n-1)a$,

where

$$b = \sum_{i=1}^{n} \beta(e_i, e_i) \text{ and } a = \sum_{i=1}^{n} \alpha(e_i, e_i).$$

3. Main Results

In this section, we consider a type of projective semi-symmetric connection $\overline{\nabla}$ given by the equation (2.5) whose associated 1-form π is closed, i.e.,

(3.1)
$$(\overline{\nabla}_{X}\pi)Y = (\overline{\nabla}_{Y}\pi)X.$$

In this case $\overline{\nabla}$ is called special projective semi-symmetric connection ⁹.

It is easy to verify that both the 1-forms ϕ and ψ are closed as the 1-form π is closed and we easily get the tensors Φ' and Ψ' both are symmetric. Consequently, we get

 $(3.2) \qquad \qquad \beta(X,Y) = 0$

and

(3.3)
$$\alpha(X,Y) = \alpha(Y,X).$$

In view of the equations (3.1) and (3.2) the expressions (2.8), (2.13) and (2.14) reduces to

(3.4)
$$\overline{R}(X,Y,Z) = R(X,Y,Z) + \alpha(X,Z)Y - \alpha(Y,Z)X,$$

(3.5)
$$\overline{R}ic(Y,Z) = Ric(Y,Z) - (n-1)\alpha(Y,Z)$$

and

$$(3.6) \qquad \overline{r} = r - (n-1)a.$$

It is easy to observe that the Ricci tensor $\overline{Ric}(Y,Z)$ is symmetric.

Consequently, from the equations (2.6) and (2.10) ,we have

(3.7)
$$\alpha(X,Y) = \frac{1}{2}(c+1)[(\nabla_X \pi)(Y) - \frac{1}{2}(c+1)\pi(X)\pi(Y)].$$

Differentiating the torsion tensor of the connection $\overline{\nabla}$ given by the equation (2.2) covariantly with respect to the connection $\overline{\nabla}$, we have

(3.8)
$$(\overline{\nabla}_{X}\overline{T})(Y,Z) = (\overline{\nabla}_{X}\pi)(Z)Y - (\overline{\nabla}_{X}\pi)(Y)Z.$$

Now, due to the equations (2.5) and (2.6), we have

(3.9)
$$(\overline{\nabla}_{X}\pi)Y = (\nabla_{X}\pi)(Y) - c\pi(X)\pi(Y),$$

where $c = \frac{n-1}{n+1}$.

Theorem 3.1 The torsion tensor of special projective semi-symmetric connection satisfies

$$(\nabla_X T)(Y,Z) = 0$$

if and only if $\alpha(X,Y) = m\pi(X)\pi(Y)$, where $m = \frac{c^2 - 1}{4}$.

Proof: First suppose that

(3.10) $(\overline{\nabla}_{X}\overline{T})(Y,Z) = 0.$

Therefore from the equation (3.8), we have

$$(\overline{\nabla}_X \pi)(Z)Y - (\overline{\nabla}_X \pi)(Y)Z = 0,$$

which on contraction, gives

 $(3.11) \qquad (\overline{\nabla}_{X}\pi)(Y) = 0.$

Now from the equation (3.9), we get

$$(\nabla_X \pi)(Y) = c \pi(X) \pi(Y).$$

Again using this in the equation (3.7), we have

(3.12) $\alpha(X,Y) = m\pi(X)\pi(Y).$

Conversely, we suppose that α satisfies the equation (3.12). Now, using equation (3.12) in the equation (3.7), we get

$$(\nabla_X \pi)(Y) = c \pi(X) \pi(Y),$$

which on using in the equation (3.9), gives $(\overline{\nabla}_{X} \pi)(Y) = 0$.

Thus, due to this the equation (3.8), gives $(\overline{\nabla}_x \overline{T})(Y, Z) = 0$.

This completes the proof.

Theorem 3.2 The associated 1-form of special projective semi-symmetric connection satisfies $(\overline{\nabla}_X \pi)Y = \frac{1-c}{2}\pi(X)\pi(Y)$ if and only if tensor α vanishes.

Proof: If Ricci tensor of a flat Riemannian manifold with respect to special projective semi-symmetric connection vanishes, then from the equation (3.5), we have

$$(3.13) \qquad \qquad \alpha(Y,Z) = 0.$$

Thus, the equation (3.7) reduces to $(\nabla_X \pi)(Y) = \frac{1}{2}(c+1)\pi(X)\pi(Y)$.

Using this in the equation (3.9), we have

(3.14)
$$(\overline{\nabla}_X \pi)Y = \frac{1-c}{2}\pi(X)\pi(Y).$$

Conversely, suppose that (3.14) holds. Then from equation (3.9), we have

$$(\nabla_X \pi)(Y) = \frac{1}{2}(c+1)\pi(X)\pi(Y)].$$

Using this in the equation (3.7), we get $\alpha(X, Y) = 0$. This competes the proof.

Theorem 3.3 The Ricci tensor of special projective semi-symmetric connection vanishes if and only if $W(X,Y,Z) = \overline{R}(X,Y,Z)$.

Proof: The Weyl curvature tensor of Riemannian manifold¹³ is given by

(3.15)
$$W(X,Y,Z) = R(X,Y,Z) - \frac{1}{n-1} \{ Ric(Y,Z)X - Ric(X,Z)Y \}.$$

Suppose that

(3.16) $W(X,Y,Z) = \overline{R}(X,Y,Z).$

Then from the equation (3.15), we have

$$\overline{R}(X,Y,Z) = R(X,Y,Z) - \frac{1}{n-1} \{ Ric(Y,Z)X - Ric(X,Z)Y \}.$$

In view of equation (3.4), above equation takes the form

$$[Ric(Y,Z) - (n-1)\alpha(Y,Z)]X = [Ric(X,Z) - (n-1)\alpha(X,Z)]Y.$$

Using the equation (3.5) in above equation, we have

$$\overline{R}ic(Y,Z)X = \overline{R}ic(X,Z)Y,$$

which on contraction, gives $\overline{Ric}(Y, Z) = 0$.

Conversely, suppose that

 $(3.17 \qquad \overline{R}ic(Y,Z) = 0.$

Then from the equation (3.5), we have

$$Ric(Y,Z) = (n-1)\alpha(Y,Z).$$

Using this in the equation (3.15), we have

 $W(X,Y,Z) = R(X,Y,Z) + \alpha(X,Z)Y - \alpha(Y,Z)X,$

which in view of the equation (3.4) gives

 $W(X,Y,Z) = \overline{R}(X,Y,Z).$

This completes the proof.

Theorem 3.4 The torsion tensor of special projective semi-symmetric connection in manifold M^n is recurrent if and only if 1-form π is recurrent with respect to special projective semi-symmetric connection.

Proof: Suppose that (3.18) $(\overline{\nabla}_X \overline{T})(Y, Z) = \pi(X)\overline{T}(Y, Z).$

Using the equations (2.2) and (3.8) in above equation, we have

$$(\overline{\nabla}_{X}\pi)(Z)Y - (\overline{\nabla}_{X}\pi)(Y)Z = \pi(X)[\pi(Z)Y - \pi(Y)Z]$$

In view of equation (3.9), above equation takes the form

$$(\nabla_{X}\pi)(Z)Y - (\nabla_{X}\pi)(Y)Z = (c+1)\pi(X)[\pi(Z)Y - \pi(Y)Z],$$

which on contraction, gives

(3.19) $(\nabla_X \pi)(Z) = (c+1)\pi(X)\pi(Z).$

The above equation can be written as

$$(\nabla_X \pi)(Z) - c \pi(X) \pi(Z) = \pi(X) \pi(Z).$$

Using the equation (3.9) in above, we have

(3.20)
$$(\overline{\nabla}_{X}\pi)(Z) = \pi(X)\pi(Z),$$

which shows that 1-form π is recurrent with respect to special projective semi-symmetric connection.

Conversely, suppose that the equation (3.20) holds. Then we have

$$(\overline{\nabla}_x \pi)(Z)Y - (\overline{\nabla}_x \pi)(Y)Z = \pi(X)\pi(Z)Y - \pi(X)\pi(Y)Z$$

Now, using the equations (3.8) and (2.2) in the above equation, we get

$$(\overline{\nabla}_{X}T)(Z,Y) = \pi(X)\overline{T}(Y,Z).$$

This completes the proof.

Theorem 3.5 If the torsion tensor of special projective semi-symmetric connection is recurrent with π as 1-form of recurrence, then

$$(\nabla_{X}\overline{R})(Y,Z,U) + (\nabla_{Y}\overline{R})(Z,X,U) + (\nabla_{Z}\overline{R})(X,Y,U) = 0.$$

Proof: Let torsion tensor of special projective semi-symmetric connection is recurrent with respect to $\overline{\nabla}$ with π as 1-form of recurrence, then from the equations (3.7) and (3.19), we have

(3.21)
$$\alpha(X,Z) = \frac{(c+1)^2}{4} \pi(X) \pi(Z).$$

Differentiating above equation covariantly with respect to ∇ , we have

$$(\nabla_{U}\alpha)(X,Z) = \frac{(c+1)^{2}}{4} [(\nabla_{U}\pi)(X)\pi(Z) + \pi(X)(\nabla_{U}\pi)Z]$$

which due to the equation (3.19), reduces to

(3.22)
$$(\nabla_U \alpha)(X, Z) = \frac{(c+1)^3}{2} \pi(U) \pi(X) \pi(Z).$$

Interchanging U and X in the above equation, we have

(3.23)
$$(\nabla_X \alpha)(U, Z) = \frac{(c+1)^3}{2} \pi(X) \pi(U) \pi(Z).$$

In virtue of equations (3.22) and (3.23), we have

(3.24)
$$(\nabla_U \alpha)(X, Z) = (\nabla_X \alpha)(U, Z).$$

Now, differentiating the equation (3.4) covariantly with respect to the ∇ , we have

$$(3.25) \quad (\nabla_X \overline{R})(Y, Z, U) = (\nabla_X R)(Y, Z, U) + (\nabla_X \alpha)(Y, U)Z - (\nabla_X \alpha)(Z, U)Y.$$

Writing two more equations by the cyclic permutations of X,Y and Z from above equation and adding them to equation (3.25), we get

$$(\nabla_{X}\overline{R})(Y,Z,U) + (\nabla_{Y}\overline{R})(Z,X,U) + (\nabla_{Z}\overline{R})(X,Y,U) = \{ (\nabla_{X}\alpha)(Y,U)Z - (\nabla_{Y}\alpha)(X,U)Z \}$$

+
$$\{ (\nabla_{Y}\alpha)(Z,U)X - (\nabla_{Z}\alpha)(Y,U)X \} + \{ (\nabla_{Z}\alpha)(X,U)Y - (\nabla_{X}\alpha)(Z,U)Y \}$$

which on using equation (3.24), gives

$$(\nabla_{X}\overline{R})(Y,Z,U) + (\nabla_{Y}\overline{R})(Z,X,U) + (\nabla_{Z}\overline{R})(X,Y,U) = 0.$$

This completes the proof.

Theorem 3.6 If the curvature tensor of special projective semi-symmetric connection vanishes and torsion tensor is recurrent with respect to $\overline{\nabla}$ with π as 1-form of recurrence, then manifold M^n satisfies the condition

$$(\nabla_{X}Ric)(Y,Z) = B(X)Ric(Y,Z),$$

where $B(X) = 2(c+1)\pi(X)$.

Proof: Let torsion tensor of special projective semi-symmetric connection is recurrent with respect to $\overline{\nabla}$ with π as 1-form of recurrence, then from equations (3.21) and (3.23), we have

(3.26)
$$(\nabla_{X}\alpha)(Y,Z) = B(X)\alpha(Y,Z),$$

i.e., tensor α is recurrent.

Suppose curvature tensor of special projective semi-symmetric connection is vanishes, i.e.,

$$(3.27) \qquad \qquad \overline{R}(X,Y,Z) = 0.$$

Now, in view of equation (3.27), the equation (3.5) gives

$$Ric(Y,Z) = (n-1)\alpha(Y,Z).$$

Differentiating above equation covariantly with respect to ∇ and using equation (3.26), we get

$$(\nabla_X Ric)(Y,Z) = B(X)Ric(Y,Z).$$

This completes the proof.

Theorem 3.7 If the torsion tensor of special projective semi-symmetric connection in M^n is covariant constant with respect to Levi-Civita connection, then manifold admits a parallel vector field.

Proof: Suppose torsion tensor of special projective semi-symmetric connection in M^n is covariant constant with respect to ∇ , i.e.,

$$(\nabla_{X}\overline{T})(Y,Z) = 0,$$

then from the equation (2.2), we get

$$(\nabla_{X}\pi)(Z)Y - (\nabla_{X}\pi)(Y)Z = 0,$$

which on contraction, gives

 $(3.28) \qquad (\nabla_x \pi)(Z) = 0.$

Differentiating the equation (2.4) covariantly with respect to ∇ , we get

(3.29)
$$(\nabla_X \pi)(Z) = g(Z, \nabla_X \rho).$$

From the equations (3.28) and (3.29), we have $\nabla_x \rho = 0$,

which shows that vector field ρ is parallel vector field.

References

1. A. Friedmann and J. A Schouten, Uber die geometrie der halbsymmetrischen Ubertragungen, *Math. Zeitschr.*, **21**(1), (1924) 211-223.

2. H. N. Hayden, Subspaces of space with torsion, Proc. London Math. Soc., 34, (1932) 27-50.

3. K. Yano, On semi-symmetric metric connection, *Revue Roumaine de Math. Pure et Appliquees*, **15**, (1970) 1579-1581.

4. T. Imai, Notes on semi-symetric metric connections, Tensor N. S., 24, (1972) 293-296.

5. R. S. Mishra, and S. N. Pandey., Semi-symmetric metric connection in an almost contact manifold, *Indian J. Pure Appl. Math.*, **9(6)**, (1978) 570-580.

6. U.C. De and B. K De, On a type of semi-symmetric connection on a Riemannian manifold, *Ganita*, **47(2)**, (1996) 11-24.

7. Y. Liang., Some Properties of the Semi-symmetric Metric Connection, *J of Xiamen University (Natural Science)*, **30(1)**, (1991) 22-24.

8. P. Zhao and L. Shangguan, On semi-symmetric connection, *J. of Henan Normal University (Natural Science)*, **19(4)**, (1994) 13-16.

9. P. Zhao and H. Song, An invariant of the projective semisymmetric connection, *Chinese Quarterly J. of Math.*, **17(4)**, (2001) 48-52.

10. Fu. Fengyun and P. Zhao, A property on geodesic mappings of pseudo-symmetric Riemannian manifolds, *Bull. Malays. Math. Sci. Soc.*(2), **33**(2), (2010) 265-272.

11. Y. Han, H. Yun and P. Zhao, Some invariants of quarter-symmetric metric connections under the projective transformation, *Filomat*, **27(4)**, (2013) 679-691.

12. P. Zhao, Some properties of projective semi-symmetric connections, *Int. Math.Forum*, **3**(7), (2008) 341-347.

13. R. S Mishra, *Structures on a differentiable manifolds and their applications*, Chandrama Prakashan, Allahabad, 1984.