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Abstract: In the present paper, we have studied some properties of 

curvature tensor and Ricci tensor of special projective semi-

symmetric connection. It has been shown that if torsion tensor of 
nM  is covariant constant, then manifold admits a parallel vector 

field.  
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1. Introduction 
 

      The idea of semi-symmetric connection was introduced by A. 

Friedmann and J. A. Schouten
1 

in 1924. In 1932, H. A. Hayden
 2

  studied 

semi-symmetric metric-connection. It was K. Yano
3
 who started systematic 

study of semi-symmetric metric connection and this was further studied by 

T. Imai 
4
, R. S. Mishra and S. N. Pandey 

5
, U. C. De and B. K. De 

6
 and 

several other mathematicians 
7,8

 ,  In 2001, P. Zhao and H. Song
 9

 studied a 

semi-symmetric connection which is projectively equivalent to Levi-Civita 

connection. Such a connection is called as projective semi-symmetric 

connection. They found an invariant under the transformation of projective 

semi-symmetric connection and showed that this invariant could degenerate 

into the Weyl projective curvature tensor under certain conditions. After this 

various papers 
10,11,12 

 on projective semi-symmetric metric connection have 

appeared. 
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       The organization of the paper is as follows. After introduction we give 

some preliminary results in section 2. In section 3 , we present a brief 

account of special projective semi-symmetric connection and some results 

concerning torsion tensor, Ricci tensor and curvature tensor. 
 

2.  Preliminaries 
 

        Let nM  be an n -dimensional 2)>(n  Riemannian manifold equipped 

with a Riemannian metric g  and ∇  be the Levi-Civita connection 

associated with metric g . A linear connection ∇  on nM  is said to be semi-

symmetric connection if its torsion tensor T , given by  
 

(2.1)                 ],[=),( YXXYYXT YX −∇−∇  
  

 satisfies the condition  
 

(2.2)                    YXXYYXT )()(=),( ππ −   

 and  

(2.3)                 0,=),)(( ZYgX∇  
  

 where π  is a 1 - form on nM  associated with vector field ρ  i.e.,  
 

(2.4)                     ).,(=)( ρπ XgX  
  

          If the geodesic with respect to ∇  are always consistent with those of 

∇ , then ∇  is called a connection projectively equivalent to ∇ . If ∇  is 

projective equivalent connection to ∇  as well as semi-symmetric, then ∇  is 

called projective semi- symmetric connection. We also call ∇  as projective 

semi- symmetric transformation. 
 

         In this paper, we study a type of projective semi-symmetric connection 

∇  introduced by P.Zhao and H. Song 
9
. The connection is given by  

 

(2.5)                 ,)()()()(= YXXYYXXYYY XX φφψψ −+++∇∇  
  

 where 1-forms φ  and ψ  are given as  

(2.6)                  ).(
1)2(

1
=)()(

2

1
=)( X

n

n
XandXX πψπφ

+

−
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 It is easy to observe that torsion tensor of projective semi-symmetric 

transformation is same as given by the equation (2.2)  and also that  
 

(2.7)    )].,()(),()(),()([2
1

1
=),)(( YXgZnXZgYnZYgX

n
ZYgX πππ −−

+
∇  

 i.e., the connection ∇  is a non metric one. 
 

Let R  and R  be the curvature tensors of the manifold relative to the 

projective semi-symmetric connection ∇  and Levi-Civita connection ∇  

respectively. It is known that 
9
  

 

(2.8)             ,),(),(),(),,(=),,( XZYYZXZYXZYXRZYXR ααβ −++  
  

 where ),( YXβ  and ),( YXα  are given by the following relations  
 

(2.9)               ),,(),(),(),(=),( YXXYXYYXYX Φ′−Φ′+Ψ′−Ψ′β  

  

(2.10)             ),()()()(),(),(=),( YXYXXYYXYX ψφφψα −−Φ′+Ψ′  

  

(2.11)             )()())((=),( YXYYX X ψψψ −∇Ψ′   

 and  

(2.12)              ).()())((=),( YXYYX X φφφ −∇Φ′   
 

 Contracting X in the equation (2.8) , we get a relation between Ricci 

tensors ),( ZYicR  and ),( ZYRic  of manifold with respect to the 

connections ∇  and ∇  respectively as  
 

(2.13)                    ).,(1)(),(),(=),( ZYnZYZYRicZYicR αβ −−+    

 If r  and r  are scalar curvatures of manifold with respect to connections ∇  

and ∇  respectively, then from the equation (2.13) , we get  
 

(2.14)                        ,1)(= anbrr −−+   

 where  

).,(=),(=
1=1=

ii

n

i

ii

n

i

eeaandeeb αβ ∑∑  
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3. Main Results 
 

           In this section, we consider a type of projective semi-symmetric 

connection ∇  given by the equation (2.5)  whose associated 1-form π  is 

closed, i.e.,  
 

(3.1)                         .)(=)( XY YX ππ ∇∇  
  

 In this case ∇  is called special projective semi-symmetric connection 
9. 

 

It is easy to verify that both the 1-forms φ  and ψ  are closed as the 

1-form π  is closed and we easily get the tensors Φ′  and Ψ′  both are 

symmetric. Consequently, we get  
 

(3.2)                            0=),( YXβ   

 and  
 

(3.3)                         ).,(=),( XYYX αα  
  

 In view of the equations (3.1)  and (3.2)  the expressions (2.13)(2.8),  and 

(2.14)  reduces to  
 

(3.4)                            ,),(),(),,(=),,( XZYYZXZYXRZYXR αα −+  

  

(3.5)                        ),(1)(),(=),( ZYnZYRicZYicR α−−  
  

 and  
 

(3.6)                             .1)(= anrr −−   

 It is easy to observe that the Ricci tensor ),( ZYicR  is symmetric. 
 

Consequently, from the equations (2.6)  and (2.10)  ,we have  

(3.7)                      )].()(1)(
2

1
))(1)[((

2

1
=),( YXcYcYX X πππα +−∇+  

 Differentiating the torsion tensor of the connection ∇  given by the 

equation (2.2)  covariantly with respect to the connection ∇ , we have  
 

(3.8)                       .))(())((=),)(( ZYYZZYT XXX ππ ∇−∇∇    

 Now, due to the equations (2.5)  and (2.6) , we have  
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(3.9)                         ),()())((=)( YXcYY XX ππππ −∇∇  
  

 where  .
1

1
=

+

−

n

n
c

 
 

Theorem 3.1 The torsion tensor of special projective semi-symmetric 

connection satisfies  

                        0=),)(( ZYTX∇  

 if and only if ),()(=),( YXmYX ππα  where .
4

1
=

2 −c
m  

  

Proof: First suppose that 

 

(3.10)                          0.=),)(( ZYTX∇   

 Therefore from the equation (3.8) , we have  
 

                      0,=))(())(( ZYYZ XX ππ ∇−∇  
 

 which on contraction, gives  
 

(3.11)                         0.=))(( YXπ∇    

 Now from the equation (3.9) , we get  
 

                       ).()(=))(( YXcYX πππ∇  
 

 Again using this in the equation (3.7) , we have  
 

(3.12)                             ).()(=),( YXmYX ππα   
 

 Conversely, we suppose that α  satisfies the equation (3.12) . Now, using 

equation (3.12)  in the equation (3.7) , we get  
 

                        ),()(=))(( YXcYX πππ∇  
 

 which on using in the equation (3.9) , gives 0.=))(( YXπ∇  
 

 Thus, due to this the equation (3.8) , gives 0.=),)(( ZYTX∇  
 

 This completes the proof.  
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Theorem 3.2 The associated 1-form of special projective semi-symmetric 

connection satisfies 
1

( ) = ( ) ( )
2

X

c
Y X Yπ π π

−
∇

 
if and only if tensor α  

vanishes.  

 

Proof: If Ricci tensor of a flat Riemannian manifold with respect to special 

projective semi-symmetric connection vanishes, then from the equation 

(3.5) , we have  

(3.13)                             0.=),( ZYα   

 Thus, the equation (3.7)  reduces to ).()(1)(
2

1
=))(( YXcYX πππ +∇  

 Using this in the equation (3.9) , we have  

(3.14)                          ).()(
2

1
=)( YX

c
YX πππ

−
∇  

 Conversely, suppose that (3.14) holds. Then from  equation (3.9) , we have  

                        )].()(1)(
2

1
=))(( YXcYX πππ +∇  

 Using this in the equation (3.7) ,we get 0.=),( YXα  

 This competes the proof.  

 

Theorem 3.3 The Ricci tensor of special projective semi-symmetric 

connection vanishes if and only if ).,,(=),,( ZYXRZYXW  

  

Proof: The Weyl curvature tensor of Riemannian manifold
13

 is given by 

(3.15)                }.),(),({
1

1
),,(=),,( YZXRicXZYRic

n
ZYXRZYXW −

−
−  

 Suppose that  

(3.16)                  ).,,(=),,( ZYXRZYXW   

 Then from the equation (3.15) , we have  

   }.),(),({
1

1
),,(=),,( YZXRicXZYRic

n
ZYXRZYXR −

−
−  

 In view of equation (3.4) , above equation takes the form 
  

.)],(1)(),([=)],(1)(),([ YZXnZXRicXZYnZYRic αα −−−−  
 

 Using the equation (3.5)  in above equation, we have  
 

       ,),(=),( YZXicRXZYicR  
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 which on contraction , gives 0.=),( ZYicR  
 

 Conversely, suppose that  
 

(3.17              0.=),( ZYicR    

 Then from the equation (3.5) , we have  
 

          ).,(1)(=),( ZYnZYRic α−  

 Using this in the equation (3.15) , we have  
 

   ,),(),(),,(=),,( XZYYZXZYXRZYXW αα −+  

 which in view of the equation (3.4)  gives  
 

           ).,,(=),,( ZYXRZYXW  

 This completes the proof.  

 

Theorem 3.4 The torsion tensor of special projective semi-symmetric 

connection in manifold nM  is recurrent if and only if 1-form π  is recurrent 

with respect to special projective semi-symmetric connection. 

  

Proof: Suppose that  

(3.18)                  ).,()(=),)(( ZYTXZYTX π∇   
 

 Using the equations (2.2)  and (3.8)  in above equation, we have  
 

            ])()()[(=))(())(( ZYYZXZYYZ XX πππππ −∇−∇ . 
 

 In view of equation (3.9) , above equation takes the form  
 

      ],)()()[(1)(=))(())(( ZYYZXcZYYZ XX πππππ −+∇−∇  
 

 which on contraction, gives  
 

(3.19)                ).()(1)(=))(( ZXcZX πππ +∇   
 

 The above equation can be written as  
 

            ).()(=)()())(( ZXZXcZX πππππ −∇  
 

 Using the equation (3.9)  in above, we have  
 

(3.20)                   ),()(=))(( ZXZX πππ∇   

 which shows that 1-form π  is recurrent with respect to special projective 

semi-symmetric connection. 
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Conversely, suppose that the equation (3.20)  holds. Then we have  
 

           ZYXYZXZYYZ XX )()()()(=))(())(( ππππππ −∇−∇ . 
 

 Now, using the equations (3.8)  and (2.2)  in the above equation, we get 
  

                  ).,()(=),)(( ZYTXYZTX π∇  
 

 This completes the proof.  

 

Theorem 3.5 If the torsion tensor of special projective semi-symmetric 

connection is recurrent with π  as 1-form of recurrence, then  
 

 0.=),,)((),,)((),,)(( UYXRUXZRUZYR ZYX ∇+∇+∇  

  

Proof: Let torsion tensor of special projective semi-symmetric connection is 

recurrent with respect to ∇  with π  as 1-form of recurrence, then from the 

equations (3.7)  and (3.19)  , we have  
 

(3.21)                    ).()(
4

1)(
=),(

2

ZX
c

ZX ππα
+

  

 Differentiating above equation covariantly with respect to ∇ , we have  
 

        ]))(()())([(
4

1)(
=),)((

2

ZXZX
c

ZX UUU ππππα ∇+∇
+

∇  

 which due to the equation (3.19) , reduces to  
 

(3.22)                 ).()()(
2

1)(
=),)((

3

ZXU
c

ZXU πππα
+

∇  

 Interchanging U and X in the above equation, we have  
 

(3.23)                 ).()()(
2

1)(
=),)((

3

ZUX
c

ZUX πππα
+

∇  

 In virtue of equations (3.22)  and (3.23) , we have  
 

(3.24)                      ).,)((=),)(( ZUZX XU αα ∇∇   
 

 Now, differentiating the equation (3.4)  covariantly with respect to the ∇ , 

we have  

(3.25)    .),)((),)((),,)((=),,)(( YUZZUYUZYRUZYR XXXX αα ∇−∇+∇∇  
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 Writing two more equations by the cyclic permutations of X,Y and Z from 

above equation and adding them to equation (3.25) , we get  

 

( )( , , ) ( )( , , ) ( )( , , ) {( )( , ) ( )( , ) }

{( )( , ) ( )( , ) } {( )( , ) ( )( , ) }

X Y Z X Y

Y Z Z X

R Y Z U R Z X U R X Y U Y U Z X U Z

Z U X Y U X X U Y Z U Y

α α

α α α α

∇ + ∇ + ∇ = ∇ − ∇

+ ∇ − ∇ + ∇ − ∇

 

 which on using equation (3.24) ,gives  
 

         0.=),,)((),,)((),,)(( UYXRUXZRUZYR ZYX ∇+∇+∇  
 

 This completes the proof. 

 

Theorem 3.6 If the curvature tensor of special projective semi-symmetric 

connection vanishes and torsion tensor is recurrent with respect to ∇  with 

π  as 1-form of recurrence, then manifold nM  satisfies the condition     
   

                                 ),,()(=),)(( ZYRicXBZYRicX∇  
 

 where ).(1)2(=)( XcXB π+  

  

Proof: Let torsion tensor of special projective semi-symmetric connection is 

recurrent with respect to ∇  with π  as 1-form of recurrence, then from 

equations (3.21)  and (3.23) , we have  
 

(3.26)                        ),,()(=),)(( ZYXBZYX αα∇    

 i.e., tensor α  is recurrent. 

Suppose curvature tensor of special projective semi-symmetric 

connection is vanishes, i.e.,  
 

(3.27)                              0.=),,( ZYXR   

 Now, in view of equation (3.27) , the equation (3.5)  gives  
 

                  ).,(1)(=),( ZYnZYRic α−  

 Differentiating above equation covariantly with respect to ∇  and using 

equation (3.26), we get  

                    ).,()(=),)(( ZYRicXBZYRicX∇  

 This completes the proof.  
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Theorem 3.7 If the torsion tensor of special projective semi-symmetric 

connection in nM  is covariant constant with respect to Levi-Civita 

connection, then manifold admits a parallel vector field.  

Proof: Suppose torsion tensor of special projective semi-symmetric 

connection in nM  is covariant constant with respect to ∇ , i.e.,  
 

                      0,=),)(( ZYTX∇  
 

 then from the equation (2.2) , we get  
 

                      0,=))(())(( ZYYZ XX ππ ∇−∇  
 

 which on contraction, gives  
 

(3.28)                              0.=))(( ZXπ∇    

 Differentiating the equation (2.4)  covariantly with respect to ∇ , we get  
 

(3.29)                           ).,(=))(( ρπ XX ZgZ ∇∇   
 

 From the equations (3.28)  and (3.29) , we have 0,=ρX∇  
 

 which shows that vector field ρ  is parallel vector field. 
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