CR-Submanifolds of (ϵ)-Lorentzian Para-Sasakian Manifold

N.V. C. Shukla and Jyoti Jaiswal
Department of Mathematics and Astronomy
University of Lucknow, Lucknow
Email: nvcshukla72@gmail.com, Jollyjoi.jaiswal@gmailcom

(Received Nov. 17, 2013)

Abstract

In this paper we studied with some properties of CRSubmanifolds of (є)- Lorentzian para-Sasakian manifold and dealt with totally geodesic.

AMS Mathematics Subject Classification (2010): 53C12.
Keywords: CR- Submanifolds, Kaehler Manifold, Sasakain Manifold.

1. Introduction

In 1978, Bejancu introduced the notion of CR-Submanifold of a Kaehler manifold ${ }^{1}$. In 1989, K. Matsumoto ${ }^{2}$ introduced the notion of Loretzian paraSasakian manifolds. Also Bejancu and K. L Duggal introduced (ε)-Sasakian manifolds. CR-Submanifolds of Sasakian manifold have been studided by Kobayashi ${ }^{3}$ and other some authors. In 1985, Obina introduced a new class of of almost contact metric manifold. I. Mihai and R. Rosca ${ }^{4}$ defined same notion independently and several authors ${ }^{5,6}$. In 2012, R.Prasad and V.Shrivastva ${ }^{7}$ introduced the CR-Submanifolds of (ε)-Lorentzian paraSasakian manifold.The present paper is organised as follows:

Section1 is introductry and in section2 we defined (ε)-Lorentzian paraSasakian manifold. We also give some basic results in section3. In section4 we studied parallel distribution with respect to the connection on (ε) Lorentzian para-Sasakian manifold. In section 5, we study the CRSubmanifolds with totally geodesic properties. Finally, we study the intregrability condition on CR-Submanifolds of (ε)-Lorentzian paraSasakian manifold.

2. Preliminaries

An n dimensional differentiable manifold \bar{M} is called (ε)- Lorentziaan para-Sasakian manifold if

$$
\begin{align*}
& \phi^{2}=I+\eta(X) \xi, \eta(\xi)=-1, \quad \eta \circ \phi=0 \tag{1.0}\\
& g(\xi, \xi)=\varepsilon, \eta(X)=\varepsilon g(X, \xi) \\
& g(\phi X, \phi Y)=g(X, Y)+\varepsilon \eta(X) \eta(Y)
\end{align*}
$$

where X and Y are the vector fields tangent to \bar{M} and ε is 1 or -1 according as ξ is space like or time like vector field.
Also in (ε)-Lorentzian para-Sasakian manifold, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=g(X, Y) \xi+2 \varepsilon \eta(X) \eta(Y)+\varepsilon \eta(Y) \tag{1.3}
\end{equation*}
$$

where $\bar{\nabla}$ denotes the operator of covariant differetiation with respect to the Lorentzian metric g on \bar{M}.
Further,
4) $\left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X=2 g(X, Y) \xi+4 \varepsilon \eta(X) \eta(Y)+\varepsilon \eta(Y) X+\varepsilon \eta(X) Y$.

Let M be an m dimensional isometrically immersed submanifold of (ε)Lorentzian para-Sasakian manifold \bar{M} and denote by the same g the Lorentzian metric tensor field induced on M from that of \bar{M}.

Definition 1.1 An m dimensional Riemannian submanifold M of (ε)Lorentzian para-Sasakian manifold \bar{M} is called a CR-Submanifold if ξ is tangent to M and there exits a differentiable distribution $D: x \in M \rightarrow D_{x} \subset T_{x} M$ such that
(i) the distribution D_{x} is invariant under φ, that is

$$
\varphi D_{x} \subset D_{x} \text { for each } x \in M
$$

(ii) the complementary orthogonal distribution

$$
D^{\perp}: x \in M \rightarrow D_{\dot{x}}^{\perp} \subset T_{x} M
$$

of D is anti-invariant under φ that is $\quad \varphi D_{*}^{\perp} \subset T_{*}^{\perp} M$ for each $x \in M$;
where $T_{x} M$ and $T_{x}^{-} M$ are the tangent space and the normal space of M at x respectivly.

If $\operatorname{dim} D_{x}^{+}=0$ (resp., $\operatorname{dim} D_{x}=0$), then the CR- Submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution D (resp., D^{-}) is called the horizontal (resp., vertical) distribution. Also the pair (D, D^{\dagger}) is called ξ-horizontal (resp., vertical) if $\xi_{x} \in D_{x}$ (resp., $\xi_{x} \in D^{+}$)[10].

For any vector field X tangent to M, we put [10]

$$
\begin{equation*}
X=P X+Q X \tag{1.5}
\end{equation*}
$$

where PX and QX belong to the distribution D and D^{+}.
For any vector field normal to M , we have

$$
\begin{equation*}
\phi N=B N+C N \tag{1.6}
\end{equation*}
$$

where $B N$ and $C N$ denote the tangential and normal component of φN respectively.

Let $\bar{\nabla}$ (resp., ∇) be the covariant differentiation with respect to the Leviacivita connection on \bar{M} (resp., M). The Gauss and Weingarten formulas for M are respectively given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.7}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N
\end{align*}
$$

for $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$ and $\mathrm{N} \in T^{\perp} \mathrm{M}$ where h (resp., A) is second fundamental form (resp., tensor) of M in \bar{M} and ∇^{+}denotes the normal connection.
Moreover, we have

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) \tag{1.9}
\end{equation*}
$$

3. Some Basic Results

First we prove the following lemma:
Lemma 1.2 Let M be a CR-Submanifold of an (ε)-Lorentzian paraSasakian manifold M. Then

$$
\begin{equation*}
Q\left(\nabla_{X} \varphi P Y\right)+Q\left(\nabla_{Y} \varphi P X\right)-Q\left(A_{\varphi Q Y} X\right)-Q\left(A_{\varphi Q X} Y\right) \tag{2.1}
\end{equation*}
$$

$$
=2 g(X, Y) Q \xi+\varepsilon \eta(Y) Q X+\varepsilon \eta(X) Q Y+2 B h(X, Y)
$$

$$
\begin{align*}
& P\left(\nabla_{X} \varphi P Y\right)-P\left(\nabla_{Y} \varphi P X\right)-P\left(A_{\varphi Q X} Y\right)-P\left(A_{\varphi Q Y} X\right) \tag{2.0}\\
& =2 g(X, Y) P \xi+\varepsilon \eta(Y) P X+\varphi P \nabla_{Y} X+4 \varepsilon \eta(X) \eta(Y)
\end{align*}
$$

$$
\begin{equation*}
h(X, \varphi P Y)+h(Y, \varphi P X)+\nabla_{X}^{\perp} \varphi Q Y+\nabla_{Y}^{\perp} \varphi Q X \tag{2.2}
\end{equation*}
$$

$$
=\varphi Q \nabla_{Y} X+\varphi Q \nabla_{X} Y+2 C h(X, Y)
$$

for $X, Y \in T M$.

Proof: From (1.3),(1.5),(1.6),(1.7) and (1.8), we have

$$
\begin{align*}
& \nabla_{X} \varphi P Y+h(X, \varphi P Y)+\nabla_{Y} \varphi P X+h(Y, \varphi P X)-A_{\varphi Q X} Y \\
& -A_{\varphi Q Y} X+\nabla_{X}^{\perp} \varphi Q Y+\nabla_{Y}^{\perp} \varphi Q X-\varphi P \nabla_{X} Y-\varphi Q \nabla_{X} Y \\
& -\varphi P \nabla_{Y} X-\varphi Q \nabla_{Y} X=2 g(X, Y) P \xi+2 g(X, Y) Q \xi \tag{2.3}\\
& +4 \varepsilon \eta(X) \eta(Y)+\varepsilon \eta(Y) P X+\varepsilon \eta(X) P Y \\
& +\varepsilon \eta(Y) Q X+\varepsilon \eta(X) Q Y+2 B h(X, Y)+2 C h(X, Y)
\end{align*}
$$

for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$.
Now using (1.5) and equating horizontal, vertical and normal components in (2.3), we get the result.

Lemma 1.3 Let M be a CR-Submanifold of an (ε)-Lorentzian paraSasakian manifold \bar{M}.Then

$$
\begin{gather*}
2\left(\bar{\nabla}_{X} \varphi\right) Y=\nabla_{X} \varphi Y+h(X, \varphi Y)-\nabla_{Y} \varphi X-h(Y, \varphi X)-[X, Y] \tag{2.4}\\
+2 g(X, Y) \xi+4 \varepsilon \eta(X) \eta(Y)+\varepsilon\{\eta(Y) X+\eta(X) Y\}
\end{gather*}
$$

for any $X, Y \in D$.
Proof: By using Gauss formula (1.7), we get

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\nabla_{X} \phi Y+h(X, \phi Y)-\nabla_{Y} \phi X-h(Y, \phi X) . \tag{2.5}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X+\phi[X, Y] . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we get

$$
\begin{align*}
\left(\bar{\nabla}_{X} \varphi\right) Y-\left(\bar{\nabla}_{Y} \varphi\right) X= & \nabla_{X} \varphi Y+h(X, \varphi Y)-\nabla_{Y} \varphi X \tag{2.7}\\
& -h(Y, \varphi X)-\varphi[X, Y]
\end{align*}
$$

Also for (ε)-Lorentzian para-Sasakian manifold, we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} \varphi\right) Y+\left(\bar{\nabla}_{Y} \varphi\right) X= & 2 g(X, Y) \xi+4 \varepsilon \eta(X) \eta(Y) \tag{2.8}\\
& +\varepsilon \eta(Y) X+\varepsilon \eta(X) Y
\end{align*}
$$

Combining (2.7) and (2.8), the lemma follows.

In particular, we have the following corollary:
Corollary 1.4 Let M be a ξ-vertical CR-Submanifold of an (ε)Lorentzian para-Sasakian manifold \bar{M}, then

$$
\begin{align*}
2\left(\bar{\nabla}_{X} \varphi\right) Y & =\nabla_{X} \varphi Y+h(X, \varphi Y)-\nabla_{Y} \varphi X-h(Y, \varphi X) \tag{2.9}\\
& -[X, Y]+2 g(X, Y) \xi+4 \varepsilon \eta(X) \eta(Y)
\end{align*}
$$

for any $X, Y \in D$.
Similarly, Weingarten formula (1.8), we get the following lemma:
Lemma 1.5 Let M be a CR-Submanifold of an (ε)-Lorentzian parasasakian manifold \bar{M}, then

$$
\begin{align*}
2\left(\bar{\nabla}_{Y} \varphi\right) Z= & A_{\varphi Y} Z-A_{\varphi Z} Y+\nabla_{Y}^{\perp} \varphi Z-\nabla_{Z}^{\perp} \varphi Y+2 g(Y, Z) \xi \tag{3.0}\\
& +4 \varepsilon \eta(X) \eta(Y)+\varepsilon\{\eta(X) Y+\eta(Y) X\}
\end{align*}
$$

for any $Y, Z \in D^{+}$.
Corollary 1.6 Let M be a ξ-horizontal CR-Submanifold of an (ε)Lorentzian para-Sasakian manifold \bar{M}, then

$$
\begin{align*}
2\left(\bar{\nabla}_{Y} \varphi\right) Z= & A_{\varphi Y} Z-A_{\varphi Z} Y+\nabla_{Y}^{\perp} \varphi Z-\nabla_{Z}^{\perp} \varphi Y \tag{3.1}\\
& +2 g(Y, Z) \xi+4 \varepsilon \eta(X) \eta(Y) .
\end{align*}
$$

Lemma 1.7 Let M be a CR-Submanifold of an (ε)-Lorentzian paraSasakian manifold \bar{M}, then

$$
\begin{align*}
2\left(\bar{\nabla}_{X} \varphi\right) Y= & 2 g(X, Y) \xi-A_{\varphi Y} X+\nabla_{X}^{\perp} \varphi Y-\nabla_{Y} \varphi X-h(Y, \varphi X) \tag{3.2}\\
& +4 \varepsilon \eta(X) \eta(Y)-\varphi[X, Y]+\varepsilon\{\eta(X) Y-\eta(Y) X\}
\end{align*}
$$

for any $X \in D$ and $Y \in D^{+}$.

4. Parallel Distribution

Definition 1.8 The horizontal (resp., vertical) distribution $D\left(r e s p ., D^{+}\right)$ is said to be parallel ${ }^{1}$ with respect to the connection ∇ on M if $\nabla_{R} Y \in D$ (resp., $\nabla_{Z} W \in D^{+}$) for any vector field $X, Y \in D$ (resp., $W, Z \in D^{\dagger}$).

Now, we prove the following preposition.

Proposition 1.9 Let M be a ξ-vertical CR-Submanifold of an (ε)Lorentzian para-Sasakian manifold \bar{M}. If the horizontal distribution D is parallel, then

$$
\begin{equation*}
h(X, \phi Y)=h(Y, \phi X) \text { for all } X, Y \in D . \tag{3.3}
\end{equation*}
$$

Proof: Using parallelism of horizontal distribution D, we have $\nabla_{X} \varphi \mathrm{Y} \in \mathrm{D}, \quad \nabla_{Y} \varphi \mathrm{X} \in \mathrm{D}$ for any $\mathrm{X}, \mathrm{Y} \in \mathrm{D}$.
From (2.1) we have

$$
\begin{equation*}
g(X, Y) Q \xi=B h(X, Y) \tag{3.4}
\end{equation*}
$$

Also since

$$
\begin{equation*}
\phi h(X, Y)=B h(X, Y)+\operatorname{Ch}(X, Y) \tag{3.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\phi h(X, Y)=g(X, Y) Q \xi+C h(X, Y) \text { for any } \mathrm{X}, \mathrm{Y} \in \mathrm{D} . \tag{3.6}
\end{equation*}
$$

Next from (2.2)

$$
\begin{equation*}
h(X, \phi Y)+h(Y, \phi X)=2 \phi h(X, Y)-2 g(X, Y) Q \xi \text { for any } \mathrm{X}, \mathrm{Y} \in \mathrm{D} . \tag{3.7}
\end{equation*}
$$

Since h is symmetric, by putting $\mathrm{X}=\varphi \mathrm{X} \in \mathrm{D}$ and $\mathrm{Y}=\varphi \mathrm{Y} \in \mathrm{D}$ in (3.6) we get

$$
\begin{equation*}
\phi h(\phi X, Y)-\phi h(X, \phi Y)=g(\phi X, Y) Q \xi-g(X, \phi Y) Q \xi . \tag{3.8}
\end{equation*}
$$

Operating φ on the both side of above equation and using $\varphi \circ \xi=0$ we have the proposition.

Now for the distribution D^{\perp}, we prove the following proposition:
Proposition 2.0 Let M be a ξ-vertical CR-Submanifold of a (ε)Lorentzian para-Sasakian manifold \bar{M}. If the distribution D^{+}, is parallel with respect to the connection on M, then

$$
\begin{equation*}
\left(A_{\phi Z} Y-A_{\phi Y} Z\right) \in D^{\perp} \text { for any } Y, Z \in D^{\perp} . \tag{3.9}
\end{equation*}
$$

Proof: Let $\mathrm{Y}, \mathrm{Z} \in D^{\perp}$, , then using Gauss and Weingarten formula (1.7) and (1.8), we obtain

$$
\begin{equation*}
-A_{\phi Y} Z+A_{\phi Z} Y+\nabla_{Z}^{\perp} \phi Y-\nabla_{Y}^{\perp} \phi Z=\varepsilon\{\eta(Y) Z-\eta(Z) Y\}+\phi[Z, Y] . \tag{4.0}
\end{equation*}
$$

Taking inner product with $\mathrm{X} \in \mathrm{D}$ in (4.0), we get

$$
\begin{equation*}
g\left(-A_{\phi Y} Z+A_{\phi Z} Y, X\right)=0 \tag{4.1}
\end{equation*}
$$

which is equivalent to $\left(-A_{\phi Y} Z+A_{\phi Z} Y, X\right) \in D^{\perp}$ for any $\mathrm{Y}, \mathrm{Z} \in D^{\perp}$, and this completes the proof.

5. Totally Geodesic

Definition.2.1 A CR-Submanifold is said to be D-totally geodesic (resp., D^{\star}-totally geodesic) if $h(X, Z)=0$ for all $X, Z \in D$ (resp., $h(X, Z)=0$, for all $X, Z \in D^{+}$).

Proposition.2.2 Let M be a CR-Submanifold of (ε)-Lorentzian paraSasakian manifold \bar{M}, then
(i) M is D-totally geodesic if and only if $A_{N} X \in D^{+}$.
(ii) M is D^{\star}-totally geodesic if and only if $A_{N} X \in D$.

Proof. From (1.9) and hypothesis, we get

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=0 \tag{4.2}
\end{equation*}
$$

From (4.2), we get the result.
Conversly from (1.9), we get

$$
\begin{equation*}
g(h(X, Y), N)=0 \tag{4.3}
\end{equation*}
$$

From (4.3),we complete the proposition (i).
Similarly, we get the second.
Definition.2.3 A CR-Submanifold is said to be mixed totally geodesic if $h(X, Y)=0$ for all $X \in D, Z \in D^{+}$.

Lemma.2.4: Let M be a CR-Submanifold of (ε)-Lorentzian para-Sasakian manifold M. Then M is mixed totally geodesic if and only if $A_{N} X \in D$ for all $X \in D$.

Definition.2.5 A CR-Submanifold of (ε)-Lorentzian para-Sasakian manifold M is called D-umbilic (resp. D^{\dagger}-umbilic) if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \tag{4.4}
\end{equation*}
$$

holds for all $X, Y \in D$ (resp. $X, Y \in D^{-}$), where H is mean curvature vector field.

Proposition.2.6 Let M be a D-umbilic ξ-horizontal CR-submanifold of an (ε)-Lorentzian para-Sasakian manifold \bar{M}, then M is D-totally geodesic.

Proof: Let M be D-umbilic ξ-horizontal CR-Submanifold, then by putting $\mathrm{X}=\mathrm{Y}=\xi$ in (4.4), we get

$$
\begin{equation*}
H=0 . \tag{4.5}
\end{equation*}
$$

Now using (4.4), we have $h(X, Y)=0$, which proves that M is D-totally geodesic.

6. Integrability Condition of Distribution

We calculate the Nijenhuis tensor $N_{\varphi}(\mathrm{X}, \mathrm{Y})$ on an (ε)-Lorentzian paraSasakian manifold \bar{M}. For this first we prove the following lemma:

Lemma.2.7 Let \bar{M} be the an (ε-Lorentzian para-Sasakian manifold, then

$$
\begin{equation*}
\left.\bar{\nabla}_{\phi X} \phi\right) Y=2 g(\phi X, Y) \xi+\varepsilon \eta(Y) \phi X-\eta(X) \bar{\nabla}_{Y} \xi+\eta\left(\bar{\nabla}_{Y} X\right) \xi+\phi\left(\bar{\nabla}_{Y} \phi\right) X \tag{4.6}
\end{equation*}
$$ for any $X, Y \in T M$.

Proof: From the definition of (\in)-Lorentzian para-Sasakian manifold \bar{M} we have

$$
\begin{equation*}
\left(\bar{\nabla}_{\phi X} \phi\right) Y=2 g(\phi X, Y) \xi+\varepsilon \eta(Y) \phi X-\left(\bar{\nabla}_{Y} \phi\right) \phi X \tag{4.7}
\end{equation*}
$$

Also we have,

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \phi\right) \phi X=\eta(X) \bar{\nabla}_{Y} \xi-\phi\left(\bar{\nabla}_{Y} \phi\right) X-\eta\left(\bar{\nabla}_{Y} X\right) \xi \tag{4.8}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y} \in T \bar{M}$.
Using (4.8) in (4.7), we get the lemma.
On (ε)-Lorentzian para-Sasakian manifold $\bar{M}_{,}$Nijenhuis tensor is given by

$$
\begin{equation*}
N_{\phi}(X, Y)=\left(\bar{\nabla}_{\phi X} \phi\right)(Y)-\left(\bar{\nabla}_{\phi Y} \phi\right)(X)-\phi\left(\bar{\nabla}_{X} \phi\right)(Y)+\phi\left(\bar{\nabla}_{Y} \phi\right)(X) \tag{4.9}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y} \in \mathrm{T} \bar{M}$.
From (4.6) and (4.9), we have

$$
\begin{align*}
& N_{\varphi}(X, Y)=4 g(\varphi X, Y) \xi-\varepsilon \eta(Y) \varphi X-3 \varepsilon \eta(X) \varphi Y-\eta(X) \bar{\nabla}_{Y} \xi \tag{5.0}\\
& +\eta\left(\bar{\nabla}_{Y} X\right) \xi+\eta(Y) \bar{\nabla}_{X} \xi-\eta\left(\bar{\nabla}_{X} Y\right) \xi+4 \varphi\left(\bar{\nabla}_{Y} \varphi\right) X-8 \varphi \varepsilon \eta(X) \eta(Y)
\end{align*}
$$

for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$.
Proposition.2.8 Let M be a ξ-vertical CR-Submanifold of (ε)-Lorentzian para-Sasakian manifold \bar{M}. Then the distribution D is integrable if the following conditions are satisfied:

$$
\begin{equation*}
S(X, Z) \in D \tag{5.1}
\end{equation*}
$$

$$
h(X, \phi Z)=h(\phi X, Z)
$$

for any $X, Z \in D$.
Proof: The torsion tensor

$$
\begin{equation*}
S(X, Y)=N_{\phi}(X, Y)+2 d \eta(X, Y) \xi=N_{\phi}(X, Y)+2 g(\phi X, Y) \xi \tag{5.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S(X, Y)=[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y]+2 g(\phi X, Y) \xi \tag{5.3}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$.
Suppose that the distribution D is integrable. So for $\mathrm{X}, \mathrm{Y} \in \mathrm{D}, \mathrm{Q}[\mathrm{X}, \mathrm{Y}]=0$ and $\eta([X, Y])=0$ as $\left.\xi \in D^{-}\right)$.
If $S(X, Y) \in D$, then from (5.0) and (5.3) we have

$$
\begin{equation*}
\left.6 g(\phi X, Y) \xi+4\left(\phi \nabla_{Y} \phi X\right)+\phi h(Y, \phi X)+\nabla_{Y} X+h(X, Y)\right) \in D \tag{5.4}
\end{equation*}
$$

from (5.4), we have

$$
\begin{equation*}
6 g(\phi X, Y) Q \xi+4\left(\phi Q \nabla_{Y} \phi X+\phi h(Y, \phi X)+Q \nabla_{Y} X+h(X, Y)\right)=0 . \tag{5.5}
\end{equation*}
$$

Replacing Y by φZ for $Z \in D$ in (5.5), we have

$$
\begin{equation*}
6 g(\phi X, \phi Z) Q \xi+4\left(\phi Q \nabla_{\phi Z} \phi X+\phi h(\phi Z, \phi X)+Q \nabla_{\phi Z} X+h(\phi Z, X)\right)=0 \tag{5.6}
\end{equation*}
$$

Interchanging X and Z for $X, Z \in D$ in (5.6) and subtracting these relations, we get

$$
\begin{equation*}
\phi Q[\phi X, \phi Z]+Q[X, \phi Z]-h(Z, \phi X)+h(X, \phi Z)=0 \tag{5.7}
\end{equation*}
$$

for any $\mathrm{X}, \mathrm{Y} \in \mathrm{D}$ and the assertion follow.

Reference

1. A. Bejancu, CR-Submanifold s of a Kaehler manifold, I, Proc. Amer. Math. Soc. 69(1) (1978) 135-142.
2. K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12(2) (1989) 151-156.
3. M.Kobayasi, CR-Submanifolds of a Sasakian manifold, Tensor (N.S), 35(3) (1981) 297307.
4. I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ., Signapore,(1992) 155-169.
5. K.Matsumoto and I. Mihai, On a certain transformations in a Lorentzian para-Sasakian manifold, Tensor (N.S.), 47(2) (1988)189-197.
6. X.Xufeng and C.Xiaoli, Two theorem on (ع)-Sasakian manifolds, Int. J. Math. Math. Sci., 21(2) (1998) 249-254.
7. R.Prasad and V.Srivastava, On (()-Lorentzian para-Sasakian manifolds, Commun. Korean Math. Soc., 27(2) (2012) 297-306.
8. M.H. Shahid, CR-Submanifolds of a trans-Sasakian manifold, Indian J. Pure Appl. Math. 22(12) (1991) 1007-1012.
9. A.Bejancu and N.Papaghuic, CR-Submanifolds of Kenmotsu manifold, Rend. Mat. 7(4) (1984) 607-622.
10. F.R.Al-Solamy, CR-Submanifolds of a nearly trans-sasakian manifold, Int.J. Math. Math. Sci., 31(3) (2002) 167-175.
11. J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32(3) (1985) 297-307.
12. K. Yano and M. Kon, Contact CR-Submanifolds, Kodai Math. J., 5(2) (1982) 238-252.
13. U.C.De and A.Sarkar,On (ε)-Kenmotsu manifolds, Hadronic J,. 32(2) (2009) 231-242.
