CR-Submanifolds of (ϵ) -Lorentzian Para-Sasakian Manifold

N.V. C. Shukla and Jyoti Jaiswal

Department of Mathematics and Astronomy
University of Lucknow, Lucknow
Email: nvcshukla72@gmail.com, Jollyjoi.jaiswal@gmail.com

(Received Nov. 17, 2013)

Abstract: In this paper we studied with some properties of CR-Submanifolds of (ε) - Lorentzian para-Sasakian manifold and dealt with totally geodesic.

AMS Mathematics Subject Classification (2010): 53C12.

Keywords: CR- Submanifolds, Kaehler Manifold, Sasakain Manifold.

1. Introduction

In 1978, Bejancu introduced the notion of CR-Submanifold of a Kaehler manifold¹. In 1989, K. Matsumoto² introduced the notion of Loretzian para-Sasakian manifolds. Also Bejancu and K. L Duggal introduced (ε)-Sasakian manifolds. CR-Submanifolds of Sasakian manifold have been studided by Kobayashi³ and other some authors. In 1985, Obina introduced a new class of almost contact metric manifold. I. Mihai and R. Rosca⁴ defined same notion independently and several authors^{5,6}. In 2012, R.Prasad and V.Shrivastva⁷ introduced the CR-Submanifolds of (ε)-Lorentzian para-Sasakian manifold.The present paper is organised as follows:

Section1 is introductry and in section2 we defined (ϵ) -Lorentzian para-Sasakian manifold. We also give some basic results in section3. In section4 we studied parallel distribution with respect to the connection on (ϵ) -Lorentzian para-Sasakian manifold. In section 5, we study the CR-Submanifolds with totally geodesic properties. Finally, we study the intregrability condition on CR-Submanifolds of (ϵ) -Lorentzian para-Sasakian manifold.

2. Preliminaries

An n dimensional differentiable manifold \overline{M} is called (ϵ)- Lorentziaan para-Sasakian manifold if

(1.0)
$$\phi^2 = I + \eta(X)\xi$$
, $\eta(\xi) = -1$, $\eta \circ \phi = 0$

(1.1)
$$g(\xi,\xi) = \varepsilon, \eta(X) = \varepsilon g(X,\xi)$$

(1.2)
$$g(\phi X, \phi Y) = g(X, Y) + \varepsilon \eta(X) \eta(Y)$$

where X and Y are the vector fields tangent to \overline{M} and ε is 1 or -1 according as ξ is space like or time like vector field.

Also in (ε)-Lorentzian para-Sasakian manifold, we have

$$(1.3) \left(\overline{\nabla}_X \phi \right) Y = g(X, Y) \xi + 2\varepsilon \eta(X) \eta(Y) + \varepsilon \eta(Y)$$

where \overline{V} denotes the operator of covariant differentiation with respect to the Lorentzian metric g on \overline{M} .

Further.

$$(1.4) \left(\overline{\nabla}_X \phi \right) Y + \left(\overline{\nabla}_Y \phi \right) X = 2g(X, Y) \xi + 4\varepsilon \eta(X) \eta(Y) + \varepsilon \eta(Y) X + \varepsilon \eta(X) Y \right)$$

Let M be an m dimensional isometrically immersed submanifold of (ε) -Lorentzian para-Sasakian manifold \overline{M} and denote by the same g the Lorentzian metric tensor field induced on M from that of \overline{M} .

Definition 1.1 An m dimensional Riemannian submanifold M of (ε) -Lorentzian para-Sasakian manifold \overline{M} is called a CR-Submanifold if ξ is tangent to M and there exits a differentiable distribution $D: x \in M \to D_x \subset T_x M$ such that

(i) the distribution D_x is invariant under φ , that is

$$\varphi D_x \subset D_x \text{ for each } x \in M;$$

(ii) the complementary orthogonal distribution

$$D^{\perp}:x\in M\to D^{\perp}_x\subset T_xM$$
 of D is anti-invariant under φ that is
$$\varphi D^{\perp}_x\subset T^{\perp}_xM \text{ for each }x\in M;$$

where T_xM and T_x^+M are the tangent space and the normal space of M at x respectively.

If dim $D_x^{\perp} = 0$ (resp., dim $D_x = 0$), then the CR- Submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution D (resp., D^{\perp}) is called the horizontal (resp., vertical) distribution. Also the pair (D_xD^{\perp}) is called ξ -horizontal (resp., vertical) if $\xi_x \in D_x$ (resp., $\xi_x \in D^{\perp}$)[10].

For any vector field X tangent to M, we put [10]

$$(1.5) X = PX + QX$$

where PX and QX belong to the distribution D and D⁺.

For any vector field normal to M, we have

$$(1.6) \phi N = BN + CN$$

where BN and CN denote the tangential and normal component of φN respectively.

Let \overline{V} (resp., ∇) be the covariant differentiation with respect to the Leviacivita connection on \overline{M} (resp., M). The Gauss and Weingarten formulas for M are respectively given by

(1.7)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

$$(1.8) \quad \overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N$$

for X, Y \in TM and N \in T $\dot{}$ M where h (resp., A) is second fundamental form (resp., tensor) of M in M and ∇^{\perp} denotes the normal connection. Moreover, we have

$$(1.9) \quad g(h(X,Y),N) = g(A_N X,Y)$$

3. Some Basic Results

First we prove the following lemma:

Lemma 1.2 Let M be a CR-Submanifold of an (ε) -Lorentzian para-Sasakian manifold M. Then

(2.0)
$$P(\nabla_{X}\varphi PY) - P(\nabla_{Y}\varphi PX) - P(A_{\varphi QX}Y) - P(A_{\varphi QY}X)$$
$$= 2g(X,Y)P\xi + \varepsilon\eta(Y)PX + \varphi P\nabla_{Y}X + 4\varepsilon\eta(X)\eta(Y)$$

(2.1)
$$Q(\nabla_X \varphi PY) + Q(\nabla_Y \varphi PX) - Q(A_{\varphi QY}X) - Q(A_{\varphi QX}Y)$$
$$= 2g(X,Y)Q\xi + \varepsilon\eta(Y)QX + \varepsilon\eta(X)QY + 2Bh(X,Y)$$

(2.2)
$$h(X, \varphi PY) + h(Y, \varphi PX) + \nabla_X^{\perp} \varphi QY + \nabla_Y^{\perp} \varphi QX$$
$$= \varphi Q \nabla_Y X + \varphi Q \nabla_X Y + 2Ch(X, Y)$$

for $X,Y \in TM$.

Proof: From (1.3),(1.5),(1.6),(1.7) and (1.8), we have $\nabla_{X}\varphi PY + h(X,\varphi PY) + \nabla_{Y}\varphi PX + h(Y,\varphi PX) - A_{\varphi QX}Y$ $-A_{\varphi QY}X + \nabla_{X}^{\perp}\varphi QY + \nabla_{Y}^{\perp}\varphi QX - \varphi P\nabla_{X}Y - \varphi Q\nabla_{X}Y$ $-\varphi P\nabla_{Y}X - \varphi Q\nabla_{Y}X = 2g(X,Y)P\xi + 2g(X,Y)Q\xi$ $+4\varepsilon\eta(X)\eta(Y) + \varepsilon\eta(Y)PX + \varepsilon\eta(X)PY$ $+\varepsilon\eta(Y)QX + \varepsilon\eta(X)QY + 2Bh(X,Y) + 2Ch(X,Y)$

for any $X,Y \in TM$.

Now using (1.5) and equating horizontal, vertical and normal components in (2.3), we get the result.

Lemma 1.3 Let M be a CR-Submanifold of an (ε) -Lorentzian para-Sasakian manifold \overline{M} . Then

(2.4)
$$2(\overline{\nabla}_{X}\varphi)Y = \nabla_{X}\varphi Y + h(X,\varphi Y) - \nabla_{Y}\varphi X - h(Y,\varphi X) - [X,Y] + 2g(X,Y)\xi + 4\varepsilon\eta(X)\eta(Y) + \varepsilon\{\eta(Y)X + \eta(X)Y\}$$

for any $X, Y \in D$.

Proof: By using Gauss formula (1.7), we get

(2.5)
$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = \nabla_X \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X)$$

Also, we have

(2.6)
$$\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = (\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X + \phi [X, Y]$$

From (2.5) and (2.6), we get

(2.7)
$$(\overline{\nabla}_{X}\varphi)Y - (\overline{\nabla}_{Y}\varphi)X = \nabla_{X}\varphi Y + h(X,\varphi Y) - \nabla_{Y}\varphi X - h(Y,\varphi X) - \varphi[X,Y]$$

Also for (ε)-Lorentzian para-Sasakian manifold, we have

(2.8)
$$(\overline{\nabla}_{X}\varphi)Y + (\overline{\nabla}_{Y}\varphi)X = 2g(X,Y)\xi + 4\varepsilon\eta(X)\eta(Y)$$
$$+ \varepsilon\eta(Y)X + \varepsilon\eta(X)Y$$

Combining (2.7) and (2.8), the lemma follows.

In particular, we have the following corollary:

Corollary 1.4 Let M be a ζ -vertical CR-Submanifold of an (ε) -Lorentzian para-Sasakian manifold \overline{M} , then

(2.9)
$$2(\overline{\nabla}_{X}\varphi)Y = \nabla_{X}\varphi Y + h(X,\varphi Y) - \nabla_{Y}\varphi X - h(Y,\varphi X) \\ -[X,Y] + 2g(X,Y)\xi + 4\varepsilon\eta(X)\eta(Y)$$

for any $X, Y \in D$.

Similarly, Weingarten formula (1.8), we get the following lemma:

Lemma 1.5 Let M be a CR-Submanifold of an (ε) -Lorentzian parasasakian manifold \overline{M} , then

(3.0)
$$2(\overline{\nabla}_{Y}\varphi)Z = A_{\varphi Y}Z - A_{\varphi Z}Y + \nabla_{Y}^{\perp}\varphi Z - \nabla_{Z}^{\perp}\varphi Y + 2g(Y,Z)\xi + 4\varepsilon\eta(X)\eta(Y) + \varepsilon\{\eta(X)Y + \eta(Y)X\}$$

for any $Y, Z \in \mathbb{D}^{\perp}$.

Corollary 1.6 Let M be a ξ -horizontal CR-Submanifold of an (ε) -Lorentzian para-Sasakian manifold \overline{M} , then

(3.1)
$$2(\overline{\nabla}_{Y}\varphi)Z = A_{\varphi Y}Z - A_{\varphi Z}Y + \nabla_{Y}^{\perp}\varphi Z - \nabla_{Z}^{\perp}\varphi Y + 2g(Y,Z)\xi + 4\varepsilon\eta(X)\eta(Y).$$

Lemma 1.7 Let M be a CR-Submanifold of an (ε) -Lorentzian para-Sasakian manifold $\overline{\mathbf{M}}$, then

(3.2)
$$2(\overline{\nabla}_{X}\varphi)Y = 2g(X,Y)\xi - A_{\varphi Y}X + \nabla_{X}^{\perp}\varphi Y - \nabla_{Y}\varphi X - h(Y,\varphi X) + 4\varepsilon\eta(X)\eta(Y) - \varphi[X,Y] + \varepsilon\{\eta(X)Y - \eta(Y)X\}$$

for any $X \in D$ and $Y \in D^{\perp}$.

4. Parallel Distribution

Definition 1.8 The horizontal (resp., vertical) distribution D (resp., \mathbb{D}^{\perp}) is said to be parallel¹ with respect to the connection ∇ on M if $\nabla_X Y \in D$ (resp., $\nabla_Z W \in \mathbb{D}^{\perp}$) for any vector field $X, Y \in D$ (resp., $W, Z \in \mathbb{D}^{\perp}$).

Now, we prove the following preposition.

Proposition 1.9 Let M be a ξ -vertical CR-Submanifold of an (ε) -Lorentzian para-Sasakian manifold \overline{M} . If the horizontal distribution D is parallel, then

$$(3.3) h(X, \phi Y) = h(Y, \phi X) for all X, Y \in D.$$

Proof: Using parallelism of horizontal distribution D, we have

 $\nabla_X \phi Y \in D$, $\nabla_Y \phi X \in D$ for any $X, Y \in D$.

From (2.1) we have

(3.4)
$$g(X,Y)Q\xi = Bh(X,Y)$$

Also since

$$(3.5) \qquad \phi h(X,Y) = Bh(X,Y) + Ch(X,Y)$$

then

(3.6)
$$\phi h(X,Y) = g(X,Y)Q\xi + Ch(X,Y) \text{ for any } X,Y \in D.$$

Next from (2.2)

(3.7)
$$h(X, \phi Y) + h(Y, \phi X) = 2\phi h(X, Y) - 2g(X, Y)Q\xi$$
 for any X, Y \in D.

Since h is symmetric, by putting $X=\phi X\in D$ and $Y=\phi Y\in D$ in (3.6) we get

(3.8)
$$\phi h(\phi X, Y) - \phi h(X, \phi Y) = g(\phi X, Y)Q\xi - g(X, \phi Y)Q\xi$$

Operating φ on the both side of above equation and using $\varphi \circ \xi = 0$ we have the proposition.

Now for the distribution D^{\perp} , we prove the following proposition:

Proposition 2.0 Let M be a ξ -vertical CR-Submanifold of a (ε) -Lorentzian para-Sasakian manifold \overline{M} . If the distribution \mathbb{D}^+ , is parallel with respect to the connection on M, then

(3.9)
$$(A_{\partial Z}Y - A_{\partial Y}Z) \in D^{\perp} \text{ for any } Y, Z \in D^{\perp}.$$

Proof: Let $Y,Z \in \mathcal{D}^{\perp}$, , then using Gauss and Weingarten formula (1.7) and (1.8), we obtain

$$(4.0) -A_{\phi Y}Z + A_{\phi Z}Y + \nabla_{Z}^{\perp}\phi Y - \nabla_{Y}^{\perp}\phi Z = \varepsilon \{\eta(Y)Z - \eta(Z)Y\} + \phi[Z,Y]$$

Taking inner product with $X \in D$ in (4.0), we get

$$(4.1) g(-A_{\alpha Y}Z + A_{\alpha Z}Y, X) = 0$$

which is equivalent to $(-A_{\phi Y}Z + A_{\phi Z}Y, X) \in D^{\perp}$ for any $Y, Z \in D^{\perp}$, and this completes the proof.

5. Totally Geodesic

Definition.2.1 A CR-Submanifold is said to be D-totally geodesic (resp., \mathbb{D}^+ -totally geodesic) if h(X,Z)=0 for all $X,Z\in\mathbb{D}^+$).

Proposition.2.2 Let M be a CR-Submanifold of (ε) -Lorentzian para-Sasakian manifold \overline{M} , then

- (i) M is D-totally geodesic if and only if $A_N X \in D^{\perp}$.
- (ii) M is D^{\perp} -totally geodesic if and only if $A_N X \in D$.

Proof. From (1.9) and hypothesis, we get

$$(4.2) g(A_N X, Y) = 0$$

From (4.2), we get the result.

Conversly from (1.9), we get

(4.3)
$$g(h(X,Y),N)=0$$

From (4.3), we complete the proposition (i).

Similarly, we get the second.

Definition.2.3 A CR-Submanifold is said to be mixed totally geodesic if h(X,Y)=0 for all $X \in D, Z \in \mathbb{D}^{\perp}$.

Lemma.2.4: Let M be a CR-Submanifold of (ε) -Lorentzian para-Sasakian manifold M. Then M is mixed totally geodesic if and only if $A_NX \in D$ for all $X \in D$.

Definition.2.5 A CR-Submanifold of (ε) -Lorentzian para-Sasakian manifold M is called D-umbilic (resp. \mathbb{D}^+ -umbilic) if

$$(4.4) h(X,Y) = g(X,Y)H$$

holds for all $X,Y \in D$ (resp. $X,Y \in D^+$), where H is mean curvature vector field.

Proposition.2.6 Let M be a D-umbilic ξ -horizontal CR-submanifold of an (ε) -Lorentzian para-Sasakian manifold \overline{M} , then M is D-totally geodesic.

Proof: Let M be D-umbilic ξ -horizontal CR-Submanifold, then by putting X=Y= ξ in (4.4), we get

$$(4.5)$$
 $H = 0$

Now using (4.4), we have

h(X,Y)=0 which proves that M is D-totally geodesic.

6. Integrability Condition of Distribution

We calculate the Nijenhuis tensor $N_{\varphi}(X, Y)$ on an (ε) -Lorentzian para-Sasakian manifold \overline{M} . For this first we prove the following lemma:

Lemma.2.7 Let \overline{M} be the an (ε) -Lorentzian para-Sasakian manifold, then

$$(4.6) \qquad \overline{\nabla}_{\phi X} \phi Y = 2g(\phi X, Y) \xi + \varepsilon \eta(Y) \phi X - \eta(X) \overline{\nabla}_{Y} \xi + \eta(\overline{\nabla}_{Y} X) \xi + \phi(\overline{\nabla}_{Y} \phi) X$$

for any $X, Y \in TM$.

Proof: From the definition of (\in) -Lorentzian para-Sasakian manifold \overline{M} we have

(4.7)
$$(\overline{\nabla}_{\phi X} \phi) Y = 2g(\phi X, Y) \xi + \varepsilon \eta(Y) \phi X - (\overline{\nabla}_{Y} \phi) \phi X$$

Also we have,

(4.8)
$$(\overline{\nabla}_{Y}\phi)\phi X = \eta(X)\overline{\nabla}_{Y}\xi - \phi(\overline{\nabla}_{Y}\phi)X - \eta(\overline{\nabla}_{Y}X)\xi$$

for any $X, Y \in T\overline{M}$.

Using (4.8) in (4.7), we get the lemma.

On (ϵ)-Lorentzian para-Sasakian manifold \overline{M} ,Nijenhuis tensor is given by

$$(4.9) N_{\phi}(X,Y) = (\overline{\nabla}_{\phi X}\phi)(Y) - (\overline{\nabla}_{\phi Y}\phi)(X) - \phi(\overline{\nabla}_{X}\phi)(Y) + \phi(\overline{\nabla}_{Y}\phi)(X)$$
 for any X,Y \in T \overline{M} .

From (4.6) and (4.9), we have

$$(5.0) \qquad N_{\varphi}(X,Y) = 4g(\varphi X,Y)\xi - \varepsilon \eta(Y)\varphi X - 3\varepsilon \eta(X)\varphi Y - \eta(X)\overline{\nabla}_{Y}\xi + \eta(\overline{\nabla}_{Y}X)\xi + \eta(Y)\overline{\nabla}_{X}\xi - \eta(\overline{\nabla}_{X}Y)\xi + 4\varphi(\overline{\nabla}_{Y}\varphi)X - 8\varphi\varepsilon\eta(X)\eta(Y)$$

for any $X,Y \in TM$.

Proposition.2.8 Let M be a ξ -vertical CR-Submanifold of (ε) -Lorentzian para-Sasakian manifold \overline{M} . Then the distribution D is integrable if the following conditions are satisfied:

$$(5.1) S(X,Z) \in D, h(X,\phi Z) = h(\phi X,Z)$$

for any $X,Z \in D$.

Proof: The torsion tensor

(5.2)
$$S(X,Y) = N_{\phi}(X,Y) + 2d\eta(X,Y)\xi = N_{\phi}(X,Y) + 2g(\phi X,Y)\xi$$

Thus

(5.3)
$$S(X,Y) = [\phi X, \phi Y] - \phi [\phi X, Y] - \phi [X, \phi Y] + 2g(\phi X, Y) \xi$$

for any $X,Y \in TM$.

Suppose that the distribution D is integrable. So for X,Y \in D, Q[X,Y]=0 and $\eta([X,Y])=0$ as $\xi \in D^{\perp}$).

If $S(X, Y) \in D$, then from (5.0) and (5.3) we have

$$(5.4) \qquad 6g(\phi X, Y)\xi + 4(\phi \nabla_{Y}\phi X) + \phi h(Y, \phi X) + \nabla_{Y}X + h(X, Y)) \in D$$

from (5.4), we have

(5.5)
$$6g(\phi X, Y)Q\xi + 4(\phi Q\nabla_{Y}\phi X + \phi h(Y, \phi X) + Q\nabla_{Y}X + h(X, Y)) = 0$$

Replacing Y by φ Z for Z \in D in (5.5), we have

$$(5.6) \qquad 6g(\phi X, \phi Z)Q\xi + 4(\phi Q\nabla_{\phi Z}\phi X + \phi h(\phi Z, \phi X) + Q\nabla_{\phi Z}X + h(\phi Z, X)) = 0$$

Interchanging X and Z for $X,Z\in D$ in (5.6) and subtracting these relations, we get

(5.7)
$$\phi Q[\phi X, \phi Z] + Q[X, \phi Z] - h(Z, \phi X) + h(X, \phi Z) = 0$$

for any $X,Y \in D$ and the assertion follow.

Reference

- 1. A. Bejancu, CR-Submanifold s of a Kaehler manifold, *I, Proc. Amer. Math. Soc.* **69(1)** (1978) 135-142.
- 2. K. Matsumoto, On Lorentzian paracontact manifolds, *Bull. Yamagata Univ. Natur. Sci.* **12(2)** (1989) 151-156.

- 3. M.Kobayasi, CR-Submanifolds of a Sasakian manifold, *Tensor (N.S)*, **35(3)** (1981) 297-307.
- 4. I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, *Classical Analysis, World Scientific Publ.*, *Signapore*, (1992) 155-169.
- 5. K.Matsumoto and I. Mihai, On a certain transformations in a Lorentzian para-Sasakian manifold, *Tensor (N.S.)*, **47(2)** (1988)189-197.
- 6. X.Xufeng and C.Xiaoli, Two theorem on (ε)-Sasakian manifolds, *Int. J. Math. Math. Sci.*, **21(2)** (1998) 249-254.
- 7. R.Prasad and V.Srivastava, On (£)-Lorentzian para-Sasakian manifolds, *Commun. Korean Math. Soc.*, **27(2)** (2012) 297-306.
- 8. M.H. Shahid, CR-Submanifolds of a trans-Sasakian manifold, *Indian J. Pure Appl. Math.* **22(12)** (1991) 1007-1012.
- 9. A.Bejancu and N.Papaghuic, CR-Submanifolds of Kenmotsu manifold, *Rend. Mat.* **7(4)** (1984) 607-622.
- 10. F.R.Al-Solamy, CR-Submanifolds of a nearly trans-sasakian manifold, *Int.J. Math. Math. Sci.*, **31**(3) (2002) 167-175.
- 11. J. A. Oubina, New classes of almost contact metric structures, *Publ. Math. Debrecen* **32(3)** (1985) 297-307.
- 12. K. Yano and M. Kon, Contact CR-Submanifolds, Kodai Math. J., 5(2) (1982) 238-252.
- 13. U.C.De and A.Sarkar,On (ε)-Kenmotsu manifolds, *Hadronic J.*, **32(2)** (2009) 231-242.