Study of Conharmonic Recurrent Symmetric Kaehler Manifold with Semi-Symmetric Metric Connection

B. B. Chaturvedi and B. K. Gupta

Department of Pure and Applied Mathematics Guru Ghasidas Vishwavidyalaya Bilaspur (C. G.), India Email: brajbhushan25@gmail.com

(Received January 20, 2014)

Abstract: This paper contains the study of Kaehler manifold with different approaches. We consider a Kaehler manifold with semi-symmetric metric connection and obtain conharmonic curvature tensor with respect to semi-symmetric metric connection. We study conharmonic recurrent Kaehler manifold with respect to semi-symmetric metric connection and obtain interesting results. Also, we discuss Kaehlerian conharmonic symmetric manifold with respect to a semi-symmetric metric connection.

Keywords: Kaehler manifold, semi- symmetric metric connection, Ricci-recurrent, recurrent curvature tensor, Kaehlerian conharmonic symmetric manifold.

2010 Mathematics Subject Classification: 53C10, 53C15.

1. Introduction

In 1967, O. C. Andoni¹ and in 1981, M. C. Chaki² studied the theory of semi-symmetric metric connection. B. B. Chaturvedi and P. N. Pandey^{3,4,5} studied semi-symmetric metric connection in Kaehler and Hermitian manifold.

Let (M^n, g) , (n > 2) be an even dimensional manifold with structure F_i^h , if F_i^h satisfies the relation

$$(1.1) F_i^i F_i^h = -\delta_i^h,$$

the manifold is called almost complex manifold. In almost complex manifold, if

(1.2)
$$F_{ii} = -F_{ii} \ (F_{ii} = g_{ik} F_i^k),$$

then the manifold is called Hermitian manifold.

In Hermitian manifold if

(1.3)
$$F_{i,j}^h = 0$$
,

then the manifold is called a Kaehler manifold i.e. in a Kaehler manifold equation (1.1), (1.2) and (1.3) hold, where F_i^h is a tensor field of type (1, 1) and $F_{i,j}^h$ is covariant derivative of F_i^h with respect to Riemannian connection.

A Friedman and J. A. Schouten⁶ considered a semi-symmetric metric connection ∇ and a Riemannian connection D with coefficients Γ_{ij}^h and $\binom{h}{ij}$ respectively. According to them if the torsion tensor T of the connection ∇ on (M^n, g) , (n > 2) be

$$(1.4) T_{ij}^h = \delta_i^h \omega_j - \delta_j^h \omega_i,$$

then

(1.5)
$$\Gamma_{ij}^{h} = \begin{Bmatrix} h \\ ij \end{Bmatrix} + \delta_{i}^{h} \omega_{i} - g_{ij} \omega^{h},$$

where $\omega^h = \omega_t g^{th}$, ω^h being the contravariant components of the generating vector ω_h and

(1.6)
$$\nabla_{i}\omega_{i} = D_{i}\omega_{i} - \omega_{i}\omega_{i} + g_{ii}\omega,$$

where $\omega = \omega^h \omega_h$.

Friedman and J. A. Schouten⁶ also shown that the curvature tensor with respect to semi-symmetric metric connection and Riemannian connection are related by

$$(1.7) \overline{R}_{ijkm} = R_{ijkm} - g_{im}\pi_{ik} + g_{jm}\pi_{ik} - g_{jk}\pi_{im} + g_{ik}\pi_{jm},$$

where

(1.8)
$$\pi_{jk} = \nabla_j \omega_k - \omega_j \omega_k + \frac{1}{2} g_{jk} \omega.$$

Transvecting (1.7) by g^{mh} , we get

(1.9)
$$\overline{R}^{h}_{ijk} = R^{h}_{ijk} - \delta^{h}_{i} \pi_{jk} + \delta^{h}_{j} \pi_{ik} - g_{jk} \pi^{h}_{i} + g_{ik} \pi^{h}_{j}.$$

If we take $\delta_i^h \pi_{jk} = \delta_j^h \pi_{ik}$ then the equation (1.9) can be written as

(1.10)
$$\overline{R}^{h}_{ijk} = R^{h}_{ijk} - g_{ik} \pi^{h}_{i} + g_{ik} \pi^{h}_{i}.$$

Again transvecting (1.10) by g^{jk} , we get

(1.11)
$$\overline{R}^h_i = R^h_i - (n-1)\pi^h_i$$
.

We well known that Riemannian curvature tensor R^h_{ijk} , Rcci tensor R_{ij} and scalar curvature tensor R are defined by

$$(1.12) R^{h}_{ijk} = \partial_{i} \{^{h}_{ik} \} - \partial_{j} \{^{h}_{ik} \} + \{^{h}_{il} \} \{^{l}_{ik} \} - \{^{h}_{il} \} \{^{l}_{ik} \},$$

$$(1.13) R_{ij} = R_{aij}^a,$$

and

$$(1.14) R = R_{ii} g^{ij}.$$

In (1967) Tachibana found the following identities

(1.15)
$$F_i^{\ a} R_a^{\ j} = R_i^{\ a} F_a^{\ j},$$

and

$$(1.16) F_i^a R_{aj} = -R_{ia} F_j^a.$$

From (1.1) and (1.15), we get

(1.17)
$$F_i^a R_a^b F_b^j = -R_i^j.$$

Transvecting (1.16) by g^{ij} , we get

$$(1.18) F_i^a R_a^i = -R_a^j F_i^a.$$

Equation (1.18) implies

$$(1.19) F_i^a R_a^i = 0.$$

The holomorphically conharmonic curvature tensor in Riemannian manifold is defined by

$$(1.20) T_{ijk}^h = R_{ijk}^h + \frac{1}{(n-2)} (g_{ik} R_j^h - g_{jk} R_i^h).$$

Therefore the holomorphically conharmonic curvature tensor with respect to semi-symmetric metric connection is given by

$$(1.21) \overline{T}_{ijk}^{h} = \overline{R}_{ijk}^{h} + \frac{1}{(n-2)} (g_{ik} \overline{R}_{j}^{h} - g_{jk} \overline{R}_{i}^{h}),$$

where \overline{R}_{ijk}^h , \overline{R}_j^h and \overline{R} are called curvature tensor, Ricci tensor and scalar curvature tensor with respect to semi-symmetric metric connection respectively.

Using (1.10) and (1.11) in (1.21), we have

(1.22)
$$\overline{T}_{ijk}^{h} = R_{ijk}^{h} - g_{jk}\pi_{i}^{h} + g_{ik}\pi_{j}^{h} + \frac{1}{(n-2)} \left[g_{ik} (R_{j}^{h} - (n-1)\pi_{j}^{h}) - g_{jk} (R_{i}^{h} - (n-1)\pi_{i}^{h}) \right]$$

From (1.17) and (1.22), we have

(1.23)
$$\overline{T}_{ijk}^{h} = R_{ijk}^{h} - g_{jk}\pi_{i}^{h} + g_{ik}\pi_{j}^{h} + \frac{1}{(n-2)}(g_{ik}(-F_{j}^{a}R_{a}^{b}F_{b}^{h} - (n-1)\pi_{j}^{h})) - g_{jk}(-F_{i}^{a}R_{a}^{b}F_{b}^{h} - (n-1)\pi_{i}^{h})).$$

Equation (1.23) implies

(1.24)

$$\overline{T}_{ijk}^{h} = R_{ijk}^{h} - \frac{R_{a}^{b} F_{b}^{h}}{(n-2)} (g_{ik} F_{j}^{a} - g_{jk} F_{i}^{a}) + \frac{1}{(n-2)} (g_{jk} \pi_{i}^{h} - g_{ik} \pi_{j}^{h}).$$

Using (1.2) in the equation (1.24), we have

$$(1.25) \overline{T}_{ijk}^h = R_{ijk}^h + \frac{2R_k^b F_{ij} F_b^h}{(n-2)} + \frac{1}{(n-2)} (g_{jk} \pi_i^h - g_{ik} \pi_j^h).$$

Thus we have:

Theorem1.1. In a Hermitian manifold $(M^n, g), (n > 2)$ the holomorphic conharmonic curvature tensor with respect to semi-symmetric metric connection is given by (1.25) and the holomorphic conharmonic curvature with respect to semi-symmetric metric connection will be equal to Riemannian curvature tensor if and only if

(1.26)
$$F_{ij}R_k^b F_b^h = \pi_{[j}^h g_{i]k}.$$

Definition 1.2. In a Kaehler manifold if the curvature tensor satisfies relation

$$(1.27) R_{ijk,a}^h = \lambda_a R_{ijk}^h$$

is called Kaehlerian recurrent manifold, where λ_a is a non -zero recurrence vector

A Kaehler manifold which satisfies the relation

$$(1.28) R_{ij,a} = \lambda_a R_{ij}.$$

is called Ricci- recurrent Kaehlerian manifold, where λ_a is a non-zero recurrence vector

Transvecting (1.28) by g^{hj} , we have

$$(1.29) R_{i,a}^h = \lambda_a R_i^h.$$

Definition 1.3. The Kaehler manifold in which the relation

$$(1.30) T_{k,a} = \lambda_a T_{ijk}^h,$$

satisfies is called a Kaehlerian conharmonic recurrent manifold, where λ_a a is non-zero recurrence vector.

Taking covariant derivative of (1.24) with respect to ∇ , we have

$$(1.31) \quad \nabla_{a}\overline{T}_{ijk}^{h} = \nabla_{a}R_{ijk}^{h} - \frac{\nabla_{a}R_{l}^{b}F_{b}^{h}}{(n-2)}(g_{ik}F_{j}^{l} - g_{jk}F_{i}^{l})$$

$$+ \frac{1}{(n-2)}(g_{jk}\nabla_{a}\pi_{i}^{h} - g_{ik}\nabla_{a}\pi_{j}^{h}) - \frac{R_{l}^{b}\nabla_{a}F_{b}^{h}}{(n-2)}(g_{ik}F_{j}^{l} - g_{jk}F_{i}^{l})$$

$$+ \frac{1}{(n-2)}(\nabla_{a}g_{jk}\pi_{i}^{h} - \nabla_{a}g_{ik}\pi_{j}^{h}) - \frac{R_{l}^{b}F_{b}^{h}}{(n-2)}(g_{ik}\nabla_{a}F_{j}^{l} - g_{jk}\nabla_{a}F_{i}^{l}).$$

By straight forward calculation we can easily get

$$(a) \quad \nabla_a R^h_{ijk} = D_a R^h_{ijk},$$

$$(b) \quad \nabla_a R_i^h = D_a R_i^h,$$

(c)
$$\nabla_a \pi_i^h = D_a \pi_i^h$$
,

$$(d) \quad \nabla_a F_i^h = D_a F_i^h,$$

(e)
$$\nabla_a g_{ij} = D_a g_{ij}$$
.

If we take $\pi_{i,a}^h = \lambda_a \pi_i^h$ and using (1.3), (1.29) and (a, b, c, d, e) in (1.31), we have

$$(1.32) \nabla_a \overline{T}_{ijk}^h = \lambda_a \left(R_{ijk}^h - \frac{R_l^b F_b^h}{(n-2)} (g_{ik} F_j^l - g_{jk} F_i^l) + \frac{1}{(n-2)} (g_{jk} \pi_i^h - g_{ik} \pi_j^h) \right).$$

From (1.24) and (1.32), we have

(1.33)
$$\nabla_a \overline{T}_{ijk}^h = \lambda_a \overline{T}_{ijk}^h.$$

Thus we have:

Theorem 1.4. In a Kaehler manifold $(M^n, g), (n > 2)$ equipped with semi-symmetric metric connection if π_i^h be recurrent with respect to semi-symmetric metric connection then the manifold will be called Kaehlerian conharmonic recurrent manifold with respect to semi-symmetric metric connection.

Taking covariant derivative of (1.24) with respect to ∇ , we have

$$(1.34) \quad \nabla_{a}\overline{T}_{ijk}^{h} = \nabla_{a}R_{ijk}^{h} - \frac{\nabla_{a}R_{l}^{h}F_{b}^{h}}{(n-2)}(g_{ik}F_{j}^{l} - g_{jk}F_{i}^{l})$$

$$+ \frac{1}{(n-2)}(g_{jk}\nabla_{a}\pi_{i}^{h} - g_{ik}\nabla_{a}\pi_{j}^{h}) - \frac{R_{l}^{b}\nabla_{a}F_{b}^{h}}{(n-2)}(g_{ik}F_{j}^{l} - g_{jk}F_{i}^{l})$$

$$+ \frac{1}{(n-2)}(\nabla_{a}g_{jk}\pi_{i}^{h} - \nabla_{a}g_{ik}\pi_{j}^{h}) - \frac{R_{l}^{b}F_{b}^{h}}{(n-2)}(g_{ik}\nabla_{a}F_{j}^{l} - g_{jk}\nabla_{a}F_{i}^{l}).$$

Using (1.3) in (1.34), we have

(1.35)
$$\nabla_{a}\overline{T}_{ijk}^{h} = \nabla_{a}R_{ijk}^{h} - \frac{\nabla_{a}R_{l}^{h}F_{b}^{h}}{(n-2)}(g_{ik}F_{j}^{l} - g_{jk}F_{i}^{l}) + \frac{1}{(n-2)}(g_{jk}\nabla_{a}\pi_{i}^{h} - g_{ik}\nabla_{a}\pi_{j}^{h}).$$

Transvecting (1.24) by λ_a , we have

$$(1.36) \quad \lambda_a \overline{T}_{ijk}^h = \lambda_a R_{ijk}^h - \frac{\lambda_a R_l^b F_b^h}{(n-2)} (g_{ik} F_j^l - g_{jk} F_i^l) + \frac{\lambda_a}{(n-2)} (g_{jk} \pi_i^h - g_{ik} \pi_j^h).$$

Subtracting (1.36) from (1.35), we have

$$(1.37) \quad \nabla_{a}\overline{T}_{ijk}^{h} - \lambda_{a}\overline{T}_{ijk}^{h} = (\nabla_{a}R_{ijk}^{h} - \lambda_{a}R_{ijk}^{h}) - \frac{(\nabla_{a}R_{l}^{h} - \lambda_{a}R_{l}^{h})F_{b}^{h}}{(n-2)} (g_{ik}F_{j}^{l} - g_{jk}F_{i}^{l}) + \frac{1}{n-2} (g_{jk}(\nabla_{a}\pi_{i}^{h} - \lambda_{a}\pi_{i}^{h}) - g_{ik}(\nabla_{a}\pi_{j}^{h} - \lambda_{a}\pi_{j}^{h})).$$

Now let π_j^h be recurrent then theorem (1.4), we can say that \overline{T}_{ijk}^h will also be recurrent i.e. if $\nabla_a \pi_i^h = \lambda_a \pi_i^h$ this implies $\nabla_a \overline{T}_{ijk}^h = \lambda_a \overline{T}_{ijk}^h$, therefore from equation (1.35) we can say that if π_i^h be recurrent then $\nabla_a \overline{R}_{ijk}^h = \lambda_a \overline{R}_{ijk}^h$.

Thus we conclude:

Theorem1.5. In a Kaehler manifold equipped with semi-symmetric metric connection if π_j^h is recurrent with respect to connection ∇ , then the manifold will be Kaehlerian recurrent manifold equipped with semi-symmetric metric connection.

Now we propose:

Theorem1.6. In a Kaehler manifold equipped with semi-symmetric metric connection if $\pi_j^h g_{ik} = \pi_i^h g_{jk}$ i.e $\pi_i^h g_{jk}$ be symmetric in i and j indices then conharmonic curvature tensor with respect to semi-symmetric metric connection will be equal to conharmonic curvature tensor with respect to Riemannian connection.

Proof. From equation (1.22), we have

$$(1.38) \overline{T}_{ijk}^h = R_{ijk}^h + \frac{1}{(n-2)} (g_{ik} R_j^h - g_{jk} R_i^h) + \frac{1}{(n-2)} (g_{jk} \pi_i^h - g_{ik} \pi_j^h).$$

If $g_{ik}\pi_i^h$ is symmetric in i and j indices then form equation (1.38), we have

(1.39)
$$\overline{T}_{ijk}^h = R_{ijk}^h + \frac{1}{(n-2)} (g_{ik} R_j^h - g_{jk} R_i^h)$$

Using (1.20), we have

$$(1.40) \overline{T}_{ijk}^h = T_{ijk}^h.$$

2. Kaehlerian Conharmonic Symmetric Manifold

Definition 2.1. A Kaehler manifold satisfying the relation

$$(2.1) T_{iik}^h = 0.$$

is called Kaehlerian conharmonic symmetric manifold.

Therefore from theorem (1.6) we can say that if $\pi_i^h g_{jk} = \pi_j^h g_{ik}$ then $\overline{T}_{ijk}^h = T_{ijk}^h$ and if our Kaehler manifold be conharmonic symmetric then from (2.1) $T_{ijk}^h = 0$, this implies $\overline{T}_{ijk}^h = 0$.

Therefore we conclude:

Theorem 2.2. If a Kaehler manifold equipped with semi-symmetric metric connection with condition $\pi_i^h g_{jk} = \pi_j^h g_{ik}$ be Kaehlerian conharmonic symmetric with respect to Riemannian connection then this will also be Kaehlerian conharmonic symmetric with respect to semi-symmetric metric connection.

References

- 1. O. C. Andonie, Surune Connection Semi-Symmetrique Quilasse Invariant la Tenseur de Bochner, *Ann. Fac. Sci. Kuishawa Zaire* (1976) 247-253.
- 2. M. C. Chaki and A. Konar, On a Type of Semi-Symmetric Connection on a Riemannian Manifold, *J. Pure Math.*, **1** (1981) 77-80.
- 3. B. B. Chaturvedi and P. N. Pandey, Semi-Symmetric Non Metric Connection on a Kaehler Manifold, *Diff. Geo.-Dyn. Sys.*, **10**(2008) 86-90.
- 4. P. N. Pandey and B. B. Chaturvedi, Almost Hermitian Manifold with Semi-Symmetric Recurrent Connection, *J. Inter. Acad. Phy. Sci.* **10**(2006) 69-74.
- 5. P. N. Pandey and B. B. Chaturvedi, Semi-Symmetric Metric Connection on a Kaehler Manifold, *Bull. Alld. Math. Soc.*, **22**(2007) 51-57.
- 6. A. Friedman and J. A. Schouten, A Über Die Geometric Derhalbsymmetricschen A Über tragung, Math. Z., **21**(1994) 211-223.
- 7. K. Yano and M. Kon, *Structure on Manifolds Series in Pure Mathematics 3*, World Scientific Publishing Co. Singapore, 1984.
- 8. K. Yano, On Semi-Symmetric Metric Connections, *Rev. Roumanie Math. Pures Appl.*, **15**(1970) 1579-1586.