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Abstract: In this research work a mathematical analysis is presented for 

unsteady MHD generalized Couette flow of an incompressible and 

electrically conducting fluid in a rotating channel with induced magnetic 

field and Hall current. Both walls of the channel are magnetized and their 

magnetism is fluctuating periodically. The MHD flow through the parallel 

wall channel is developed due to an applied periodic pressure gradient and 

oscillatory movement of one of the walls of the channel. The solution of 

the flow governing coupled partial differential equations is obtained in 

closed form. To analyze the influences of various flow governing 

parameters, the numerical results for fluid velocity, induced magnetic 

field and skin friction at the moving wall are computed and presented 

through graphs and table. It is observed that Hall current raises the fluid 

velocity in the secondary flow direction in most of the upper part of the 

channel while this effect is upturned in the vicinity of the lower wall of 

the channel.  
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Nomenclature 
 

'

xB

 

induced magnetic field along 

x -direction (T ) 

v  non-dimensional velocity along 

y -direction 
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'

yB

 

induced magnetic field along 

y -direction (T ) 

( , , )  x y z

 

Cartesian coordinates 

xB

 

non-dimensional induced 

magnetic field in 

directionx−  

x  non-dimensional coordinate 

along channel wall 

yB

 

non-dimensional induced 

magnetic field in 

directiony −  

z  non-dimensional coordinate 

perpendicular to the channel wall 

0B

 

applied magnetic field ( T ) 
m  magnetic interaction parameter  

'

0b  constant   constant 

E  Ekmann number 
e  magnetic permeability 

m  Hall current   coefficient of  viscosity 
2( / )m s  

mP

 

magnetic Prandtl number 
m  magnetic viscosity 

p

 

pressure   angular velocity 

R  constant   frequency (
1−s ) 

t  time ( s )   non-dimensional frequency  

t  non-dimensional time   
fluid density (

3/Kg m ) 

0U

 

constant velocity   electrical conductivity ( /s m ) 

u  velocity along x -direction 

( /m s ) 
x  non-dimensional skin friction 

along x -direction 

u  non-dimensional velocity along 

x -direction 
y  non-dimensional skin friction 

along y -direction 

v  velocity along y -direction 

( /m s ) 

  

 

1. Introduction 

Study of hydrodynamic duct or channel flows is significant due to its 

occurrence in many cosmological and geophysical problems and 

applications in energy systems, plasma aerodynamics and many 

engineering manufacturing processes. Couette flow is one of such a 

problem where flow is developed due to movement of the walls. In many 

wall driven flows, drag force and viscosity can be measured by using 

applications of Couette flows (Muzychka and Yovanovich1). The MHD 
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flows developed due to an applied force together with the movement of the 

walls are named as generalized Couette flow or Couette-Hartmann flow. 

The study of generalized Couette flow in the presence of an applied 

magnetic field has drawn the considerable attention of the researchers 

during last few years due to its significant applications in engineering and 

technology such as nuclear engineering, electric and solar power 

generation technology, boundary layer control in polymer processing etc. 

The flow of electrically conducting fluid in the presence of an applied 

magnetic field produces a drag force whose nature is to suppress the fluid 

motion. This control mechanism is used in material processing. Stimulated 

from the industrial applications Agarwal2, Soundalgekar3, Beg et al4, 

Singh et al5, 6 and Seth et al7 investigated the MHD generalized Couette 

flow problems by considering different geometries and approaches. In 

many industrial applications where the electromagnetic force is strong, 

there appear a current due to drifting of electrons in an ionized fluid. This 

current is called Hall current and it plays a prominent role in the 

determination of flow behaviors. The influence of Hall current on MHD 

channel or duct flows has been investigated by many researchers, namely, 

Nagy and Demendy8, Beg et al4, Jha and Apere9, Singh and Pathak10, 

Srinivasacharya and Kaladhar11, Das et al12, Seth and Singh13, Singh et al5, 

6 and Seth et al7. It is worthy to note that in a rotating flow system, the 

force induces due to rotation (Coriolis force) is comparable to magnetic 

force (Lorentz force) and it also plays a vital role in determination flow 

characteristics. Motivated from these facts many researchers have been 

studied MHD flows in rotating system considering different aspects of the 

problems. Some recent contributions in MHD rotating flows are due to 

Nagy and Demendy8, Ghosh and Bhattacharjee14, Ansari et al15, Jha and 

Apere9, Singh and Pathak10, Seth and Singh13, Seth et al7, 16 and Singh et 

al6 in most of the MHD channel flows the channel walls are considered 

either non-conducting or infinitely conducting. Nagy and Demendy8 

analyzed the combined Hall current and Coriolis force effects on MHD 

Hartmann flow with general wall condition. Subsequently, Ansari et al15 

studied unsteady MHD flow of an electrically conducting fluid in a 

rotating channel with finitely conducting walls. They considered 

periodically fluctuating wall magnetism in their problem. Seth and Singh13 

considered the Hall and wall conductance effects on mixed convection 

MHD flows in a rotating channel. Recently, Seth et al16 discussed the 

MHD oscillatory Hartmann flow of an incompressible and electrically 

conducting fluid in a rotating channel with periodically magnetized walls 

in the presence of a uniform transverse magnetic field. 
 

In this intended research work, we analyzed the unsteady MHD 
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generalized Couette flow of an incompressible and electrically conducting 

fluid in a rotating channel with induced magnetic field and Hall current. 

We considered that the walls of the channel are magnetized and their 

magnetism is fluctuating periodically with time. 

 

2. Mathematical Model and Its Solution 

We consider fully developed MHD laminar flow of an incompressible 

and electrically conducting fluid within two parallel walls 

( , )x y −    −     placed at z L = −  and z L = . The flow is 

permeated to pass through a magnetic field 
0(0,0, )B B  applied along a 

direction perpendicular to the plane of the walls. Initially, the fluid and 

walls of the channel are considered to be at rest and the system is rotating 

rigidly with an angular velocity (0,0, )   about a direction normal to the 

channel walls. It is considered that the walls of the channel are magnetized 

periodically along x -direction. The MHD flow through the channel is 

induced due to an applied periodic pressure gradient acting along x -

direction and oscillatory movement of the upper wall of the channel in its 

own plane along x -direction. Since the flow is fully developed and 

laminar, so the all flow variables depend on z  and t  only. Under the 

above made assumptions and compatibility with continuity equation and 

solenoidal relation, the fluid velocity q  and the magnetic field B  may 

assume as 0( , ,0) and ( , , )x yq u v B B B B   = = . 
 

The flow governing equations for incompressible and electrically 

conducting fluid in a rotating channel with induced magnetic field and 

Hall current are described by 

 
2

0

2

1
(2.1) 2 ,x

e

B Bu p u
v

t x z z


 

     
−  = − + +

     
 

 
2

0

2
(2.2) 2 ,

y

e

BBv v
u

t z z




  
+  = +

    
 

 

( )2 2 2

0

1 1
(2.3) 0 ,

2
e

x yp B B B
z 

   
  = − + + + 

   

 

 



   

Unsteady MHD Generalized Couette Flow in a Rotating Channel                     223 

 

22

0 2 2
(2.4) ,

yx x
m m

BB Bu
B m

t z z z
 

  
= + +

      
 

 
2 2

0 2 2
(2.5) .

y y x
m m

B B Bv
B m

t z z z
 

    
= + −

      
        

 

Equation (2.3) exhibits that the sum of the applied pressure and pressure due 

to magnetic field is constant along a direction normal to the wall of the 

channel. Since there is a net cross flow in y -direction, so the pressure 

gradient term is absent in equation (2.2). 
 

The boundary conditions specified for fluid velocity and induced 

magnetic field at the boundary walls of the channel are 
  

( )( )

( )( )

( )( )

0

0

0

(2.6) At : 0, 1 / 2 , 0.

At : 1 / 2 , 0,
(2.7)

1 / 2 , 0.

i t i t

x y

i t i t

i t i t

x y

z L u v B b e e B

z L u U e e v

B b e e B

 

 

 







   −

   −

   −

     = − = = = + + =

   = = + + =



  = + + =


 

 

To write flow governing equations (2.1)-(2.5) and boundary conditions 

(2.6) and (2.7) in non-dimensional form, we define the following non-

dimensional quantities 

 

( )

( )

( )

0 0

1/2* 2

0 0

1/2

0 0

1/2 ' 1/2 1/2

0 0 0 0 0 0

/ , / , / , / , , / ,

, / 2 , / ,

(2.8)
/ , / / ,

/ / , / .

m

m m e x x e

y y e e

x x L z z L u u U v v U t t

p U Lp B E L

P B B U B

B B U B b b U B

 

    

     

   

     = = = = =  = 

  =  =  = 



= = = 

 =  = 

 

 
Using the non-dimensional quantities defined in equation (2.8) to the 

equations (2.1), (2.2), (2.4) and (2.5), and combining equations (2.1) and 

(2.2) and equations (2.4) and (2.5), we get the following non-dimensional 

flow governing equations 
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* 2
2 1/2

2
(2.9) 2 2 ,m

q p q B
iq E E

t x z z


   
+ = − + +

   
 

 
2

1/2

2
(2.10) (1 ) ,m

B q B
P E E im

t z z

  
= + −

  
  

 

where  q u iv= +  and .x yB B iB= +  

The conditions to be satisfied at the boundary walls of the channel, in non-

dimensional form become 

 

( )( )

( )( ) ( )( )

0

0

(2.11) At 1: 0, 1 / 2 .

(2.12) At 1: 1 / 2 , 1 / 2 .

i t i t

i t i t i t i t

z q B b e e

z q e e B b e e

 

   



 

−

− −

= − = = + +

= = + + = + +

 

 

Since the flow is induced due to an applied periodic pressure gradient and 

the oscillatory movement of the upper wall of the channel, and the walls of 

the channel are periodically magnetized along x -direction. Therefore, 

pressure gradient, fluid velocity and the induced magnetic field may 

assume as 

 

( )
*

(2.13) 1 ,
2

i t i tp
R e e

x

  −  
− = + +   

 

 

( ) ( )0 1 2(2.14) , ( ) ( ) ,
2

i t i tq z t q z q z e q z e  − = + +   

 

( ) ( )0 1 2(2.15) , ( ) ( ) .
2

i t i tB z t B z B z e B z e  − = + +   

 

On using equations (2.13)-(2.15) to the coupled partial differential 

equations (2.9) and (2.10), we get the following system of ordinary 

differential equations 

 
'' 2 1/2 '

0 0 0(2.16) 2 2 ,mEq iq R E B− = − −  

 
'' 2 1/2 '

1 1 1(2.17) ( 2) 2 ,mEq i q E B R − + = − −  
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'' 2 1/2 '

2 2 2(2.18) ( 2) 2 ,mEq i q E B R + − = − −  

 
'' 1/2 '

0 0(2.19) (1 ) ,E im B E q− = −  

 
'' 1/2 '

1 1 1(2.20) (1 ) ,mE im B iP B E q− − = −  

 
'' 1/2 '

2 2 2(2.21) (1 ) .mE im B iP B E q− + = −   

 

The non-dimensional boundary conditions at the walls of the channel are 

 

0 1 2 0 1 2 0

0 1 2 0 1 2 0

(2.22) At 1: 0, .

(2.23) At 1: 1, .

z q q q B B B b

z q q q B B B b

= − = = = = = =

= = = = = = =

 

 

Solving equations (2.16)-(2.21) subject to the boundary conditions (2.22) 

and (2.23), we obtain 0 1 2, ,q q q  and 0 1 2, ,B B B . Substituting 0 1 2, ,q q q  

and 0 1 2, ,B B B  in the equations (2.14) and (2.15) respectively, we obtain 

the expressions for fluid velocity and induced magnetic field, which are 

presented in the following form 

 

( ) 1 0 2 0 0

2 2
3 1 1 4 1 1

2 2

2 2 4
1 1 5 3 3

2 2

1
, sinh (cosh cosh )

2

cosh sinh
cosh cosh sinh sinh

2 cosh sinh

(2.24)

cosh sinh cosh1
cosh cosh

cosh 2 2sinh co

i t

q z t C z C z

z z
C z C z

z z z
b b e C z

  

 
   

 

  
 

 

= + + −

    
+ − + −    

    

 
+ + + − + − 

   4

4 4 4
6 3 3 1 1

4 4 4

sh

sinh cosh sinh1
sinh sinh ,

sinh cosh 2 2sinh

i tz z z
C z b b e 



  
 

  

−










   

  
  




   + − + − + +         
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( )  0 1 0 0 2 02 1/2

0

2 1/2

2 0 0

2
1 3 1 1 2 1

2

2
4 1 1 2 1

2

1 2
, (cosh cosh ) sinh

2

2 cosh ( ) 2

sinh1
sinh cosh

2 cosh

cosh
(2.25) cosh sinh

sinh

m

m

m

i
B z t E C z C z

E

C iz i R z E b

z
a C z

iP

z
C z

   
 

 


   

 


   



 
= − − + 

 

− + − + 

     
+ −    

    

 
+ −

 

3 3 2
2 3 1 1 2 1

2

3 3 2
4 1 1 2 1

2

2 2
2 3 1

2 2

sinh
sinh cosh

cosh

cosh
cosh sinh

sinh

sinh cosh1

2 cosh 2sinh

i t

z
b C z

z
C z

z z
a b e 


   




   



 


 













 
 

 


  − −     
  
+ −  

 


  + + +     

 

 

4
2 5 3 3 4 3

4

4
6 3 3 4 3

4

3 3 4
1 5 3 3 4 3

4

3 3 4
6 3 3 4 3

4

sinh1
sinh cosh

cosh

cosh
cosh sinh

sinh

sinh
sinh cosh

cosh

cosh
cosh sinh

sinh

m

z
a C z

iP

z
C z

z
b C z

z
C z


   

 


   




   




   



     
− −   

   

 
+ −  

 

  
− −  

  

 
+ − 

 

4 4
4 4 1

4 4

sinh cosh1
.

2 cosh 2sinh

i tz z
a b e  


 

−

















   
+ − +    

     

 

 

 

3. Skin Friction at the Walls 

The skin friction at the walls of the channel are given by 
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( )

( )(

( )

( ) ( )(

1

1 0 0 2 0 0 3 1 1 2 1 2

2 2
4 1 1 2 1 2 2 2 2

5 3 3 4 3 4 6 3 3 4 3 4

4 4

cosh sinh sinh cosh tanh
2

coth1
(3.1) cosh sinh coth tanh

2 2

sinh cosh tanh cosh sinh coth

1
tanh

2

x y z

i t

i

C C C

C b e

C C



 


        

 
      

         

 

=
+

  =  +  −

 
+ −  + +  

  

  − + −

 4 4
2

coth
.

2

i tb e   −












  
 − +  
    

 

 
4. Numerical Results and Discussion 

To analyze the flow behavior, the analytical solutions for fluid velocity 

(2.24) and induced magnetic field (2.25) are numerically computed and 

presented in graphical form whereas the skin friction at the moving upper 

wall of the channel is numerically computed and presented in tabular form. 

In numerical computation we have taken 01, 1 and 1R b= = = . Figures 1-

5 depict the velocity profiles whereas figures 6 to 10 display the induced 

magnetic field profiles for various values of flow governing parameters.  
 

Figures 1 demonstrate the influence of oscillations   on velocity 

profiles. It is noticed that, on raising frequency of oscillations, the fluid 

velocity in both the primary and secondary directions rising in the upper 

half of the channel while this effect is upturned in the lower half of the 

channel. This is due to the oscillation of the upper wall of the channel. 
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1
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z

u

 = 3,2,1

 
(a) 
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z

v

 = 1,2,3

 
(b) 

Fig. 1 Velocity profiles in the (a) primary and (b) secondary flow directions when 
2 5,m = 0.5, 0.5, 0.7, 1 and / 4.mm E P R t = = = = =  
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
2
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(a) 
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0.45

z

v


2
m

 = 7,5,3

 
(b) 

Fig. 2 Velocity profiles in the (a) primary and (b) secondary flow directions when 

3, = 0.5, 0.5, 0.7, 1 and / 4.mm E P R t = = = = =
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Figures 2 display applied magnetic field effects on the velocity profiles. It 

can be easily seen from figures 2 that, the fluid velocity in the primary 

flow direction rises on raising magnetic interaction parameter 2

m  in most 

of the lower half of the channel while this effect is upturned in the vicinity 

of the upper wall of the channel. Magnetic field shows the reverse 

behavior on the fluid velocity in the secondary flow direction as that of the 

fluid velocity in the primary flow direction. 
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Fig. 3 Velocity profiles in the (a) primary and (b) secondary flow directions when 3, =  

2 5, 0.5, 0.7, 1 and / 4.m mE P R t  = = = = =  

 

Hall current effects on the velocity distributions are depicted in  
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figures 3. Figures 3 show that Hall current decelerates the fluid velocity in 

the primary flow direction throughout the channel except a thin region in the 

vicinity of the upper wall. On raising Hall current, the fluid velocity in the 

secondary flow direction rise in most of the upper half of the channel while 

this effect is upturned in the vicinity of the lower half of the channel. 
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Fig. 4 Velocity profiles in the (a) primary and (b) secondary flow directions when 

3, = 2 5, 0.5, 0.7, 1 and / 4.m mm P R t  = = = = =
 

 

Figures 4 demonstrate the effect of Ekmann number E  (rotation) on 

the velocity profiles. The velocity profiles in the primary flow direction 

are of oscillatory nature on increasing Ekmann number. The velocity 

profiles in the secondary flow direction falls on raising Ekmann number 

i.e. fluid velocity in the secondary flow direction rise on raising angular 
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velocity of rotation   because angular velocity of rotation has an inverse 

relation with Ekmann number. Our result is in agreement with the well 

accepted result that rotation induces motion in the secondary flow 

direction.  
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Fig. 5 Velocity profiles in the (a) primary and (b) secondary flow directions when 

3, = 2 5, 0.5, 0.5, 1 and / 4.m m E R t  = = = = =
 

 

The variations of the velocity profiles for various values of magnetic 

Prandtl number mP  are displayed in figures 5. It is observed that the fluid 

velocity in the secondary flow direction and fluid velocity in the primary 

flow direction in the upper half of the channel rise on raising magnetic 

Prandtl number while this effect on the fluid velocity in the primary flow 

direction is upturned in the lower half of the channel. Since the magnetic 
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diffusivity has an inverse relation with magnetic Prandtl number, thus 

magnetic diffusivity has tendency to reduce fluid velocity in the secondary 

flow direction and fluid velocity in the primary flow direction in the upper 

half of the channel.  
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Fig. 6 Induced magnetic field profiles in the (a) primary and (b) secondary flow directions 

when 
2 5, 0.5, 0.5, 0.7, 1 and / 4.m mm E P R t  = = = = = =  

 

Figures 6 show the influence of oscillations on the induced magnetic 

field. The induced magnetic field in the primary flow direction rises on 

raising frequency of oscillations in the upper half of the channel while this 

effect is upturned in the lower half of the channel. Oscillations show the 

oscillatory nature on induced magnetic field in the secondary flow direction.
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Fig. 7 Induced magnetic field profiles in the (a) primary and (b) secondary flow directions 

when 3, 0.5, 0.5, 0.7, 1 and / 4.mm E P R t  = = = = = =  

 

Deviation in the induced magnetic field profiles for various values of 

magnetic interaction parameter are presented in figures 7. It can be noticed 

that magnetic field tends to raise induced magnetic field in the primary 

flow direction in the neighborhood of the lower wall of the channel while 

this effect is upturned in most of the upper half region of the channel. 

Induced magnetic field in the secondary flow direction reduces throughout 
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the channel except in the vicinity of the upper wall.  
 

Figures 8 display the variation of induced magnetic field profiles for 

various values of Hall current. Hall current has tendency to reduce induced 

magnetic field in the lower half of the channel while this effect is upturned 

in the upper half of the channel. 
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Fig. 8 Induced magnetic field profiles in the (a) primary and (b) secondary flow directions 

when 
23, 5, 0.5, 0.7, 1 and / 4.m mE P R t   = = = = = =  
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Fig. 9 Induced magnetic field profiles in the (a) primary and (b) secondary flow directions 

when 
23, 5, 0.5, 0.7, 1 and / 4.m mm P R t   = = = = = =  
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Fig. 10 Induced magnetic field profiles in the (a) primary and (b) secondary flow directions 

when 
23, 5, 0.5, 0.5, 1 and / 4.m m E R t   = = = = = =  

 

Effect of rotation on induced magnetic field is demonstrated in figures 9. 

Rotation tends to raise the induced magnetic field in the primary flow 

direction in the upper half region of the channel while this effect is reversed 

on the induced magnetic field in the secondary flow direction and induced 

magnetic field in the primary flow direction in the upper half of the channel. 
 

Influences of magnetic diffusivity on induced magnetic field are shown 

in figures 10. It is seen that magnetic diffusivity tends to rise induced 

magnetic filed in the primary flow direction in the lower half of the channel 

while this effect is upturned in the upper half of the channel. Magnetic 

diffusivity shows the reverse behavior on the induced magnetic field in the 

secondary flow direction as that of on the primary flow direction. 
 
 

The variations of the skin friction at the moving wall for various values 

of flow governing parameters are presented in table 1. It can be noted that 

oscillations and rotation tend to reduce skin friction in the primary flow 

direction while magnetic field, rotation, Hall current and magnetic 

diffusivity tend to rise the skin friction in the secondary flow direction. 
 

Table 1 Skin friction at the moving wall of the channel. 
 

  
2

m  E  m  
mP  

Skin friction at the 

moving wall 

x  y  

1 5 0.5 0.5 0.7 2.4162 3.5150 

2 5 0.5 0.5 0.7 1.3475 3.5051 

3 5 0.5 0.5 0.7 0.0456 3.6946 

3 3 0.5 0.5 0.7 -0.5898 2.9152 

3 7 0.5 0.5 0.7 2.1782 3.8896 
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3 5 0.75 0.5 0.7 0.3483 2.5677 

3 5 1 0.5 0.7 0.3797 2.1018 

3 5 0.5 0.25 0.7 0.1980 2.8855 

3 5 0.5 0.75 0.7 -0.1452 4.2162 

3 5 0.5 0.5 0.5 1.1739 3.4717 

3 5 0.5 0.5 0.9 -0.8363 4.4226 

 
5. Conclusions 

 

A mathematical analysis has been presented for unsteady MHD 

generalized Couette flow of an incompressible and electrically conducting 

fluid in a rotating channel with induced magnetic field and Hall current. 

The influence of some significant flow governing parameters on the flow 

variables have been thoroughly discussed in the previous section. Some 

significant findings are summarized below: 
 

(i) On rising Hall current, the fluid velocity in the secondary flow 

direction raise in most of the upper half region of the channel while 

this effect is upturned in the vicinity of the lower half of the channel. 

Hall current has tendency to reduce induced magnetic field in the lower 

half of the channel while this effect is upturned in the upper half of the 

channel. 

(ii) The magnetic diffusivity has tendency to reduce fluid velocity in the 

secondary flow direction and fluid velocity in the primary flow 

direction in the upper half of the channel. Magnetic diffusivity tends to 

rise induced magnetic field in the primary flow direction in the lower 

half of the channel while this effect is upturned in the upper half of the 

channel. Magnetic diffusivity shows the reverse behavior on the 

induced magnetic field in the secondary flow direction as that of on the 

primary flow direction. 
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