Vol. 21 No. 3 (2017) Journal of International Academy of Physical Sciences pp. 189-202

A Family of Well Behaved Uncharged Model of Vaidya– Tikekar Type Super-Dense Star

Jitendra Kumar and Amit Kumar Prasad

Center for Applied Mathematics Central University of Jharkhand, Brambe Ranchi (Jharkhand)-835205, India Email: jitendark@gmail.com; amitkarun5@gmail.com

(Received May 19, 2017)

Abstract: In the present article a model of well-behaved uncharged superdense star with surface density 2×10^{14} gm/cm³ is developed by considering a static spherically symmetric metric with t= const hyper surfaces as hyperboloid. So far well-behaved model described by such metric could not be obtained for uncharged fluid. Maximum mass of the star is found to be $0.343121M_{\odot}$ and the corresponding radius is 9.576299 Km. The red shift at the centre and on the surface are given as 0.076792 and 0.031726 respectively.

Key Words: Exact solutions, Uncharged fluids, Super-dense stars, General relativity.

1. Introduction

In short, the uncharged fluids so far obtained are not well behaved. In the present article authors have developed a uncharged super-dense models of above kind which are well behaved. Well behaved formality of models means the models satisfying the conditions $c^2 \rho \ge p \ge 0, \frac{dp}{dr} < 0, \frac{d\rho}{dr} < 0,$

velocity of sound in through the model.

2. Field Equations

Let us consider the metric to be

(2.1)
$$ds^2 = -e^{\lambda}dr^2 - r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right) + e^{\nu}dt^2,$$

where the functions $\lambda(r)$ and $\nu(r)$ are to satisfy the Einstein field equation for perfect fluid distributions

(2.2)
$$R_j^i - \frac{1}{2}R\delta_j^i = -\kappa [(c^2\rho + p)v^i v_j - p\delta_j^i],$$

where $\kappa = \frac{8\pi G}{c^4}$, ρ , p and v^i denote energy density, fluid pressure and flow vector of the fluid, respectively.

The field equation (2.2) with respect to the metric equation (2.1) give¹

(2.3)
$$8\pi T_1^1 = -\frac{v'}{r}e^{-\lambda} + \frac{(1-e^{-\lambda})}{r^2},$$

(2.4)
$$8\pi T_2^2 = 8\pi T_3^3 = -\left[\frac{\nu''}{2} - \frac{\lambda'\nu'}{4} + \frac{\nu'^2}{4} + \frac{\nu'-\lambda'}{2r}\right]e^{-\lambda},$$

(2.5)
$$8\pi T_4^4 = \frac{\lambda'}{r}e^{-\lambda} + \frac{(1-e^{-\lambda})}{r^2}.$$

At the pressure free interface r = a the charged fluid sphere is expected to join with the Reissner-Nordstrom metric

(2.6)
$$ds^{2} = -\left(1 - \frac{2m}{r} + \frac{e^{2}}{r^{2}}\right)^{-1} dr^{2} - r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) + \left(1 - \frac{2m}{r} + \frac{e^{2}}{r^{2}}\right) dt^{2},$$

where *m* is the gravitational mass of the distribution such that $m = \mu(a)$, while

(2.7)
$$\mu(a) = \frac{\kappa}{2} \int_{0}^{a} \rho(r) r^2 dr,$$

 $\mu(a)$ is the mass².

The space-time with its hyper surface t = constant as hyperboloid is characterized by the metric (2.1) with the metric potential g_{11} as ³⁻¹⁰

(2.8)
$$e^{\lambda} = \frac{\left(K + Cr^2\right)}{K\left(1 + Cr^2\right)}, K > 1$$
,

where K is parameter and C being a constant¹¹⁻¹².

Now from the equations (2.3), (2.5) and (2.8), we get

(2.9)
$$\frac{\left(K+Cr^{2}\right)}{K\left(1+Cr^{2}\right)}\left[-\frac{2y'}{ry}+\frac{C(K-1)}{\left(K+Cr^{2}\right)}\right]=-\kappa p,$$

(2.10)
$$\frac{C(K-1)(3+Cr^2)}{K(1+Cr^2)^2} = \kappa c^2 \rho,$$

where $e^{\nu} = y^2$ and y satisfies the isotropy condition $(T_1^1 = T_2^2 = T_3^3)$

(2.11)
$$(K + Cr^{2})(1 + Cr^{2})y'' - \frac{1}{r} [(K + Cr^{2})(1 + Cr^{2}) + (K - 1)Cr^{2}]y' + (K - 1)C^{2}r^{2}y = 0.$$

Now the equation (2.11) can be written as

(2.12)
$$(1 - X^2) \frac{d^2 y}{dX^2} + X \frac{dy}{dX} + \alpha y = 0,$$

where $\alpha = (1 - K)$ and

(2.13)
$$X = \sqrt{\frac{K}{(K-1)}} \sqrt{1 + \frac{Cr^2}{K}}, K > 1$$

Here we consider K > 1, then X > 1 and we adopt a different approach to get a solution, which as follows

(2.14)
$$y(X) = (X^2 - 1)Z(X),$$

which sends the equation (2.12) to the equation

(2.15)
$$\frac{d^2 Z}{dX^2} + IZ = 0,$$

where

Jitendra Kumar and Amit Kumar Prasad

(2.16)
$$I = \frac{\alpha}{(1-X^2)} - \frac{(2+3X^2)}{4(1-X^2)^2}.$$

In the present equation (2.15) can be solved easily if set $K = \frac{7}{4}$ consequently the equations (2.13) and (2.16) now read as

(2.17)
$$X = \sqrt{\frac{(7+4Cr^2)}{3}},$$

(2.18)
$$I = -\frac{5}{4(1-X^2)^2} ,$$

and the equation (2.15) takes the form

(2.19)
$$Z'' - \frac{5}{4(1-X^2)^2} z = 0,$$

which admits the solution

$$Z(X) = (X+1) \left[C_1 \left| \frac{X+1}{X-1} \right|^{(\beta-0.5)} + C_2 \left| \frac{X+1}{X-1} \right|^{(-\beta-0.5)} \right], \ \beta = \frac{3}{4}$$

Now from the equation (2.14), we have

(2.20)
$$y(X) = (X^{2} - 1)(X + 1)\left[C_{1}\left|\frac{X + 1}{X - 1}\right|^{(\beta - 0.5)} + C_{2}\left|\frac{X + 1}{X - 1}\right|^{(-\beta - 0.5)}\right],$$

which can be written in term of r using the equation (2.17) as (2.21)

$$y(r) = \frac{4(1+Cr^{2})}{3} \left(\sqrt{\frac{(7+4Cr^{2})}{3}} + 1\right) \left[C_{1} \left|\frac{\sqrt{\frac{(7+4Cr^{2})}{3}} + 1}{\sqrt{\frac{(7+4Cr^{2})}{3}} - 1}\right|^{(\beta-0.5)} + C_{2} \left|\frac{\sqrt{\frac{(7+4Cr^{2})}{3}} + 1}{\sqrt{\frac{(7+4Cr^{2})}{3}} - 1}\right|^{(-\beta-0.5)}\right]$$

The corresponding expression for energy density and pressure can be had from the equations (2.9), (2.10), and (2.21) as

(2.22)
$$\kappa c^{2} \rho = \frac{3C(3+Cr^{2})}{7(1+Cr^{2})^{2}},$$

(2.23)
$$\kappa p = -\frac{\left(7+4Cr^{2}\right)}{7\left(1+Cr^{2}\right)} \left[-\frac{2y'}{ry} + \frac{3C}{\left(7+4Cr^{2}\right)}\right].$$

Now $p_{(r=a)} = 0$ gives

$$(2.24) \quad \frac{C_2}{C_1} = \frac{DN \left| \frac{\sqrt{\frac{(7+4Ca^2)}{3}}+1}{\sqrt{\frac{(7+4Ca^2)}{3}}-1} \right|^{(\beta-0.5)} - N_1 N_3 \left| \frac{\sqrt{\frac{(7+4Ca^2)}{3}}+1}{\sqrt{\frac{(7+4Ca^2)}{3}}-1} \right|^{(\beta-0.5)} + D_1}{\sqrt{\frac{(7+4Ca^2)}{3}}-1} \right|^{(-\beta-0.5)} - DN \left| \frac{\sqrt{\frac{(7+4Ca^2)}{3}}+1}{\sqrt{\frac{(7+4Ca^2)}{3}}-1} \right|^{(-\beta-0.5)} + D_2,$$

where

$$\begin{split} D &= \left(\frac{4\left(1+Ca^2\right)}{3}\right)^{\left(\frac{1}{4}\right)} \left(\sqrt{\frac{\left(7+4Ca^2\right)}{3}}+1\right), \ N = \frac{3}{\left(7+4Ca^2\right)} \\ N_1 &= \left(\frac{4\left(1+Ca^2\right)}{3}\right)^{\left(\frac{1}{4}\right)} + \frac{\sqrt{\frac{\left(7+4Ca^2\right)}{3}}\left(\sqrt{\frac{\left(7+4Ca^2\right)}{3}}+1\right)}{2\left(\frac{4\left(1+Ca^2\right)}{3}\right)^{\left(\frac{3}{4}\right)}}, \\ N_2 &= \frac{2\left(\frac{4\left(1+Ca^2\right)}{3}\right)^{\left(\frac{1}{4}\right)} \left(\sqrt{\frac{\left(7+4Ca^2\right)}{3}}+1\right)}{\left(\sqrt{\frac{\left(7+4Ca^2\right)}{3}}-1\right)^2}, \\ N_3 &= \frac{8\left(7+4Ca^2\right)}{21\left(1+Ca^2\right)\sqrt{\frac{7+4Ca^2}{3}}}, \end{split}$$

$$\begin{split} D_1 &= N_2 N_3 (\beta - 1) \left| \frac{\sqrt{\frac{(7 + 4Ca^2)}{3}} + 1}{\sqrt{\frac{(7 + 4Ca^2)}{3}} - 1} \right|^{(\beta - 1.5)}, \\ D_2 &= N_2 N_3 (\beta + 1) \left| \frac{\sqrt{\frac{(7 + 4Ca^2)}{3}} - 1}{\sqrt{\frac{(7 + 4Ca^2)}{3}} - 1} \right|^{(-\beta - 1.5)}. \end{split}$$

The expression for the density and pressure gradient can be written as

(2.25)
$$\kappa c^2 \frac{d\rho}{dr} = C^2 r \left[-\frac{6(5+Cr^2)}{7(1+Cr^2)^3} \right],$$

(2.26)

$$\kappa \frac{dp}{dr} = C^{2}r \left[\left[\left[\left[\left[N_{4} \left(M_{5} + \frac{C_{2}}{C_{1}} M_{6} \right) + \left[N_{7} \left(M_{8} - \frac{C_{2}}{C_{1}} M_{9} \right) + \right] \right] \frac{8(7 + 4Cr^{2})}{21(1 + Cr^{2})\sqrt{\frac{(7 + 4Cr^{2})}{3}}} + \right] \right] \right] + \frac{24}{(7 + 4Cr^{2})^{2}}$$

,

where

$$N_{4} = \left(\frac{4(1+Cr^{2})}{3}\right)^{\left(\frac{1}{4}\right)} + \frac{\sqrt{\frac{(7+4Cr^{2})}{3}}\left(\sqrt{\frac{(7+4Cr^{2})}{3}}+1\right)}{2\left(\frac{4(1+Cr^{2})}{3}\right)^{\left(\frac{3}{4}\right)}},$$

$$N_{5} = \left[\left(\beta - 0.5\right) \frac{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} + 1}{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} - 1}} \right|^{\left(\beta - 0.5\right)} + \left(\beta + 0.5\right) \frac{C_{2}}{C_{1}} \left| \frac{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} + 1}{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} - 1}} \right|^{\left(-\beta - 0.5\right)} \right],$$

$$N_{6} = \left[\left(\beta - 0.5\right) \left| \frac{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} + 1}{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} - 1} \right|^{\left(\beta - 1.5\right)} - \left(\beta + 0.5\right) \frac{C_{2}}{C_{1}} \left| \frac{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} + 1}{\sqrt{\frac{\left(7 + 4Cr^{2}\right)}{3}} - 1} \right|^{\left(-\beta - 1.5\right)} \right],$$

$$N_{7} = \frac{2\left(\frac{4\left(1+Cr^{2}\right)}{3}\right)^{\left(\frac{1}{4}\right)}\left(\sqrt{\frac{\left(7+4Cr^{2}\right)}{3}}+1\right)}{\left(\sqrt{\frac{\left(7+4Cr^{2}\right)}{3}}-1\right)^{2}},$$

$$M_{4} = \frac{1}{2} \begin{bmatrix} \frac{4(1+Cr^{2})}{3} \begin{pmatrix} \frac{3}{4} \end{pmatrix} \begin{bmatrix} \frac{4}{3} + \frac{4}{3} \left(\sqrt{\frac{(7+4Cr^{2})}{3}} + 1 \right) \\ \frac{(1+Cr^{2})}{3} \end{pmatrix} \begin{bmatrix} \frac{4}{3} + \frac{4}{3} \left(\sqrt{\frac{(7+4Cr^{2})}{3}} + 1 \right) \\ \frac{(1+Cr^{2})}{3} \end{pmatrix} \begin{bmatrix} \frac{4}{3} + \frac{4}{3} \left(\sqrt{\frac{(7+4Cr^{2})}{3}} + 1 \right) \\ \frac{(1+Cr^{2})}{3} \end{pmatrix} \begin{bmatrix} \frac{4}{3} + \frac{4}{3} \left(\sqrt{\frac{(7+4Cr^{2})}{3}} + 1 \right) \\ \frac{(1+Cr^{2})}{3} \end{pmatrix} \begin{bmatrix} \frac{1}{3} \end{pmatrix} \end{bmatrix} \\ \frac{(1+Cr^{2})}{3} \begin{pmatrix} \frac{4}{3} + \frac{2}{3} \left(\frac{4(1+Cr^{2})}{3} \right) \end{bmatrix} \\ \frac{(1+Cr^{2})}{3} \begin{pmatrix} \frac{4}{3} + \frac{2}{3} \left(\frac{4(1+Cr^{2})}{3} \right) \end{bmatrix} \\ \frac{(1+Cr^{2})}{3} \end{pmatrix} = \frac{(1+Cr^{2})}{3} \begin{pmatrix} \frac{1}{3} \end{pmatrix}$$

$$M_{5} = \frac{-8(\beta - 0.5)}{3\sqrt{\frac{(7 + 4Cr^{2})}{3}} \left(\sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1\right)^{2}} \left|\frac{\sqrt{\frac{(7 + 4Cr^{2})}{3}} + 1}{\sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1}\right|^{(\beta - 1.5)},$$

$$\begin{split} M_{6} &= \frac{8(\beta + 0.5)}{3\sqrt{\frac{(7 + 4Cr^{2})}{3}} \left(\sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1\right)^{2}} \left| \sqrt{\frac{(7 + 4Cr^{2})}{3}} + 1 \right|^{(-\beta - 1.5)}, \\ &\left| \sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1 \right|^{2} \left[\frac{2}{3} \left(\frac{4(1 + Cr^{2})}{3}\right)^{-\frac{3}{4}} \left(\sqrt{\frac{(7 + 4Cr^{2})}{3}} + 1\right) + \frac{4}{3} \left(\frac{4(1 + Cr^{2})}{3}\right)^{\frac{1}{4}} \right] \right] \\ &\left| \sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1 \right|^{2} \left[\frac{2}{3} \left(\frac{4(1 + Cr^{2})}{3}\right)^{-\frac{1}{2}} \left(\sqrt{\frac{(7 + 4Cr^{2})}{3}} + 1\right) + \frac{4}{3} \left(\frac{4(1 + Cr^{2})}{3}\right)^{\frac{1}{4}} \right] \right] \\ &\left| \sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1 \right|^{2} \left(\frac{\sqrt{(7 + 4Cr^{2})}}{3} + 1 \right) \left(\frac{4(1 + Cr^{2})}{3}\right)^{-\frac{1}{2}} \left(\sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1 \right) \left(\frac{(7 + 4Cr^{2})}{3}\right)^{-\frac{1}{2}} \right) \\ &\left| \sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1 \right|^{4} \\ &\left| \sqrt{\frac{(7 - 4Cr^{2})}{3}} - 1 \right|^{(\beta - 2.5)} \end{split}$$

$$M_{8} = \frac{-8(\beta - 0.5)(\beta - 1.5)}{3\sqrt{\frac{(7 + 4Cr^{2})}{3}}\left(\sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1\right)^{2}} \left|\frac{\sqrt{\frac{(7 + 4Cr^{2})}{3}} + 1}{\sqrt{\frac{(7 + 4Cr^{2})}{3}} - 1}\right|^{(\beta - 2.5)}$$

,

The expression for velocity of sound can be had from the equations (2.25) and (2.26) as

(2.27)
$$\frac{dp}{c^2 d\rho} = \frac{dp/dr}{c^2 d\rho/dr}$$

and the expression of mass

(2.28)
$$m(r) = \frac{r}{2} \left[1 - \frac{\left(7 + 4Cr^2\right)}{7\left(1 + Cr^2\right)} \right],$$

such that

$$e^{-\lambda} = 1 - \frac{2m}{r} + \frac{q^2}{r^2}.$$

3. Physical Conditions to be Satisfied

The physical validity of the charged fluid sphere (CFS) depends upon the following conditions (called reality conditions or energy conditions) inside and on the sphere r = a such that

(i)
$$\rho > 0, \quad 0 \le r \le a,$$

(ii)
$$p > 0, r < a,$$

(iii)
$$p = 0, r = a,$$

- (iv) dp/dr < 0, $d\rho/dr < 0$, 0 < r < a
- (v) $c^2 \rho \ge p$ weak energy condition (WEC) or $c^2 \rho \ge 3p$ strong energy condition (SEC) $0 \le r \le a$.
- (vi) The velocity of sound $(dp/d\rho)^{1/2}$ should be less than that of light throughout the CFS ($0 \le r \le a$).

(vii)
$$\frac{d}{dr} \left(\frac{p}{c^2 \rho} \right) < 0.$$

(viii) $\frac{d}{dr} \left(\frac{dp}{c^2 d \rho} \right) < 0.$

(ix) The adiabatic constant
$$\gamma = \left(\left(\frac{c^2 \rho + p}{p} \right) \left(\frac{dp}{c^2 d\rho} \right) \right) > 1$$
.

Beside the above the smooth joining with the Reissner- Nordström metric, requires the continuity of e^{λ} , e^{ν} and q across the pressure free interface r = a and we get

(3.1)
$$\frac{7(1+Ca^2)}{(7+4Ca^2)} = 1 - \frac{2m(a)}{a} + \frac{e^2}{a^2}$$

(3.2)
$$y^2 = 1 - \frac{2m(a)}{a} + \frac{e^2}{a^2},$$

(3.3)
$$p_{(r=a)} = 0.$$

The condition (3.1) is automatically satisfied due to the preposition (2.6) however (3.2) and (3.3) can provide the unique values of arbitrary constants C_1 and C_2 .

4. Conclusion

So, we have been successful in obtaining the uncharged analogues of neutral fluid by considering a spherically symmetric metric with t = const as hyperboloid $K = \left(\frac{7}{4}\right)$ which is well behaved for $0 < Ca^2 \le 0.3259$. Maximum mass and the corresponding radius are found to be $0.343121 M_{\odot}$ and 9.576299 Km for $Ca^2 = 0.3259$. The red shift at the centre and on the surface are given as 0.076792 and 0.037879 respectively. The adiabatic constant(γ) always more then 4/3, which is sufficient condition for the stability of the model. Heintzmann and Hillebrandt¹³ proposed that neutron star models with anisotropic equation of state are stable if $\gamma > 4/3$. In the absence of charge the model reduces to the model obtained by Gupta and Jasim³.

$$D = \frac{8\pi G}{c^2} a^2 \rho, \ P = \frac{8\pi G}{c^4} a^2 p,$$

$$c = 2.997 \times 10^{10} \ cm/s, G = 6.673 \times 10^{-8} \ cm^3/gs^2, M_{\odot} = 1.475 \ km^3/gs^2,$$

where γ denotes the adiabatic constant and it is given by the expression $\gamma = \left(\left(\frac{c^2 \rho + p}{p} \right) \left(\frac{dp}{c^2 d\rho} \right) \right) \cdot z_0$ and z_a are red shift at the centre and surface r = a respectively. q stands for charge.

<i>Radius</i> = 1.550058 <i>Km</i> , $M = 0.00157 \text{IM}_{\odot}, z_0 = 0.001767, z_a = 0.001015$								
Х	(P)	(D)	(D-3P)	(q)	$dp/c^2 d ho$	P/D	γ	
0	0.000016	0.009	0.008953	0	0.150447	0.001737	86.74692	
0.2	0.000015	0.008998	0.008953	0	0.150442	0.001667	90.37198	
0.4	0.000013	0.008993	0.008954	0	0.150424	0.001458	103.3186	
0.6	0.00001	0.008985	0.008955	0	0.150396	0.00111	135.6846	
0.8	0.000006	0.008973	0.008956	0	0.150355	0.000623	241.4125	
1	0	0.008958	0.008958	0	0.150301	0	Inf	

Table1: $Ca^2 = 0.007$

Table 2: $Ca^2 = 0.01$

$Radius = 1.850827 Km, M = 0.00267 M_{\odot}, z_0 = 0.002523 z_a = 0.001446$									
х	(P)	(D)	(D-3P)	(q)	$dp/c^2 d ho$	P/D	γ		
0	0.000032	0.012857	0.012762	0	0.150637	0.002474	61.03306		
0.2	0.000031	0.012854	0.012762	0	0.150629	0.002375	63.58682		
0.4	0.000027	0.012843	0.012763	0	0.150605	0.002076	72.70729		
0.6	0.00002	0.012826	0.012766	0	0.150564	0.001579	95.50795		
0.8	0.000011	0.012802	0.012768	0	0.150506	0.000886	169.9882		
1	0	0.012772	0.012772	0	0.150429	0	Inf		

<i>Radius</i> = 5.683255 <i>Km</i> , $M = 0.075315M_{\Theta}$, $z_0 = 0.024715$, $z_a = 0.013521$								
х	(P)	(D)	(D-3P)	(q)	$dp/c^2 d ho$	P/D	γ	
0	0.00291	0.128571	0.119842	0	0.155919	0.022633	7.045012	
0.2	0.002777	0.128229	0.119898	0	0.155861	0.021657	7.352728	
0.4	0.002387	0.127211	0.120049	0	0.155674	0.018768	8.450453	
0.6	0.001767	0.125541	0.12024	0	0.155314	0.014076	11.18929	
0.8	0.000955	0.123261	0.120395	0	0.154709	0.00775	20.11606	
1	0	0.120425	0.120425	0	0.153769	0	Inf	

Table 3: $Ca^2 = 0.1$

Table 4: $Ca^2 = 0.2$

$Radius = 7.788896Km, M = 0.189235M_{\odot}, z_0 = 0.048364, z_a = 0.025218$								
Х	(P)	(D)	(D-3P)	<i>(q)</i>	$dp/c^2d\rho$	P/D	γ	
0	0.010624	0.257143	0.225271	0	0.160953	0.041315	4.056675	
0.2	0.010078	0.255777	0.225542	0	0.160883	0.039403	4.243922	
0.4	0.008514	0.251745	0.226204	0	0.160614	0.033818	4.909944	
0.6	0.006127	0.245242	0.226862	0	0.159975	0.024983	6.563333	
0.8	0.003192	0.236586	0.22701	0	0.158709	0.013492	11.92217	
1	0	0.22619	0.22619	0	0.156507	0	Inf	

$Radius = 9.257469Km, M = 0.31142M_{\odot}, z_0 = 0.071058, z_a = 0.035438$								
х	(P)	(D)	(D-3P)	(q)	$dp/c^2 d\rho$	P/D	γ	
0	0.021969	0.385714	0.319807	0	0.165272	0.056957	3.066963	
0.2	0.020715	0.382647	0.320501	0	0.165225	0.054137	3.217194	
0.4	0.017196	0.373667	0.32208	0	0.164952	0.046019	3.749394	
0.6	0.012042	0.359428	0.323301	0	0.164082	0.033504	5.061399	
0.8	0.00606	0.34096	0.322779	0	0.162086	0.017774	9.281191	
1	0	0.319527	0.319527	0	0.158377	0	Inf	

Table 5: $Ca^2 = 0.3$

Table 6: $Ca^2 = 0.3259$

<i>Radius</i> =9.257469 <i>Km</i> , M =0.31142 M_{Θ} , z_0 =0.071058, z_a =0.035438								
х	(P)	(D)	(D-3P)	(q)	$dp/c^2 d\rho$	P/D	γ	
0	0.025391	0.419014	0.342841	0	0.16629	0.060597	2.910492	
0.2	0.023904	0.415397	0.343683	0	0.166254	0.057546	3.055321	
0.4	0.019754	0.404827	0.345567	0	0.16599	0.048795	3.567786	
0.6	0.013738	0.388142	0.346927	0	0.165065	0.035395	4.82859	
0.8	0.006854	0.366645	0.346082	0	0.162868	0.018695	8.874689	
1	0	0.341915	0.341915	0	0.158737	0	Inf	

References

- 1. D. D.Dionysiou, Equilibrium of a static charged perfect fluid spheres, *Astrophys. Space Sci.*, **85** (1982) 331.
- 2. P. S. Florides, The complete field of charged perfect fluid spheres and of other static spherically symmetric charged distributions, *J. Phys. A, Math. Gen.*, **16** (1983) 1419.
- 3. Y. K. Gupta and M. K. Jasim, On the most general accurte solutions for Buchdahl's fluid spheres, *Astrophys. Space Sci.*, **283** (2003) 337-346.
- 4. Y. K. Gupta and M. Kumar, On charged analogues of Buchdahl's type fluid spheres., *Astrophys. Space Sci.*, **299** (2005) 43-59.
- 5. Y. K. Gupta, Pratibha and M. K. Jasim, Similarity solutions for relativistic accelerating fluid plates of embedding class one using Symbolic Computation, *Adv. Studies Theor. Phys.*, **4** (2010) 449.
- 6. Y. K. Gupta and S. K. Maurya, A Class of charged analogues of Durgapal and Fuloria super dense star, *Astrophys Space Sci.*, **331(1)** (2010) 135-144.
- 7. Y. K. Gupta and S. K. Maurya, A class of regular and well behaved relativistic superdense star models, *Astrophys Space Sci.*, **332(1)** (2010) 155-162.
- 8. Y. K. Gupta, Pratibha and Jitendra Kumar, A new class of charged analogues of Vaidya's-Tikekar type super dense star, *Astrophys. Space Sci.*, **333(1)** (2011) 143-148.
- Jitendra Kumar and Y. K. Gupta, A class of new solutions of generalized charged analogues of Buchdahl's type super-dense star, *Astrophys. Space Sci.*, 345 (2013) 331-337.
- 10. Y. K. Gupta and Jitendra Kumar, A class of well behaved charged analogues of Vaidya-Tikekar type super-dense star, *Astrophys.Space Sci.*, **334** (2011) 273-279.
- 11. H. A. Buchdahl, General relativistic fluid spheres, *Phys. Rev.*, **116** (1959) 1027.
- 12. P. C. Vaidya and R. Tikekar, Exact relativistic model for a super dense star, J. Astrophysics Astrox., 3 (1982) 325.
- 13. H. Heintzmann and W. Hillebrandt, Astron. Astrophys., 38 (1975) 51.
- B. V. Ivanov, Static charged perfect fluid spheres in general relativity, *Phys. Rev. D.*, 65 (2002) 104001.