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Abstract: An analysis of unsteady MHD flow in a vertical channel 
embedded in a porous medium in the influence of a static transverse 

magnetic field 
0(0, ,0)B B is presented. The channel consisting two parallel 

plates which are stretched continuously in their own plane. One of the plates 
is permeable which subjected with a constant suction. The governing 
equations of motion and energy derived under usual Boussinesq 
approximations are nonlinear partial differential equations and solved with 
similarity transformations and Differential Transform Method (DTM). The 
effects of different physical parameters, namely Prandtl number Pr, Grashof 

number Gr, Hartmann number 𝑀, porosity parameter N and unsteadiness 
parameter S on the velocity and temperature distribution are computed, 
analyzed and shown through graphs. The suction velocity at the permeable 
plate can be implemented to control the skin friction at the plates of the 
channel. It is observed that higher order of unsteadiness in the stretching of 
plates enhances shear stress at both the plates. 
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1. Introduction 

MHD free-convection flows have great importance for the applications 
in the fields of planetary and terrestrial magnetospheres, aeronautics, 
chemical engineering, and electronics. The study of flow through porous 
medium is of great use in the fields of geophysics, agricultural engineering 
and technology. The interest in magnetohydrodynamics (MHD) convective 
flows with heat transfer is enhanced due to its importance in the design of 
MHD generators and accelerators in geophysics, in systems like 
underground water and energy storage. Study of flow over a stretching sheet 
has numerous significant importances in industrial, technological and 
engineering R & D. Extrusion processes, fibers spinning, manufacturing of 
plastic and rubber sheet, continuous casting and glass blowing are some of 
the examples of industrial applications of stretching of a surface in an 
ambient fluid. Flows past a stretching sheet have been extensively studied 
by several researchers theoretically and experimentally. The good amount of 
literature on MHD flow and heat transfer in porous medium has been 
generated by Eckert and Drake1, Bear2 , Jeffrey3 , Bansal4 and Schlichting5 . 
Vafai and Tien6 explained the effects of boundary and inertia on flow and 
heat transfer in porous media. Borkakoti and Bharali7 worked out the MHD 
flow and heat transfer of a conducting fluid in a horizontal parallel plates 
channel with upper plate is porous and lower one is stretching. Kim and 
Vafai8 analyzed natural convection about a vertical plate embedded in a 
porous media. Soundalgekar and Bhatt9 examined laminar convection flow 
through a porous medium between two vertical plates. Nakayama et al.10 
have studied free convection through a porous medium between two 
paralleled plate channels. Kim et al.11 considered free and forced convection 
through a porous medium between two paralleled plate channels. Attia and 
Kotb12 have considered MHD flow and heat transfer between two parallel 
plates. Sharma and Sharma13 discussed unsteady flow and heat transfer 
between two parallel plates. Sharma and Kumar14 investigated unsteady 
flow and heat transfer between two horizontal plates in the presence of 
transverse magnetic field. Al-Nimr and Haddad15 have elucidated the fully 
developed free convective flow in vertical channels with open ends and 
filled with porous material. Sharma and Mishra16 investigated Steady MHD 
flow in a horizontal channel. The lower plate is stretching sheet and upper 
being permeable plate bounded by porous medium partially. Sharma and 
Chaturvedi17 discussed unsteady flow and heat transfer of an electrically 
conducting viscous incompressible fluid between two non-conducting 
parallel porous plates under uniform transverse magnetic field. Sharma et al. 
18 studied unsteady flow and heat transfer of a viscous incompressible 
fluid between parallel porous plates with heat source/sink. Sharma et al.19 
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investigated unsteady plane poiseuille flow and heat transfer in the presence 
of oscillatory temperature of the lower plate.  

 
Sharma and Mehta20 investigated MHD Unsteady slip flow and heat 

transfer in a channel with slip at the permeable boundaries. Guria et al.21 
have discussed three-dimensional free convection flow in a vertical channel 
filled with a porous medium. Ishak22 investigated unsteady flow and heat 
transfer over a stretching plate in the presence transverse static magnetic 
field. Rashidi et al.23 have obtained the stream function and temperature 
profiles for magnetohydrodynamic flow in a laminar liquid film from a 
horizontal stretching surface using Differential Transform Method and Pade 
Approximant. Free convection flow in a vertical channel embedded in 
porous media in the presence of radiation is discussed by Das et al.24.  Jana 
et al.25 obtained convection of radiating gas in a vertical channel through 
porous media. Rath et al.26 observed three-dimensional free convection flow 
through porous medium in a vertical channel with heat source and chemical 
reaction. Kar et al.27 have considered three-dimensional free convection 
MHD flow in a vertical channel through a porous medium in presence of 
heat source and chemical reaction. Cai et al.28 has investigated unsteady 
convection flow and heat transfer over a vertical stretching surface. 
Unsteady MHD heat and mass transfer over a stretching sheet in porous 
medium with variable physical properties considering viscous dissipation 
and chemical reaction have been investigated by Hunegnaw et al.29. Prakash 
et al.30 has investigated unsteady MHD flow over a vertical stretching plate 
embedded in a non-Darcy porous medium with non-uniform heat 
generation. Sharma and Mehta31 has analyzed oscillatory flow of a viscous 
electrically conducting fluid and heat transfer through porous medium filled 
in a vertical channel in the presence of chemical reaction and heat source. 
The aim of the present study is to investigate the unsteady MHD flow and 
heat transfer through continuously stretching vertical channel embedded in a 
porous medium subjected to a uniform suction on one permeable plate.  

 

2. Formulation of the Problem  
 

The present model (Figure1) consist two parallel vertical plates of semi-

infinite length placed at a distance H apart. The x-axis is taken vertically 

upward and y-axis is normal to it in the horizontal direction. One of the 

plates is taken along x-axis and the second plate is placed at a distance H in 

positive direction of y -axis. The plate at y H is impermeable while the 

plate at 0y  is permeable subjected under time dependent suction. The 

http://www.jourlib.org/search?kw=Anuar%20Ishak&searchField=authors
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cai%20W%5Bauth%5D
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temperature on both the plates is time dependent. Both the plates are 

stretched continuously in their own plane in positive x-direction with 

 

 

velocity
 1

bx
U

at



. A static transverse magnetic field 0(0, ,0)B B of 

moderate intensity is applied. The current density J  is defined by the 

generalized Ohm’s law is given by ( )J E V B   . Under the assumption 

of moderate magnetic field, the induced electric field is assumed to be 

negligible; therefore the Lorenz force on the flow field is given 

by 2

0
ˆJ B B u i   , where,   is the electrical conductivity of the fluid. The 

plates are of semi-infinite length and flow is two dimensional, 

therefore 0, (.) 0w
z


 


. 

 

The equation of continuity for two-dimensional viscous incompressible 
fluid flows is  
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Figure 1. Geometry of the problem 
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(2.1)    0
u v

x y

 
 

 
    

                    

where ( , )u v are component of fluid velocity along x and y axis respectively. 

 
The governing equations of motion and heat equation for viscous 

incompressible fluid flow in the presence of magnetic field with usual 
Boussinesq approximation are given by 
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The associated boundary conditions are 
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(2.5)
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where, p the pressure,  the density of the fluid,   the viscosity of the 

fluid,  the thermal conductivity of the fluid, PC  specific heat of the fluid, 

  the coefficient of volumetric thermal expansion of fluid, T  temperature 

of the fluid, PT  the temperature of the permeable plate, HT  the    

temperature of the plate at y H ,  a  and b are positive constants with 

dimension 1( )time  , c and d are constants. 
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3. Method of Solution  

In order to solve the coupled non-linear partial differential equations 
(2.2) to (2.4), we introduce the following similarity transformation  

 

(3.1)  
 

1

2

1

b
y

at




 
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,      

               

(3.2)   

1

2

 
1

b
x f
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(3.3)  0

0

( )
H

T T

T T
 





 ,    here 0

( )

2

P HT T
T


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and the stream function  as (1 ) ( )u y bx at f     and 

(1 ) ( )v x b at f        , then the equation of continuity is identically 

satisfied. 
 
On eliminating the pressure term from the equation (2.2), (2.3) and 

invoking transformation given by (3.1) to (3.3), the equation of motion and 
heat equation are given by 

 

(3.4)   2 13 2 2 ,VS M N f S f f f ff f Gr                

    

(3.5)  [ 2 ] ( ) 1 Pr .S f f                  

                                                                       
Here, primes denote differentiation with respect to . The dimensionless 

parameters pertinent in the problem are, /S a b  the parameter of 

unsteadiness, 2( )(1 ) /Gr c d at g b    the Grashoff number,  
2 2

0 / ( )M B H   the Hartmann number, (1 ) / (b )N at      the 

porosity parameter, /pPr C   the Prandtl number and 

( ) / ( )c d c d    . The corresponding boundary conditions are 
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     (0) 1, (0) , (0) 1 0
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where, 
0 1V V at b   is suction/ injection parameter (for suction 0V  ) 

and (1 )b at H   . In particular, taking the dimensionless 

parameter 1  .  

 
The equations (3.4) and (3.5) are non-linear ordinary differential 

equations are attempted to solve by the Differential Transform Method, 
Zhou32. The fundamental results of the DTM are listed in the Appendix A.  
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   are the differential 

transform of ( )f   and ( )  respectively, then on applying DTM on the 

equations (3.4) and (3.5), the recurrence relations in transform space with 

parameter k  are  
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The boundary conditions at 0   are transformed into 
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(3.9)           (0) , (1) 1, (0) 1F V F                       

 

The boundary conditions at 1   are transformed into 
 

(3.10)  
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Since, initial values of ( ) , ( ) and ( )f f      are unknown, therefore 

(2), (3) and (1)F F  are not known. Let, 1 2 1(2) , (3) , (1)F a F a b   
 

where 1,a 2a and 1b  are unknown constants, to be determined by using 

prescribed boundary conditions.  
 

For 0,1,......5,k   the equations (3.7) and (3.8) gives   
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Under these values in the inversion of ( )F k and ( )k , the expression for 

( )f   and ( )   are given by 
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The boundary conditions at 1  , gives the following the following 

system of non-linear algebraic equations in the unknowns 1a , 2a  and 1b is 

obtained 
 

(3.13)  
2 2
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.

L a L a L b L a L b L a b L a b

L a a L a b L

     

  
   

            

where, 1K to 8K ; 1N  to 8N  and 1L to 10L  are constants whose expressions 

for the sake of brevity are not mentioned here. Using MATLAB, the system 
of equations (3.13) to (3.15) are solved numerically using modified 

Newton’s Method for the unknown constants 1a , 2a  and 1b  at each set of 

physical parameters pertinent to the model. The effects of different physical 
parameters on the velocity and temperature profiles are computed and 
analyzed through graphs. 

4. Skin Friction Coefficient 

 The non-dimensional shearing stress in terms of local skin-friction 
coefficient is obtained on the surface of the channel and computed values 
are given in the Table-1. 
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   (4.1)   
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 
 
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
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5. Nusselt Number 

 
The non-dimensional coefficient of heat transfer is derived on the 

surface of the channel and computed values are given in the Table-2. 
 

(5.1)     
0 0/ ( ) ( ) / ( ).H H

T
Nu q x T T x T T

y
   


    


 

 
 

Table 1: Numerical values of skin friction coefficient on the surface of the channel for 
various values of physical parameters 

 

S
 

M  N  Gr  Pr
 

V  fC (at 

η=0) 

fC (at 

η=1) 

1.2 2 2 10 0.1 -1.5 0.8454 -5.1388 

0.5 2 2 10 0.1 -1.5 0.8120 -5.1044 

1.2 5 2 10 0.1 -1.5 0.9537 -5.0406 

1.2 8 2 10 0.1 -1.5 1.0468 -5.0151 

1.2 2     0.1 10 0.1 -1.5 0.7724 -5.2121 

1.2 2 1 10 0.1 -1.5 0.8072 -5.1776 

1.2 2 2 20 0.1 -1.5 0.2791 -6.3574 

1.2 2 2 30 0.1 -1.5 -0.2460 -7.3061 

1.2 2 2 10 0.71 -1.5 1.0218 -5.1065 

1.2 2 2 10 1 -1.5 1.1089 -4.9695 

1.2 2 2 10 0.1 -0.5 -2.0267 3.3215 

1

.2 

2 2 10 0.1 -2.5 3.5556 -13.1213 

1

.2 

2 2 10 0.1 -3.5 5.9870 -21.9102 
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Table 2: Numerical values of Nusselt number on the surface of the channel for various 
values of physical parameters 

 

S  M  N  Gr  Pr  V  Nu (at η=0) Nu (at η=1) 

1.2 2 2 10 0.1 -1.5 1.7284 2.3590 

0.5 2 2 10 0.1 -1.5 1.7766 2.2704 

1.2 5 2 10 0.1 -1.5 1.7284 2.3590 

1.2 8 2 10 0.1 -1.5 1.7287 2.3573 

1.2 2 0.1 10 0.1 -1.5 1.7285 2.3579 

1.2 2 1 10 0.1 -1.5 1.7285 2.3585 

1.2 2 2 20 0.1 -1.5 1.7275 2.3674 

1.2 2 2 30 0.1 -1.5 1.7267 2.3739 

1.2 2 2 10 0.71 -1.5 0.5468 4.7686 

1.2 2 2 10 1 -1.5 0.1931 6.0544 

1.2 2 2 10 0.1 -0.5 1.8540 2.2261 

1.2 2 2 10 0.1 -2.5 1.6020 2.5434 

1.2 2 2 10 0.1 -3.5 1.4788 2.7609 

 

 

 

                   Fig 2. Variation in velocity with unsteadiness parameter S   

                               at Pr =0.1; M =2; N =2; V =-1.5; Gr =10;  =1.5 
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Fig 3. Variation in velocity with Magnetic parameter M  

at Pr =0.1; N =2; S =1.2; V =-1.5; Gr =10;   =1.5 
 

 

Fig 4. Variation in velocity with porosity parameter N  

at Pr =0.1; M =2; S =1.2; V =-1.5; Gr =10; =1.5. 
 

 

Fig 5. Variation in velocity with Grashof number Gr  

at Pr =0.1; M =2; N =2; S =1.2; V =-1.5; =1.5 
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Fig 6. Variation in velocity with Prandtl number Pr  

at M =2; S =1.2; V =-1.5; Gr =10; N =2;   =1.5 
 

 

Fig 7. Variation in velocity with Suction parameter V  

at Pr =0.1; M =2; N =2; S =1.2; Gr =10;   =1.5 

 

Fig 8. Variation in temperature with unsteadiness parameter S  

at Pr =0.1; M =2; N =2; V =10; Gr =10;   =1.5 
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Fig 9. Variation in temperature with Magnetic parameter M  

at Pr =0.1; N =2; S =1.2; V =-1.5; Gr =10; =1.5 

 

 

Fig 10. Variation in temperature with porosity parameter N  

at Pr =0.1; M =2; S =1.2; V =-1.5; Gr =10; =1.5 

 

Fig 11. Variation in temperature with Grashof number Gr  

at Pr =0.1; M =2; N =2; S =1.2; V =-1.5;  =1.5 
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Fig 12. Variation in temperature with Prandtl number Pr  

at M =2; N =2; S =1.2; V =-1.5; Gr =10;   =1.5 

 

 

 
Fig 13. Variation in temperature with Suction parameter V  

at Pr =0.1; M =2; N =2; S =1.2; Gr =10;  =1.5 

 

6. Results and Discussion 

The effects of different physical parameters on the skin friction 
coefficient and Nusselt number at both the plates are computed and 
tabulated in the Table1and Table2, respectively. Table1 demonstrates the 

increase of unsteadiness parameter ( )S  the magnitude of skin-friction 

coefficient enhanced at both the plates. The magnitude of skin-friction 

coefficient increases with the increase of Hartmann number ( )M and 

porosity parameter ( )N  at the permeable plate while decreases at the non 

permeable plate. Increase in the value of Grashof number ( )Gr  the 

magnitude of skin-friction coefficient decreases at the permeable plate while 
increases at the non permeable plate. Increase in the value of Prandtl 
number ( )Pr the magnitude of skin-friction coefficient increases at the 

permeable plate, while it decreases at non permeable plate. When the 
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Suction at the permeable plate is increases the magnitude of skin friction 
coefficient enhanced significantly at both plates. 

  
Table 2 demonstrates that with the increase of unsteadiness parameter 

and Grashof number the magnitude of heat transfer coefficient ( )Nu  

decreases at the permeable plate and increases at the non permeable plate. 
Increase of Hartmann number slightly increases the magnitude of heat 
transfer coefficient at the permeable plate and slightly decreases at the non 
permeable plate. The meager effect of magnetic field on convection of heat 
can be explained in the way that the magnetic field is weak and the Joule 
effect in the energy equation was not included.  With the increase of 
porosity parameter the magnitude of heat transfer coefficient slightly 
decreases at the permeable plate and slightly increases at the non permeable 
plate. The increase of Prandtl number the magnitude of coefficient of heat 
transfer decreases significantly at the permeable plate and increases 
significantly at the non permeable plate. With the increase of Suction at 
permeable plate the convective heat transfer decreases at the permeable 
plate and increases at the non permeable plate. 

 

Fig. 2 and Fig. 4 show that for small variations in the value of 
unsteadiness parameter and porosity parameter the changes in the profiles of 

)(f  are less effective. Figure 3, shows that with the increase in Hartmann 

number )(f  increases in the vicinity of the permeable plate while 

decreases in region close to non permeable wall. Fig. 5 shows that with the 

increase in Grashof number )(f  decreases in the proximity of the 

permeable plate while increases in region close to non permeable wall. In 
Fig. 6 the same trend has been observed with the increase in the Prandtl 
number. Fig. 7 shows that on increasing suction at the permeable plate the 

)(f  increases significantly. Fig. 8, Fig. 9, Fig. 10 and Fig. 11 show that 

for small variations in the value of unsteadiness parameter, Hartmann 
number, porosity parameter, and Grashof number are less effective on the 

temperature profiles ( )  . Fig. 12 shows that the temperature profiles 

decreases significantly with increase in the value of Prandtl number. Fig. 13 
shows that with the increase in suction velocity the temperature of the fluid 
in the channel decreases.  

7. Conclusions  

1. The suction velocity at the permeable plate can be implemented to 

control the skin friction at the plates of the channel. 
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2. The higher order of unsteadiness in the stretching of plates enhances 

shear stress at both the plates. 

3. In the stretching channel with one permeable plate, the effect of 

transverse magnetic field on the flow near to plate subjected to suction is 

reversed to the Lorenzian effect at non permeable plate.   

4. The heat convection from the permeable plate subjected to a suction 

reduces with increase of Prandtl number while enhanced significantly at 

the non permeable plate. 
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Appendix A: The fundamental mathematical operations under DTM 

 

Function Differential transform 

     u x f x g x 
 

     U k F x G x 
 

   u x g x
 

   U k G x
 

 
 g x

u x
x


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  
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  mu x x
    

1

0

at k m
U k k m

otherwise



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  

     u x f x g x
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r
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       1 2 ... mu x f x f x f x
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