On Hypersurface of a Finsler Space with a Special Metric

Vivek Kumar Pandey

Department of Mathematics, University of Allahabad Allahabad-211002, India

Email: vivekpandey9415@gmail.com

(Received May 06, 2017)

Abstract: In the present paper, we find necessary and sufficient conditions for a hypersurface of a Finsler space with a special metric $L = \frac{\alpha^2 + \beta^2}{\alpha + \beta}$, where $\alpha = (a_{ij}(x)y^iy^j)^{1/2}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a differential 1–form on a smooth manifold, to be

hyperplane of the first kind, the second kind and the third kind.

Keywords: Finsler space, Riemannian metric, (α, β) – metric, hypersurface, hyperplane.

2010 MS Classification No.: 53B40, 53C60.

1. Introduction

In 1972, Makoto Matsumoto¹ proposed the concept of (α, β) -metric, where $\alpha = (a_{ij}(x)y^i y^j)^{1/2}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a differential 1-form on a smooth manifold. He obtained induced and intrinsic Finsler connections² of a hypersurface of the Finsler space in 1985. M. Hashiguchi and Y. Ichijyo³ in 1975 and C. Shibata⁴ in 1984 studied Finsler spaces with different (α, β) -metrics. In 1992, Makoto Matsumoto⁵ also worked on the theory of Finsler spaces with (α, β) -metric and obtained many important and interesting results. In 1980, H. Wosoughi⁶ studied the theory of hypersurface of special Finsler space with an exponential (α, β) -metric. L. Y. Lee, H. Y. Park and Y. D. Lee⁷ also studied the theory of hypersurface of a special Finsler space with a metric $\alpha + \frac{\beta^2}{\alpha}$. In 2008, M. K. Gupta and P. N. Pandey⁸ studied the hypersurface of the Finsler space equipped with a Randers conformal metric. M. K. Gupta, Abhay Singh and P. N. Pandey⁹ worked on the hypersurface of a Finsler space with a special metric $\frac{\alpha^2}{\alpha - \beta} + \beta$ and obtained certain geometrical properties of the hypersurface of the Finsler space in 2013.

In this paper, we study the hypersurface of a special Finsler space F_n equipped with the metric function $L = (\alpha^2 + \beta^2)/(\alpha + \beta)$ and obtain necessary and sufficient conditions for the hypersurface to be a hyperplane of the first kind, the second kind and the third kind. We use the notations of the monograph of Makoto Matsumoto¹⁰.

2. Preliminaries

Let $F_n = (M_n, L)$ be an *n*-dimensional Finsler space on a smooth manifold M_n equipped with the fundamental metric function

(2.1)
$$L = \frac{\alpha^2 + \beta^2}{\alpha + \beta} = \alpha + \beta - \frac{2\alpha\beta}{\alpha + \beta},$$

where $\alpha = (a_{ij}(x)y^i y^j)^{1/2}$ be a Riemannian metric and $\beta = b_i(x)y^i$ be a differential 1-form on M_n .

Differentiating (2.1) partially with respect to α and β , we get

(2.2)
$$\begin{cases} L_{\alpha} = \frac{\alpha^2 - \beta^2 + 2\alpha\beta}{(\alpha + \beta)^2}, \quad L_{\beta} = \frac{\beta^2 - \alpha^2 + 2\alpha\beta}{(\alpha + \beta)^2} \\ L_{\alpha\alpha} = \frac{4\beta^2}{(\alpha + \beta)^3}, \quad L_{\beta\beta} = \frac{4\alpha^2}{(\alpha + \beta)^3}, \quad L_{\alpha\beta} = \frac{-4\alpha\beta}{(\alpha + \beta)^3}, \end{cases}$$

where

(2.3)
$$L_{\alpha} = \frac{\partial L}{\partial \alpha}, \ L_{\beta} = \frac{\partial L}{\partial \beta}, \ L_{\alpha\alpha} = \frac{\partial^2 L}{\partial \alpha^2}, \ L_{\beta\beta} = \frac{\partial^2 L}{\partial \beta^2}, \ L_{\alpha\beta} = \frac{\partial^2 L}{\partial \alpha \partial \beta}.$$

The normalized element of support $l_i = \dot{\partial}_i L$ is given by

(2.4)
$$l_i = \alpha^{-1} L_\alpha y_i + L_\beta b_i,$$

where $y_i = a_{ij} y^j$.

(2.5)
$$h_{ij} = p_0 a_{ij} + q_0 b_i b_j + q_{-1} (b_i y_j + b_j y_i) + q_{-2} y_i y_j,$$

where p_0 , q_0 , q_{-1} and q_{-2} are given by

(2.6)
$$\begin{cases} p_{0} = LL_{\alpha}\alpha^{-1} = \frac{\alpha^{4} - \beta^{4} + 2\alpha^{3}\beta + 2\alpha\beta^{3}}{\alpha(\alpha + \beta)^{3}}, \\ q_{0} = LL_{\beta\beta} = \frac{4\alpha^{4} + 4\alpha^{2}\beta^{2}}{(\alpha + \beta)^{4}}, \\ q_{-1} = LL_{\alpha\beta}\alpha^{-1} = -\frac{4\alpha^{2}\beta + 4\beta^{3}}{(\alpha + \beta)^{4}}, \\ q_{-2} = L\alpha^{-2}(L_{\alpha\alpha} - L_{\alpha}\alpha^{-1}) = \frac{(\alpha^{2} + \beta^{2})(\beta^{3} - \alpha^{3} + 3\alpha\beta^{2} - 3\alpha^{2}\beta)}{\alpha^{3}(\alpha + \beta)^{4}}. \end{cases}$$

The fundamental metric tensor $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2$ of F_n is given by

(2.7)
$$g_{ij} = p_0 a_{ij} + d_0 b_i b_j + p_{-1} (b_i y_j + b_j y_i) + p_{-2} y_i y_j,$$

where d_0 , p_{-1} and p_{-2} are given by

(2.8)
$$\begin{cases} d_0 = q_0 + L_{\beta}^2 = \frac{5\alpha^4 + \beta^4 + 6\alpha^2 \beta^2 + 4\alpha\beta^3 - 4\alpha^3\beta}{(\alpha + \beta)^4}, \\ p_{-1} = q_{-1} + \frac{1}{L} p_0 L_{\beta} = -\frac{\alpha^4 + \beta^4 + 4\alpha^3\beta + 4\alpha\beta^3 - 6\alpha^2\beta^2}{\alpha(\alpha + \beta)^4}, \\ p_{-2} = q_{-2} + p_0^2 L^{-2} = \frac{\beta^5 + 4\alpha\beta^4 - 6\alpha^2\beta^3 + 4\alpha^3\beta^2 + 4\alpha^4\beta}{\alpha^3(\alpha + \beta)^4}. \end{cases}$$

The inverse metric tensor g^{ij} of g_{ij} is given by

(2.9)
$$g^{ij} = p_0^{-1} a^{ij} - s_0 b^i b^j - s_{-1} (b^i y^j + b^j y^i) - s_{-2} y^i y^j.$$

Here b^i , s_0 , s_{-1} and s_{-2} are given as

(2.10)
$$\begin{cases} b^{i} = a^{ij}b_{j}, \\ s_{0} = \frac{p_{0}d_{0} + (d_{0}p_{-2} - p_{-1}^{2})\alpha^{2}}{\xi p_{0}}, \\ s_{-1} = \frac{p_{0}p_{-1} + (d_{0}p_{-2} - p_{-1}^{2})\beta^{2}}{\xi p_{0}}, \\ s_{-2} = \frac{p_{0}p_{-2} + (d_{0}p_{-2} - p_{-1}^{2})b^{2}}{\xi p_{0}}, \end{cases}$$

where $b^2 = a_{ij}b^i b^j$ and $\xi = p_0(p_0 + d_0b^2 + p_{-1}\beta) + (d_0p_{-2} - p_{-1}^2)(\alpha^2 b^2 - \beta^2).$

The components of the Cartan tensor $C_{ijk} = \frac{1}{2} \dot{\partial}_k g_{ij}$ of the Finsler space F_n is given by

(2.11)
$$2p_0C_{ijk} = p_{-1}(h_{ij}m_k + h_{jk}m_i + h_{ki}m_j) + \gamma_1m_im_jm_k$$

where

(2.12)
$$\gamma_1 = p_0 \frac{\partial d_0}{\partial \beta} - 3p_{-1}q_0, \qquad m_i = b_i - \frac{1}{\alpha^2}\beta y_i$$

Let $\begin{cases} i \\ jk \end{cases}$ denote the components of Christoffel symbol of the associated *n*-dimensional Riemannian space \mathbb{R}^n and ∇_k be the covariant differential operator with respect to x^k relative to the connection $\begin{cases} i \\ jk \end{cases}$.

Let us consider the following tensors

(2.13)
$$2E_{ij} = b_{ij} + b_{ji}, \qquad 2F_{ij} = b_{ij} - b_{ji},$$

where $b_{ij} = \nabla_j b_i$. If the Cartan connection of the space F_n be $C\Gamma = (F_{jk}^i, G_j^i, C_{jk}^i)$, then the difference tensor $D_{jk}^i = F_{jk}^i - \left\{\begin{smallmatrix} i\\ jk \end{smallmatrix}\right\}$ is given by

$$(2.14) D_{jk}^{i} = B^{i}E_{jk} + F_{k}^{i}B_{j} + F_{j}^{i}B_{k} + B_{j}^{i}b_{0k} + B_{k}^{i}b_{0j} - b_{0m}g^{im}B_{jk} - C_{jm}^{i}A_{k}^{m} - C_{km}^{i}A_{j}^{m} + C_{jkm}A_{s}^{m}g^{is} + \lambda^{s}(C_{jm}^{i}C_{sk}^{m} + C_{km}^{i}C_{sj}^{m} - C_{jk}^{m}C_{ms}^{i}),$$

where

(2.15)
$$\begin{cases} B_{i} = d_{0}b_{i} + p_{-1}y_{i}, \quad B^{i} = g^{ij}B_{j}, \quad F_{i}^{k} = g^{kj}F_{ji}, \\ B_{ij} = \frac{p_{-1}(a_{ij} - \alpha^{-2}y_{i}y_{j}) + (\partial d_{0} / \partial \beta)m_{i}m_{j}}{2}, \\ A_{j}^{m} = B_{j}^{m}E_{00} + B^{m}E_{j0} + B_{j}F_{0}^{m} + B_{0}F_{j}^{m}, \quad B_{j}^{m} = g^{mi}B_{ij}, \\ \lambda^{i} = B^{i}E_{00} + 2B_{0}F_{0}^{i}. \end{cases}$$

The suffix '0' indicates the transvection by y^i except for the quantities p_0, d_0, q_0 and s_0 .

3. Induced Cartan Tensor

Let M_{n-1} be the hypersurface of the underlying manifold M_n and suppose that it is represented parametrically by the equations (3.1) $x^i = x^i(u^{\alpha}), \quad i = 1, 2, \dots, n \text{ and } \alpha = 1, 2, \dots, n-1,$ where u^{α} form a coordinate system of M_{n-1} .

Let $B_{\alpha}^{i} = \frac{\partial x^{i}}{\partial u^{\alpha}}$ be the projection factors¹¹ and supposed that the matrix $||B_{\alpha}^{i}||$ of the projection factors is of rank (n-1). If y^{i} , the supporting element, is assumed to be taken tangential to M_{n-1} at a point $u = (u^{\alpha})$ of M_{n-1} then it may be written in terms of the projection factors such as $y^{i} = B_{\alpha}^{i}(u) w^{\alpha}$. Here w^{α} is a supporting element of M_{n-1} at the point u^{α} . Hence the function $\underline{L}(u,w) = L(x(u), y(u,w))$ induces a metric function on M_{n-1} . Therefore, we obtain an (n-1) – dimensional Finsler space $F_{n-1} = (M_{n-1}, \underline{L})$.

In the space F_{n-1} , the metric tensor $g_{\alpha\beta}$ and the Cartan tensor $C_{\alpha\beta\gamma}$ are given by

(3.2)
$$g_{\alpha\beta} = g_{ij}B^i_{\alpha}B^j_{\beta}, \qquad C_{\alpha\beta\gamma} = C_{ijk}B^i_{\alpha}B^j_{\beta}B^k_{\gamma}.$$

A unit normal vector $N^{i}(u, w)$ at point $u = (u^{\alpha})$ is defined by

(3.3)
$$\begin{cases} g_{ij}(x(u), y(u, w))B_{\alpha}^{i}N^{j} = 0, \\ g_{ij}(x(u), y(u, w))N^{i}N^{j} = 1. \end{cases}$$

The angular metric tensor $h_{ij} = g_{ij} - l_i l_j$ satisfy the conditions

(3.4)
$$\begin{cases} h_{\alpha\beta} = h_{ij}B^{i}_{\alpha}B^{j}_{\beta}, \\ h_{ij}B^{i}_{\alpha}N^{j} = 0, \\ h_{ij}N^{i}N^{j} = 1. \end{cases}$$

The inverse projection factors $B_i^{\alpha}(u, w)$ of $B_{\alpha}^i(u, w)$ are defined by

$$(3.5) B_i^{\alpha} = g^{\alpha\beta} g_{ij} B_{\beta}^j,$$

where $g^{\alpha\beta}$ is the inverse metric tensor of $g_{\alpha\beta}$ of F_{n-1} . From (3.3) and (3.5), we have

(3.6)
$$B^i_{\alpha}B^{\beta}_i = \delta^{\beta}_{\alpha}, \quad B^i_{\alpha}N_i = 0, \quad N^iN_i = 1$$

and

$$(3.7) B^i_{\alpha}B^{\alpha}_j + N^iN_j = \delta^i_j.$$

For the induced Cartan connection $IC\Gamma = (F^{\alpha}_{\beta\gamma}, G^{\alpha}_{\beta}, C^{\alpha}_{\beta\gamma})$ of the hypersurface F_{n-1} , the second fundamental h-tensor $H_{\alpha\beta}$ and the normal curvature vector H_{α} are given as

(3.8)
$$H_{\alpha\beta} = N_i (B^i_{\alpha\beta} + F^i_{jk} B^j_{\alpha} B^k_{\beta}) + M_{\alpha} H_{\beta}$$

and

(3.9)
$$H_{\alpha} = N_i (B_{0\alpha}^i + G_j^i B_{\alpha}^j),$$

where

(3.10)
$$\begin{cases} M_{\alpha} = C_{ijk} B^{i}_{\alpha} N^{j} N^{k} \\ B^{i}_{\alpha\beta} = \frac{\partial^{2} x^{i}}{\partial u^{\alpha} \partial u^{\beta}} \quad \text{and} \quad B^{i}_{0\alpha} = B^{i}_{\beta\alpha} w^{\beta}. \end{cases}$$

From (3.8) it is clear that the second fundamental h-tensor $H_{\alpha\beta}$ is not symmetric. Hence

$$(3.11) H_{\alpha\beta} - H_{\beta\alpha} = M_{\alpha}H_{\beta} - M_{\beta}H_{\alpha}.$$

Equations (3.8) and (3.9) yield

(3.12)
$$H_{0\alpha} = H_{\beta\alpha} w^{\beta} = H_{\alpha}, \quad H_{\alpha 0} = H_{\alpha\beta} w^{\beta} = H_{\alpha} + M_{\alpha} H_{0}.$$

The second fundamental v – tensor $M_{\alpha\beta}$ is defined by

(3.13)
$$M_{\alpha\beta} = C_{ijk} B^i_{\alpha} B^j_{\beta} N^k.$$

The relative h – and v – covariant differentiation of the projection factor $B^i_{\alpha}(u, w)$ and the unit normal vector $N^i(u, w)$ with respect to the induced Cartan connection *IC* Γ are given by

$$(3.14) B^{i}_{\alpha|\beta} = H_{\alpha\beta}N^{i}, B^{i}_{\alpha}|_{\beta} = M_{\alpha\beta}N^{i}$$

and

$$(3.15) N^i_{|\beta} = -H_{\alpha\beta}B^{\alpha}_i g^{ji}, N^i_{|\beta} = -M_{\alpha\beta}B^{\alpha}_i g^{ji}.$$

Let us assume that $X_i(x, y)$ be a contra-variant vector field in the Finsler space F_n . The relative h- and v-covariant differentiation for $X_i(x, y)$ are given by

(3.16)
$$X_{i|\beta} = X_{i|j}B_{\beta}^{j} + X_{i|j}N^{j}H_{\beta}, \qquad X_{i}|_{\beta} = X_{i}|_{j}B_{\beta}^{j}.$$

Makato Matsumoto² studied the different types of hyperplanes and obtained the following characteristic conditions:

Lemma 3.1. A hypersurface F_{n-1} is a hyperplane of the first kind if and only if $H_{\alpha} = 0$ or equivalently $H_0 = 0$.

Lemma 3.2. A hypersurface F_{n-1} is a hyperplane of the second kind if and only if $H_{\alpha\beta} = 0$.

Lemma 3.3. A hypersurface F_{n-1} is a hyperplane of the third kind if and only if $H_{\alpha\beta} = 0$ & $M_{\alpha\beta} = 0$

4. Hypersurface $F_{n-1}(c)$ of the Finsler Space F_n with the

Metric
$$L = \frac{\alpha^2 + \beta^2}{\alpha + \beta} = \alpha + \beta - \frac{2\alpha\beta}{\alpha + \beta}$$

Let us consider a special metric $L = \frac{\alpha^2 + \beta^2}{\alpha + \beta}$ such that $b_i(x) = \frac{\partial b}{\partial x^i}$ for a scalar function b(x). Let the hypersurface $F_{n-1}(c)$ be given by the equation b(x) = c, where c is a constant. From the parametric equation $x^i = x^i(u^{\alpha})$ of the hypersurface $F^{n-1}(c)$, we obtain $b_i B^i_{\alpha} = 0$. This implies that $b_i(x)$ are covariant components of a normal vector field of $F_{n-1}(c)$. So, along the hypersurface $F_{n-1}(c)$, we have

(4.1)
$$b_i B_{\alpha}^i = 0, \qquad b_i y^i = 0.$$

Therefore in general, the induced metric $\underline{L}(u, w)$ of $F_{n-1}(c)$ is given by

(4.2)
$$\underline{L}(u,w) = \sqrt{a_{\alpha\beta}(u)w^{\alpha}w^{\beta}},$$

where $a_{\alpha\beta}(u) = a_{ij}(x(u), y(u, w))B^i_{\alpha}B^j_{\beta}$. Clearly (4.2) is a Riemannian metric.

At a point of the hypersurface $F^{n-1}(c)$, from (2.6), (2.8) and (2.10), we obtain

(4.3)
$$\begin{cases} p_0 = 1, \ q_0 = 4, \ q_{-1} = 0, \ q_{-2} = -\frac{1}{\alpha^2}, \\ d_0 = 5, \ p_{-1} = -\frac{1}{\alpha}, \ p_{-2} = 0, \ \xi = 1 + 4b^2, \\ s_0 = \frac{4}{(1+4b^2)}, \ s_{-1} = -\frac{1}{\alpha(1+4b^2)}, \ s_{-2} = -\frac{b^2}{\alpha^2(1+4b^2)}. \end{cases}$$

From (2.9) and (4.3), the inverse metric tensor g^{ij} is given by

(4.4)
$$g^{ij} = a^{ij} - \frac{4}{(1+4b^2)} b^i b^j + \frac{1}{\alpha(1+4b^2)}$$
$$(b^i y^j + b^j y^i) + \frac{b^2}{\alpha^2(1+4b^2)} y^i y^j.$$

Along the hypersurface $F_{n-1}(c)$, (4.1) and (4.4) yield

(4.5)
$$g^{ij}b_ib_j = \frac{b^2}{(1+4b^2)},$$

which gives

(4.6)
$$b_i(x(u)) = \left(\frac{b}{\sqrt{1+4b^2}}\right) N_i,$$

where b is the length of the vector b^i .

From (4.4) and (4.5), we obtain

(4.7)
$$b^{i} = a^{ij}b_{j} = b\left(\sqrt{(1+4b^{2})}\right)N^{i} - \frac{b^{2}}{\alpha}y^{i}.$$

This leads to

Theorem 4.1: Let $F_n = (M_n, L)$ be an n-dimensional Finsler space with the fundamental metric $L = \frac{\alpha^2 + \beta^2}{\alpha + \beta}$ on a smooth manifold M_n such that the vector b_i is a gradient vector, i.e. $b_i(x) = \partial_i b$. If $F_{n-1}(c)$ be a hypersurface of the space F_n given by the equation b(x) = c (constant), then the induced metric $\underline{L}(u,w)$ of $F_{n-1}(c)$ is a Riemannian metric given by (4.2) and the scalar function b(x) is given by (4.6) and (4.7).

Along the hypersurface $F_{n-1}(c)$, the angular metric tensor h_{ij} and the metric tensor g_{ij} are given by

(4.8)
$$h_{ij} = a_{ij} + 4b_i b_j - \frac{1}{\alpha^2} y_i y_j$$

and

(4.9)
$$g_{ij} = a_{ij} + 5b_i b_j - \frac{1}{\alpha} (b_i y_j + b_j y_i),$$

respectively.

Let $h_{\alpha\beta}^{(a)}$ be the angular metric tensor corresponding to the Riemannian metric $a_{ii}(x)$. Using (3.4), (4.1) and (4.8), we get

$$(4.10) h_{\alpha\beta} = h_{\alpha\beta}^{(a)}.$$

From (2.8), we obtain

(4.11)
$$\frac{\partial d_0}{\partial \beta} = \frac{24\alpha^3\beta - 24\alpha^4}{(\alpha + \beta)^5}.$$

Along the hypersurface $F_{n-1}(c)$, (4.11) gives

(4.12)
$$\frac{\partial d_0}{\partial \beta} = \frac{-24}{\alpha}.$$

Therefore (2.12) gives us

(4.13)
$$\gamma_1 = -\frac{12}{\alpha}, \qquad m_i = b_i.$$

In view of (4.12) and (4.13), the Cartan tensor C_{ijk} becomes

(4.14)
$$C_{ijk} = -\frac{1}{2\alpha} (h_{ij}b_k + h_{jk}b_i + h_{ki}b_j) - \frac{6}{\alpha} b_i b_j b_k.$$

From (3.4), (3.13), (4.1) and (4.14), the second fundamental v – tensor $M_{\alpha\beta}$ can be written as

(4.15)
$$M_{\alpha\beta} = -\frac{1}{2\alpha} \left(\frac{b}{\sqrt{1+4b^2}} \right) h_{\alpha\beta}.$$

Using (3.4), (3.13), (4.1) and (4.14) in (3.10), we get

(4.16) $M_{\alpha} = 0.$

Thus, (3.11) implies

(4.17)
$$H_{\alpha\beta} = H_{\beta\alpha}.$$

Therefore, we conclude

Theorem 4.2: The second fundamental v – tensor $M_{\alpha\beta}$ of a hypersurface F_{n-1} of the Finsler space F_n with the fundamental metric (2.1) is given by (4.15) and the second fundamental h – tensor $H_{\alpha\beta}$ is symmetric.

Taking the covariant derivative of (4.1) with respect to the induced connection, we get

$$(4.18) b_{i|\beta}B^i_{\alpha} + b_iB^i_{\alpha|\beta} = 0.$$

Using (3.16) for the vector b_i , we get

(4.19)
$$b_{i|\beta} = b_{i|j}B_{\beta}^{j} + b_{i}|_{j}N^{j}H_{\beta}.$$

From (4.18), (4.19) and using the fact $B^i_{\alpha|\beta} = H_{\alpha\beta}N^i$, we obtain

(4.20)
$$b_{i|j}B^{i}_{\alpha}B^{j}_{\beta} + b_{i}|_{j}B^{i}_{\alpha}N^{j}H_{\beta} + b_{i}N^{i}H_{\alpha\beta} = 0.$$

Since $b_i \mid_j = -b_r C_{ij}^r$, using (3.10), (4.6) and (4.16) in (4.20), we get

(4.21)
$$\left(\frac{b}{\sqrt{1+4b^2}}\right)H_{\alpha\beta} + b_{i|j}B^i_{\alpha}B^j_{\beta} = 0.$$

Since $H_{\alpha\beta}$ is symmetric, (4.21) implies that $b_{i|j}$ is also symmetric. Transvecting (4.21) with w^{β} , we get

(4.22)
$$\left(\frac{b}{\sqrt{1+4b^2}}\right)H_{\alpha} + b_{i|j}B_{\alpha}^i y^j = 0.$$

Again transvecting (4.22) with w^{α} , we obtain

(4.23)
$$\left(\frac{b}{\sqrt{1+4b^2}}\right)H_0 + b_{i|j}y^iy^j = 0.$$

In view of the Lemma 3.1 and (4.23), hypersurface F_{n-1} is the hyperplane of first kind if and only if the condition

(4.24)
$$b_{i|j} y^i y^j = 0$$

holds.

Since $b_i(x)$ is a gradient vector, (2.13) reduces to

(4.25) $E_{ij} = b_{ij}, \quad F_{ij} = 0.$

From (2.14) and (4.25), we have

$$(4.26) D_{jk}^{i} = B^{i}b_{jk} + B^{i}_{j}b_{0k} + B^{i}_{k}b_{0j} - b_{0m}g^{im}B_{jk} - C^{i}_{jm}A^{m}_{k} - C^{i}_{km}A^{m}_{j} + C_{jkm}A^{m}_{s}g^{is} + \lambda^{s}(C^{i}_{jm}C^{m}_{sk} + C^{i}_{km}C^{m}_{sj} - C^{m}_{jk}C^{i}_{ms}).$$

In view of (4.3) and (4.4), (2.15) becomes

(4.27)
$$\begin{cases} B_{i} = 5b_{i} - \frac{1}{\alpha} y_{i}, \quad B^{i} = \frac{5}{(1+4b^{2})} b^{i} - \frac{1}{\alpha(1+4b^{2})} y^{i}, \quad F_{i}^{k} = 0, \\ B_{ij} = -\frac{1}{2\alpha} (a_{ij} - \frac{1}{\alpha^{2}} y_{i} y_{j} + 24b_{i} b_{j}), \\ A_{j}^{m} = B_{j}^{m} b_{00} + B^{m} b_{j0}, \quad B_{j}^{m} = g^{mi} B_{ij} \\ \lambda^{i} = B^{i} b_{00}. \end{cases}$$

From (4.1), we have $B_{i0} = 0$ and $B_0^i = 0$ which gives $A_0^m = B^m b_{00}$. Contracting (4.26) with y^k , we have

(4.28)
$$D_{j0}^{i} = B^{i}b_{j0} + B_{j}^{i}b_{00} - B^{m}C_{jm}^{i}b_{00}.$$

Contracting (4.28) with y^{j} , we obtain

(4.29)
$$D_{00}^{i} = B^{i}b_{00} = \left(\frac{5}{(1+4b^{2})}b^{i} - \frac{1}{\alpha(1+4b^{2})}y^{i}\right)b_{00}.$$

Contracting (4.28) by b_i and then using (4.1) & (4.27), we find

(4.30)
$$b_i D_{j0}^i = \frac{5b^2}{(1+4b^2)} b_{j0} - \frac{(1+24b^2)}{2\alpha(1+4b^2)} b_{00} b_j - \frac{5}{(1+4b^2)} b^m C_{jm}^i b_i b_{00}.$$

Contracting (4.29) by b_i and using (4.1), we obtain

(4.31)
$$b_i D_{00}^i = \frac{5b^2}{(1+4b^2)} b_{00}.$$

The covariant derivatives of the vector b_i with respect to x^j relative to the Cartan connection $C\Gamma$ and the Riemannian connection are given by

(4.32) (a)
$$b_{i|j} = \partial_j b_i - b_r F_{ij}^r$$
, (b) $b_{ij} = \nabla_j b_i = \partial_j b_i - b_r \left\{ {}^r_{ij} \right\}$

respectively. Subtracting (4.32 a) and (4.32 b), we get

(4.33)
$$b_{i|j} = b_{ij} - b_r D_{ij}^r$$

where $D_{ij}^r = F_{ij}^r - \left\{ \begin{smallmatrix} r \\ ij \end{smallmatrix} \right\}.$

Contracting (4.33) by $y^i y^j$ and using (4.31), we obtain

(4.34)
$$b_{i|j} y^i y^j = \left(\frac{1-b^2}{1+4b^2}\right) b_{00}.$$

Therefore, with the help of (4.34), (4.23) may be written as

(4.35)
$$\left(\frac{b}{\sqrt{1+4b^2}}\right)H_0 + \left(\frac{1-b^2}{1+4b^2}\right)b_{00} = 0.$$

From (4.35), it is clear that the hypersurface $F_{n-1}(c)$ of the space F_n is hyperplane of first kind if and only if $b_{00}(=b_{ij}y^iy^j)$ vanishes. Since y^i satisfying (4.1) and quantity b_{ij} does not depend on the directional argument y^i , hence $b_{ij}y^iy^j = 0$ may be written as

(4.36)
$$b_{ij}y^i y^j = (b_i y^i)(c_j y^j)$$

for some $c_i(x)$. Thus, we have

(4.37)
$$2b_{ij} = b_i c_j + b_j c_i.$$

Transvecting (4.37) with $B^i_{\alpha}B^j_{\beta}$ and using (4.1), we get

$$(4.38) b_{ii}B^i_{\alpha}B^j_{\beta}=0.$$

Again transvecting (4.37) with $B^i_{\alpha} y^j$ and using (4.1), we obtain

(4.39)
$$b_{ij}B^i_{\alpha}y^j = 0$$

From (4.27) and (4.37), we have

(4.40)
$$\begin{cases} B_{ij}B_{\alpha}^{i}B_{\beta}^{j} = -\frac{1}{2\alpha}h_{\alpha\beta}, \ \lambda^{i} = 0, \\ A_{j}^{i}B_{\beta}^{j} = 0, \quad b_{i0}b^{i} = \frac{1}{2}b^{2}c_{0}, \end{cases}$$

where $b_{i0} = b_{ij} y^{j}$.

From (3.13), (4.5), (4.7), (4.15), (4.26), (4.27), (4.38), (4.39) and (4.40), we have

(4.41)
$$b_{s}D_{ij}^{s}B_{\alpha}^{i}B_{\beta}^{j} = -\frac{c_{0}b^{2}(b^{2}-1)}{4\alpha(1+4b^{2})}h_{\alpha\beta}.$$

Since $b_{i|j}B^i_{\alpha}B^j_{\beta} = -b_s D^s_{ij}B^i_{\alpha}B^j_{\beta}$ for the hypersurface $F_{n-1}(c)$, from (4.21) and (4.41), we obtain

(4.42)
$$\left(\frac{b}{\sqrt{1+4b^2}}\right)H_{\alpha\beta} + \frac{c_0b^2(b^2-1)}{4\alpha(1+4b^2)}h_{\alpha\beta} = 0.$$

This implies that $H_{\alpha\beta} \propto h_{\alpha\beta}$. Hence, we have

Theorem 4.3: Let F_n be a Finsler space equipped with a metric (2.1). A hypersurface $F_{n-1}(c)$ of the Finsler space F_n is hyperplane of the first kind if and only if the condition (4.37) holds. Further in this case, the second fundamental h-tensor $H_{\alpha\beta}$ of the hypersurface $F_{n-1}(c)$ is proportional to its angular metric tensor $h_{\alpha\beta}$.

According to Lemma 3.2, the necessary and sufficient condition for a hypersurface $F_{n-1}(c)$ of the Finsler space F_n is $H_{\alpha\beta} = 0$, i.e. the second fundamental h-tensor $H_{\alpha\beta}$ vanishes. Thus, from (4.42), we find

$$(4.43) c_0 = c_i(x)y^i = 0$$

This implies that there exists a function $\varphi(x)$ which satisfies $c_i(x) = \varphi(x)b_i(x)$. Hence, equation (4.37) gives us

$$(4.44) b_{ii} = \varphi(x)b_ib_i.$$

Thus, we have

Theorem 4.4. Let F_n be a Finsler space equipped with a metric (2.1). A hypersurface $F_{n-1}(c)$ of the Finsler space F_n is hyperplane of the second kind if and only if the condition (4.44) holds.

Further, in view of Lemma 3.3 and (4.15) & (4.16), we find that the hypersurface $F_{n-1}(c)$ is not a hyperplane of the third kind.

Thus, we have

Theorem 4.5 Let F_n be a Finsler space equipped with a metric (2.1). Then the hypersurface $F_{n-1}(c)$ of the Finsler space F^n is not a hyperplane of the third kind.

References

- 1. Makoto Matsumoto, On C-reducible Finsler Spaces, Tensor N. S., 24 (1972) 29-37.
- 2. Makoto Matsumoto, The Induced and Intrinsic Connections of a Hypersurface and Finslerian Projective Geometry, J. Math. Kyoto Univ., 25 (1974) 477-498.
- M. Hashiguchi and Y. Ichijyo, On Some Special (α, β) metric, *Reports of a Faculty of Science of Kagashima University*, 8 (1975) 39-46.
- C. Shibata, On Finsler Spaces with an (α, β) metric, *Journal of HokkaidoUniversity of Education. Section II*, **35(1)** (1984) 1-16.
- 5. Makoto Matsumoto, Theory of Finsler spaces with (α, β) metrics, *Rep. Math. Phys.* **31** (1992) 43-83.
- H. Wogoughi, On a Hypersurface of Special Finsler Space with an exponential (α, β) metric, *International Journal of Contemporary Mathematical Sciences*, 6 (2011) 1969-1980.
- 7. L. Y. Lee, H. Y. Park and Y. D. Lee, On a Hypersurface of a Special Finsler Space with a Metric $\alpha + \beta^2 / \alpha$, *Korean Journal of Mathematical Sciences*, **8(1)** (2001) 93-101.

- 8. M. K. Gupta and P. N. Pandey, On Hypersurface of a Finsler Space with Randers Conformal Metric, *Tensor N. S.*, **70(3)** (2008) 229-240.
- 9. M. K. Gupta, Abhay Singh and P. N. Pandey, On a Hypersurface of a Finsler Space with Randers Change of Matsumoto Metric, *Geometry*, **2013** (2013) 6pages.
- 10. Makoto Matsumoto, *Foundations of Finsler Geometry and Special Finsler Spaces*, Kaisheisha Press, Shigaken, 1986.
- 11. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959.