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Abstract: In the present paper, we find necessary and sufficient 

conditions for a hypersurface of a Finsler space with a special metric 
2 2

,L
 

 





where 1/2( ( ) )i j

ija x y y   is a Riemannian metric and 

( ) i

ib x y   is a differential 1 form on a smooth manifold, to be 

hyperplane of the first kind, the second kind and the third kind. 
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1. Introduction 
 

 In 1972, Makoto Matsumoto1 proposed the concept of ( , )  metric, 

where 1/2( ( ) )i j

ija x y y   is a Riemannian metric and ( ) i

ib x y   is a differential 

1 form on a smooth manifold. He obtained induced and intrinsic Finsler 

connections2 of a hypersurface of the Finsler space in 1985. M. Hashiguchi 

and Y. Ichijyo3 in 1975 and C. Shibata4 in 1984 studied Finsler spaces with 

different ( , )  metrics. In 1992, Makoto Matsumoto5 also worked on the 

theory of Finsler spaces with ( , )  metric and obtained many important and 

interesting results. In 1980, H. Wosoughi6 studied the theory of hypersurface 

of special Finsler space with an exponential ( , )  metric. L. Y. Lee, H. Y. 

Park and Y. D. Lee7 also studied the theory of hypersurface of a special Finsler 

space with a metric 
2




 . In 2008, M. K. Gupta and P. N. Pandey8 studied 

the hypersurface of the Finsler space equipped with a Randers conformal 

metric. M. K. Gupta, Abhay Singh and P. N. Pandey9 worked on the 

mailto:vivekpandey9415@gmail.com
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hypersurface of a Finsler space with a special metric 
2


 




 and obtained 

certain geometrical properties of the hypersurface of the Finsler space in 

2013. 
 

 In this paper, we study the hypersurface of a special Finsler space 
nF  

equipped with the metric function 2 2( ) / ( )L        and obtain necessary 

and sufficient conditions for the hypersurface to be a hyperplane of the first 

kind, the second kind and the third kind. We use the notations of the 

monograph of Makoto Matsumoto10.   

 

2. Preliminaries 

 

Let ( , )n nF M L  be an n  dimensional Finsler space on a smooth 

manifold nM  equipped with the fundamental metric function 

 

(2.1)   
2 2 2

L
  

 
   


   

 
, 

 

where 1/2( ( ) )i j

ija x y y   be a Riemannian metric and ( ) i

ib x y   be a 

differential 1-form on  nM . 

 

Differentiating (2.1) partially with respect to   and  , we get 

 

(2.2)   

2 2 2 2

2 2

2 2

3 3 3

2 2
,
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where 
 

(2.3)   
2 2 2

2 2
, , , , .

L L L L L
L L L L L    

     

    
    
     

 

 

The normalized element of support i il L   is given by 
 

(2.4)   1

i i il L y L b    , 
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where .j

i ijy a y  

 

(2.5)   
0 0 1 2( ) ,ij ij i j i j j i i jh p a q bb q b y b y q y y       

 

where 0p , 0 1,q q  and 2q  are given by  

 

(2.6)      
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The fundamental metric tensor 
21

2
ij i jg L    of nF  is given by 

 

(2.7)   
0 0 1 2( ) ,ij ij i j i j j i i jg p a d bb p b y b y p y y       

 

where 0 ,d  1p  and 2p  are given by 

  

(2.8)   

4 4 2 2 3 3
2

0 0 4

4 4 3 3 2 2

1 1 0 4

5 4 2 3 3 2 4
2 2

2 2 0 3 4

5 6 4 4
,

( )

1 4 4 6
,

( )

4 6 4 4
.

( )

d q L

p q p L
L

p q p L





      

 

      

  

       

  

 



 

    
  



    

   


    
  



  

 

The inverse metric tensor 
ijg  of ijg  is given by 

 

(2.9)   1

0 0 1 2( ) .ij ij i j i j j i i jg p a s b b s b y b y s y y

       

 

Here 0 1, ,ib s s  and 2s  are given as 
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(2.10)   

2 2

0 0 0 2 1
0

0

2 2

0 1 0 2 1
1

0

2 2

0 2 0 2 1
2

0

,

( )
,

( )
,

( )
,

i ij

jb a b

p d d p p
s

p

p p d p p
s

p

p p d p p b
s

p











 

  


  


 


 



  



  




 

 

where 2 i j

ijb a b b  and 2 2 2 2 2

0 0 0 1 0 2 1( ) ( )( ).p p d b p d p p b             
 

The components of the Cartan tensor 
1

2
ijk k ijC g   of the Finsler space 

nF  is given by 
 

(2.11)   
0 1 12 ( )ijk ij k jk i ki j i j kp C p h m h m h m m m m      

 

where  
 

(2.12)   0
1 0 1 0 2

1
3 , .i i i

d
p p q m b y 

 



   


   

 

       Let   i

jk
 denote the components of Christoffel symbol of the associated 

ndimensional Riemannian space nR  and k  be the covariant differential 

operator with respect to 
kx  relative to the connection  i

jk
.  

 

        Let us consider the following tensors 
 

(2.13)                    2 , 2 ,ij ij ji ij ij jiE b b F b b     

 

where  .ij j ib b   If the Cartan connection of the space nF  be 

( , , )i i i

jk j jkC F G C  , then the difference tensor  i i i

jk jk jkD F   is given by 

  

(2.14)   
0 0

i i i i i i

jk jk k j j k j k k jD B E F B F B B b B b      

         
0

( ),

im i m i m m is

m jk jm k km j jkm s

s i m i m m i

jm sk km sj jk ms

b g B C A C A C A g

C C C C C C

   

  
  

where  
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(2.15)   

0 1

2

1 0

00 0 0 0

00 0 0

, , ,

( ) ( / )
,

2

, ,

2 .

i ij k kj

i i i j i ji

ij i j i j

ij

m m m m m m mi

j j j j j j ij

i i i

B d b p y B g B F g F
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B

A B E B E B F B F B g B

B E B F

 









    


   



     

  

  

 

The suffix ‘0’ indicates the transvection by 
iy  except for the quantities 

0 0 0, ,p d q  and 0s . 

 

3. Induced Cartan Tensor 

       Let 1nM   be the hypersurface of the underlying manifold  nM  and 

suppose that it is represented parametrically by the equations 

(3.1)   ( ), 1,2,....... and 1,2,.......n 1i ix x u i n     ,  

where u
 form a coordinate system of 1nM  . , 

 Let 
i

i x
B

u
 





 be the projection factors11 and supposed that the matrix 

|| ||iB  of the projection factors is of rank ( 1)n  . If 
iy , the supporting 

element, is assumed to be taken tangential to 1nM   at a point ( )u u  of 1nM   

then it may be written in terms of the projection factors such as ( )i iy B u w



. Here w
 is a supporting element of 1nM   at the point u


. Hence the function 

( , ) ( ( ), ( , ))L u w L x u y u w  induces a metric function on 1nM  . Therefore, we 

obtain an ( 1)n   dimensional Finsler space 1 1( , )n nF M L  .  
 

In the space 1nF  , the metric tensor g  and the Cartan tensor C  are 

given by 
 

(3.2)   ,i j i j k

ij ijkg g B B C C B B B        . 

 

A unit normal vector ( , )iN u w  at point ( )u u  is defined by 

 

(3.3)   
( ( ), ( , )) 0,

( ( ), ( , )) 1.

i j

ij

i j

ij

g x u y u w B N

g x u y u w N N
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The angular metric tensor 
ij ij i jh g l l   satisfy the conditions 

 

(3.4)   

,

0,

1.

i j

ij

i j

ij

i j

ij

h h B B

h B N

h N N

  



 







  

 

The inverse projection factors ( , )iB u w
 of ( , )iB u w  are defined by  

 

(3.5)   ,j

i ijB g g B 

  

 

where g
 is the inverse metric tensor of g  of 1nF  . 

 

From (3.3) and (3.5), we have 
 

(3.6)   , 0, 1i i i

i i iB B B N N N 

      
 

and 
 

(3.7)   .i i i

j j jB B N N

    

 

For the induced Cartan connection ( , , )IC F G C  

    of the 

hypersurface 1nF  , the second fundamental h tensor H   and the normal 

curvature vector H  are given as 
 

(3.8)   ( )i i j k

i jkH N B F B B M H         
 

and 
 

(3.9)   
0( ),i i j

i jH N B G B      

 

where        
 

(3.10)   2

0and .

i j k

ijk

i
i i i

M C B N N

x
B B B w

u u

 



   

 

 

 
 

  

 

From (3.8) it is clear that the second fundamental h tensor H  is not 

symmetric. Hence  

 

(3.11)   .H H M H M H           



     On Hypersurface of a Finsler Space with a Special Metric          137 
 
 

Equations (3.8) and (3.9) yield 
 

(3.12)   
0 0 0, .H H w H H H w H M H 

            

 

The second fundamental v  tensor M   is defined by 

 

(3.13)   i j k

ijkM C B B N   . 

 

The relative h  and v  covariant differentiation of the projection factor 

( , )iB u w  and the unit normal vector ( , )iN u w  with respect to the induced 

Cartan connection IC  are given by 
 

(3.14)   
| , |i i i iB H N B M N        

 

and 
 

(3.15)   
| , | .i ji i ji

i iN H B g N M B g 

        

 

      Let us assume that ( , )iX x y  be a contra-variant vector field in the Finsler 

space nF . The relative h  and v  covariant differentiation for ( , )iX x y  are 

given by 
 

(3.16)   
| | | , | | .j j j

i i j i j i i jX X B X N H X X B        

 

       Makato Matsumoto2 studied the different types of hyperplanes and 

obtained the following characteristic conditions: 

 

Lemma 3.1. A hypersurface 1nF   is a hyperplane of the first kind if and 

only if 0H   or equivalently 0 0.H   
 

Lemma 3.2. A hypersurface 1nF  is a hyperplane of the second kind if and 

only if 0.H   

 

Lemma 3.3. A hypersurface 1nF  is a hyperplane of the third kind if and 

only if 0H   & 0M   

 

 

 

 



            138                         Vivek Kumar Pandey 
 
 

 

4. Hypersurface 
1
( )

n
F c

  of the Finsler Space 
n

F  with the 

Metric 
2 2

2
L

  
 

   


   

 
 

 

        Let us consider a special metric 
2 2

L
 

 





 such that ( )i i

b
b x

x





 for a 

scalar function ( )b x . Let the hypersurface  1( )nF c  be given by the equation 

( )b x c , where c  is a constant. From the parametric equation ( )i ix x u  of 

the hypersurface 
1( )nF c

, we obtain 0.i

ib B   This implies that ( )ib x  are 

covariant components of a normal vector field of 1( )nF c . So, along the 

hypersurface 1( )nF c , we have 

 

(4.1)   0, 0.i i

i ib B b y    

 

Therefore in general, the induced metric ( , )L u w  of 1( )nF c  is given by 

 

(4.2)   ( , ) ( )L u w a u w w 

 , 

 

where ( ) ( ( ), ( , )) i j

ija u a x u y u w B B   . Clearly (4.2) is a Riemannian metric. 

 

At a point of the hypersurface 
1( )nF c

, from (2.6), (2.8) and (2.10), we 

obtain 
 

(4.3)   

0 0 1 2 2

2

0 1 2

2

0 1 22 2 2 2

1
1, 4, 0, ,

1
5, , 0, 1 4 ,

4 1
, , .

(1 4 ) (1 4 ) (1 4 )

p q q q

d p p b

b
s s s

b b b






 

 

 

 


    




     



    
  

  

 

From (2.9) and (4.3), the inverse metric tensor 
ijg  is given by 

 

(4.4)   
2 2

4 1

(1 4 ) (1 4 )

ij ij i jg a b b
b b

  
 

 

 

2

2 2
( ) .

(1 4 )

i j j i i jb
b y b y y y

b
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Along the hypersurface 1( )nF c , (4.1) and (4.4) yield 
 

(4.5)   
2

2(1 4 )

ij

i j

b
g bb

b



,  

 

which gives  
 

(4.6)   
2

( ( )) ,
1 4

i i

b
b x u N

b

 
  

 
  

 

where b  is the length of the vector .ib  
 

From (4.4) and (4.5), we obtain  
 

(4.7)    
2

2(1 4 ) .i ij i i

j

b
b a b b b N y


     

 

This leads to  

 

Theorem 4.1: Let ( , )n nF M L  be an n  dimensional Finsler space with 

the fundamental metric 
2 2

L
 

 





 on a smooth manifold nM  such that the 

vector ib  is a gradient vector, i.e. ( )i ib x b  . If 1( )nF c  be a hypersurface of 

the space nF  given by the equation ( )b x c (constant), then the induced 

metric ( , )L u w  of 1( )nF c  is a Riemannian metric given by (4.2) and the 

scalar function ( )b x  is given by (4.6) and (4.7). 

 

      Along the hypersurface 1( )nF c , the angular metric tensor ijh  and the 

metric tensor ijg  are given by 
 

(4.8)   
2

1
4ij ij i j i jh a b b y y


    

 

and 
 

(4.9)   
1

5 ( )ij ij i j i j j ig a b b b y b y


    ,  

 

respectively. 
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     Let ( )ah  be the angular metric tensor corresponding to the Riemannian 

metric ( )ija x . Using (3.4), (4.1) and (4.8), we get 

 

(4.10)   ( )ah h  .  

 

From (2.8), we obtain 
 

(4.11)   
3 4

0

5

24 24
.

( )

d   

  

 


 
 

 

Along the hypersurface 1( )nF c , (4.11) gives 

 

(4.12)   0 24
.

d

 

 



 

 

Therefore (2.12) gives us 
 

(4.13)   
1

12
, .i im b


    

 

In view of (4.12) and (4.13), the Cartan tensor ijkC  becomes 

 

(4.14)   
1 6

( ) .
2

ijk ij k jk i ki j i j kC h b h b h b b b b
 

      

 

From (3.4), (3.13), (4.1) and (4.14), the second fundamental v  tensor M   

can be written as 
 

(4.15)   
2

1

2 1 4

b
M h

b
 



 
   

 
. 

 

Using (3.4), (3.13), (4.1) and (4.14) in (3.10), we get 
 

(4.16)   0M  . 

 

Thus,  (3.11) implies 
 

(4.17)   H H  . 

 

Therefore, we conclude 
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Theorem 4.2: The second fundamental v  tensor M   of a hypersurface 

1nF   of the Finsler space nF  with the fundamental metric (2.1) is given by  

(4.15) and the second fundamental h tensor H  is symmetric. 

 

Taking the covariant derivative of (4.1) with respect to the induced 

connection, we get 
 

(4.18)   
| | 0.i i

i ib B b B       

 

Using  (3.16) for the vector ib , we get 
 

(4.19)   
| | | .j j

i i j i jb b B b N H     

 

From (4.18), (4.19) and using the fact 
|

i iB H N   , we obtain 

 

(4.20)   
| | 0.i j i j i

i j i j ib B B b B N H b N H          

 

Since | ,r

i j r ijb b C   using (3.10), (4.6) and (4.16) in (4.20), we get 

 

(4.21)   |
2

0.
1 4

i j

i j

b
H b B B

b
  

 
  

 
 

 

Since H  is symmetric, (4.21) implies that |i jb  is also symmetric. 

Transvecting (4.21) with w
, we get 

 

(4.22)   |
2

0.
1 4

i j

i j

b
H b B y

b
 

 
  

 
 

 

Again transvecting (4.22) with w
, we obtain 

 

(4.23)   0 |
2

0
1 4

i j

i j

b
H b y y

b

 
  

 
. 

 

In view of the Lemma 3.1 and (4.23), hypersurface 1nF   is the hyperplane of 

first kind if and only if the condition 
 

(4.24)                            
| 0i j

i jb y y   
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holds.  
 

Since ( )ib x  is a gradient vector, (2.13) reduces to 

 

(4.25)   , 0ij ij ijE b F  . 

 

 From (2.14) and (4.25), we have 
 

(4.26)   
0 0 0

i i i i im

jk jk j k k j m jkD B b B b B b b g B     

                  
( ).

i m i m m is

jm k km j jkm s

s i m i m m i

jm sk km sj jk ms

C A C A C A g

C C C C C C

  

  
 

 

In view of (4.3) and (4.4), (2.15) becomes 
 

(4.27)   

2 2

2

00 0

00

1 5 1
5 , , 0,

(1 4 ) (1 4 )

1 1
( 24 ),

2

,

.

i i i k

i i i i

ij ij i j i j

m m m m mi

j j j j ij

i i

B b y B b y F
b b

B a y y bb

A B b B b B g B

B b

 

 




      


    


  




  

  

From (4.1), we have 0 00 and 0i

iB B   which gives 
0 00.

m mA B b . 

Contracting (4.26) with 
ky , we have  

 

(4.28)   
0 0 00 00.

i i i m i

j j j jmD B b B b B C b    

 

Contracting (4.28) with 
jy , we obtain 

  

(4.29)   00 00 002 2

5 1
.

(1 4 ) (1 4 )

i i i iD B b b y b
b b

 
   

  
 

   

Contracting (4.28) by ib  and then using (4.1) & (4.27), we find 

 

(4.30)   
2 2

0 0 00 002 2 2

5 (1 24 ) 5
.

(1 4 ) 2 (1 4 ) (1 4 )

i m i

i j j j jm i

b b
b D b b b b C bb

b b b


  

  
 

 

Contracting (4.29) by ib  and using (4.1), we obtain 
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(4.31)   
2

00 002

5
.

(1 4 )

i

i

b
b D b

b



 

 

The covariant derivatives of the vector ib  with respect to 
jx  relative to the 

Cartan connection C  and the Riemannian connection are given by 
 

(4.32)   (a)     
|

r

i j j i r ijb b b F   ,    (b)    r

ij j i j i r ijb b b b     

 

respectively.  Subtracting (4.32 a) and (4.32 b), we get 
 

(4.33)   
|

r

i j ij r ijb b b D  , 

 

where   .r r r

ij ij ijD F   

 

Contracting (4.33) by 
i jy y  and using (4.31), we obtain 

 

(4.34)   
2

| 002

1

1 4

i j

i j

b
b y y b

b

 
  

 
.                  

 

Therefore, with the help of (4.34), (4.23) may be written as 
  

(4.35)   
2

0 0022

1
0

1 41 4

b b
H b

bb

   
    

   
.   

 

From (4.35), it is clear that the hypersurface 1( )nF c  of the space nF  is 

hyperplane of first kind if and only if 
00( )i j

ijb b y y  vanishes. Since 
iy  

satisfying (4.1) and quantity ijb  does not depend on the directional argument 

iy , hence 0i j

ijb y y   may be written as   

 

(4.36)   ( )( )i j i j

ij i jb y y b y c y  

 

for some ( )jc x . Thus, we have 

 

(4.37)   2 .ij i j j ib bc b c   

 

Transvecting (4.37) with i jB B   and using (4.1), we get 
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(4.38)   0i j

ijb B B   . 

 

Again transvecting (4.37) with 
i jB y  and using (4.1), we obtain 

 

(4.39)   0i j

ijb B y  . 

 

From (4.27) and (4.37), we have 
 

(4.40)   
2

0 0

1
, 0,

2

1
0, ,

2

i j i

ij

i j i

j i

B B B h

A B b b b c

  







  


  


 

 

where 
0 .j

i ijb b y     
 

From (3.13), (4.5), (4.7), (4.15), (4.26), (4.27), (4.38), (4.39) and (4.40), we 

have 
 

(4.41)   
2 2

0

2

( 1)
.

4 (1 4 )

s i j

s ij

c b b
b D B B h

b
  




 


 

 

Since 
|

i j s i j

i j s ijb B B b D B B      for the hypersurface 1( )nF c , from (4.21) and 

(4.41), we obtain 
 

(4.42)   
2 2

0

22

( 1)
0.

4 (1 4 )1 4

c b bb
H h

bb
 



  
  

 
 

 

This implies that H h  . Hence, we have 
 

Theorem 4.3: Let nF  be a Finsler space equipped with a metric (2.1). A 

hypersurface 1( )nF c  of the Finsler space nF  is hyperplane of the first kind if 

and only if the condition (4.37) holds. Further in this case, the second 

fundamental h tensor H  of the hypersurface 1( )nF c  is proportional to 

its angular metric tensor h . 
 

      According to Lemma 3.2, the necessary and sufficient condition for a 

hypersurface 1( )nF c  of the Finsler space nF  is 0H  , i.e. the second 

fundamental h tensor H  vanishes. Thus, from (4.42), we find            
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(4.43)   
0 ( ) 0i

ic c x y  .  

 

This implies that there exists a function ( )x  which satisfies      

( ) ( ) ( )i ic x x b x . Hence, equation (4.37) gives us 

 

(4.44)   ( )ij i jb x bb . 

 

Thus, we have 
 

Theorem 4.4. Let nF  be a Finsler space equipped with a metric (2.1). A 

hypersurface 1( )nF c  of the Finsler space nF  is hyperplane of the second kind 

if and only if the condition (4.44) holds. 

 

       Further, in view of Lemma 3.3 and (4.15) & (4.16), we find that the 

hypersurface 1( )nF c  is not a hyperplane of the third kind.  
 

Thus, we have 
 

Theorem 4.5  Let nF  be a Finsler space equipped with a metric 

(2.1).Then the hypersurface 1( )nF c  of the Finsler space nF  is not a 

hyperplane of the third kind.  
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