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Abstract: In the present paper, we find necessary and sufficient
conditions for a hypersurface of a Finsler space with a special metric

L= a’ + B
a+p

B=b(x)y' is a differential 1—form on a smooth manifold, to be

hyperplane of the first kind, the second kind and the third kind.

1/2

,where = (a;(x)y'y’)"? is a Riemannian metric and
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1. Introduction

In 1972, Makoto Matsumoto! proposed the concept of («,s)-metric,
where o = (a;(x)y'y’)"? is a Riemannian metric and g =b,(x)y' is a differential
1-form on a smooth manifold. He obtained induced and intrinsic Finsler
connections? of a hypersurface of the Finsler space in 1985. M. Hashiguchi
and Y. Ichijyo® in 1975 and C. Shibata* in 1984 studied Finsler spaces with
different («, 8)—metrics. In 1992, Makoto Matsumoto® also worked on the
theory of Finsler spaces with («, 8)—metric and obtained many important and
interesting results. In 1980, H. Wosoughi® studied the theory of hypersurface
of special Finsler space with an exponential («,8)-metric. L. Y. Lee, H. Y.

Park and Y. D. Lee’also studied the theory of hypersurface of a special Finsler
space with a metric a+%. In 2008, M. K. Gupta and P. N. Pandey?® studied
the hypersurface of the Finsler space equipped with a Randers conformal
metric. M. K. Gupta, Abhay Singh and P. N. Pandey® worked on the


mailto:vivekpandey9415@gmail.com

132 Vivek Kumar Pandey

2
(24

hypersurface of a Finsler space with a special metric + 4 and obtained

o
certain geometrical properties of the hypersurface of the Finsler space in
2013.

In this paper, we study the hypersurface of a special Finsler space F,
equipped with the metric function L=(a*+p%)/(a+ ) and obtain necessary

and sufficient conditions for the hypersurface to be a hyperplane of the first
kind, the second kind and the third kind. We use the notations of the
monograph of Makoto Matsumoto®.

2. Preliminaries

Let F,=(M,,L) be an n-dimensional Finsler space on a smooth
manifold M equipped with the fundamental metric function

_a2+ﬂ2_ B 203
(2.1) L_—+,B =qa+pf a+,b’1

where a =(a;(x)y'y')"? be a Riemannian metric and B =b(x)y' be a

differential 1-formon M, .

Differentiating (2.1) partially with respect to « and £, we get

L o’ =B +2ap L P’ —a’+2ap

22) @B’ T (@hy
_ 4ﬁ2 _ 4o _ —4af
“ (a+p)’ 7o (a+ B 7 (a+p)
where
2 2 2
(23) La:%’ Lﬂ:%’LaaZG_lz’Lﬁﬂ:a_lz’ Lllﬂ: L '
oa op oa op oadf3

The normalized element of support I, = ,L is given by

(2.4) L =a™L,y, +Lb,
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where y, =a,y’.

(2.9) hij = Doy +q0b|bj +q71(b.yj' +bj yi)"‘quinj’

where p, , d,, 9, and q_, are given by

3 at - pt+2a° B+ 20p°
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—LLat=

e oo+ )

4 2 02
O =LL,, = w

(2.6) (a+p)
g, = LL a71 = _M
s (a+p)’
2 2 3_ 3 2 _ 2

q,=La?(L,, -La')= (@” +f7) B —a” +3af" -3 ﬂ)

The fundamental metric tensor g, :%éiéjLz of F, is given by

(2.7) i = Py +dobb; + p (B, +b;yi) + pLYY;,

where d,, p, and p_, are given by

a(a+p)°

5a* + B* +6a’ % + 4o’ —4a’ B

dO:q0+Lzﬂ:

(a+p)
_a'+ i +4a’ B+ A —6a’ B

1
(2.8) P.=0, +E pOLﬂ =

ala+p)!

P,=0Q,+ pg L

The inverse metric tensor g" of g; is given by

(2.9) 9" = p;'a’ —s,b'b’ —s,(b'y’ +bly")—s,y'y’.

Here b', s,, s, and s_, are given as

a(a+p)!

B B +adaf’ —6a’ B’ +4a’ B +4a’ B
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bi = aijbj,
5, = podo + (do P, — pfl)a2 ,
& Po
(2.10) o _ PPyt (dp,—pY)S
B £p, |
s, = PP, + (do P, — pzl)b2 ,
§p0

where b* =a;b'b’ and & = p,(p, +deb” + p_,8) +(d, p_, — p%)(a’b* — 5°).

1. .
The components of the Cartan tensor C;, =Eakgij of the Finsler space

F, is given by
(2-11) 2pOCijk = p—l(hijmk +hjkmi +hkimj)+7/1mimjmk
where
od 1
(2.12) = poa_ﬂo_?’p_lqo’ m, :bi_?ﬂyi'

Let { ,'k} denote the components of Christoffel symbol of the associated
n-dimensional Riemannian space R" and V, be the covariant differential
operator with respect to x* relative to the connection { JL}

Let us consider the following tensors

(2.13) 2E,=b,+b,,  2F,=h b,

] ] I

where b, =V b. If the Cartan connection of the space F, be
CT = (Fj,,G},Cj,). then the difference tensor Dj, =F; —{; | is given by

(2.14) D) =B'E, +FB, + F/B, +Bib, +Bby,
- 0mgimBjk_C}mpkm_ci Ar'n‘*‘Cjkmp&mgiS

km ™%

+2°(Cl cr+cl.cr-cnch),

jm™~sk km™~sj

where
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B, =djb + p,Y;, B'= giijv Fik = gkiji’

- p(a; —ayy;)+(@d, / 6)mm,
(2.15) i 2 ’

A;n :B;nEoo+BmEjo+BjFom+Bonm’ B;“ =gmlBij’
A'=B'Ey, +2B,F;.

The suffix ‘0’ indicates the transvection by y' except for the quantities
Py, dy. 0, and s;.

3. Induced Cartan Tensor

Let M., be the hypersurface of the underlying manifold M, and
suppose that it is represented parametrically by the equations
(3.1) x'=x"(u?), i=12,...nand a=12,..... n-1,
where u“ form a coordinate system of M, .

Let B! =§ui; be the projection factors!! and supposed that the matrix
|B. || of the projection factors is of rank (n—1). If y', the supporting
element, is assumed to be taken tangential to M, , atapoint u=(u”) of M, ,
then it may be written in terms of the projection factors such as y' = B! (u) w”
. Here w” is a supporting element of M__, atthe point u”. Hence the function
L(u,w) = L(x(u), y(u,w)) induces a metric function on M ,. Therefore, we
obtain an (n—1)—dimensional Finsler space F,_, =(M,,L).

In the space F,_,, the metric tensor g,, and the Cartan tensor C_, are
given by

A unit normal vector N'(u,w) at point u = (u®) is defined by

{gij (x(u), y(u,W))B.N ' =0,
(3.3)

g; (x(u), y(u,w))N'N’ =1.
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The angular metric tensor h; = g;, — L1, satisfy the conditions
h,, =h;B.B;,

(3.4) h;BLN’ =0,
hyN'NT =1,

The inverse projection factors B* (u,w) of B! (u,w) are defined by
(35) Bia = gaﬂgij B/Ji’

where g is the inverse metric tensor of 9, Of F .

From (3.3) and (3.5), we have

(3.6) B!B/ =67, BN, =0, N'N, =1
and
(3.7) B,B+N'N, =5;.
For the induced Cartan connection ICT =(F,,,G;,Cj) of the

hypersurface F _,, the second fundamental h—tensor H_, and the normal
curvature vector H_ are given as

(3.8) H,, =N (B, +F;B.B;)+M_H,
and

(3.9) H, =N;(By, +G|B)),

where

M, =C;BLN'N
(3.10) _ e

o= and B! =B! w’.
v autou’ o h

From (3.8) it is clear that the second fundamental h—tensor H _, is not
symmetric. Hence

(3.11) Hy—Hy =M H, M H,.
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Equations (3.8) and (3.9) yield
(3.12) H,, :Hﬂawﬁ:Ha, HaozHaﬂWﬁ:Ha+MaH0.
The second fundamental v—tensor M, is defined by
(3.13) M., =C;B,BN.

The relative h— and v — covariant differentiation of the projection factor
B! (u,w) and the unit normal vector N'(u,w) with respect to the induced
Cartan connection ICT" are given by

(3.14) B,,=H,N', B, [,=M_N
and
(3.15) N,=-H,Bg", N'|,=-M_,B*g".

Let us assume that X, (X, y) be a contra-variant vector field in the Finsler
space F,. The relative h— and v — covariant differentiation for X,(X,y) are
given by

(3.16) Xiyp = Xy;B)+ X ;NH,, X, 1,= X, |, B}.

]

Makato Matsumoto? studied the different types of hyperplanes and
obtained the following characteristic conditions:

Lemma 3.1. A hypersurface F, , is a hyperplane of the first kind if and
only if H, =0 or equivalently H, =0.

Lemma 3.2. A hypersurface F_, is a hyperplane of the second kind if and
onlyif H_, =0.

Lemma 3.3. A hypersurface F,_,is a hyperplane of the third kind if and
onlyif H,, =0 & M_, =0
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4. Hypersurface F._,(c) of the Finsler Space F, with the
2 2

Crf_ . 20

a+pf a+p

a’+ f°
a+

scalar function b(x). Let the hypersurface F, _,(c) be given by the equation

Metric L=

Let us consider a special metric L =

such that b, (x) =a—bi fora
OX

b(x) = ¢, where ¢ is a constant. From the parametric equation x' = x'(u”) of
the hypersurface F"*(c), we obtain bB! =0. This implies that b.(x) are
covariant components of a normal vector field of F _,(c). So, along the
hypersurface F, ,(c), we have

(4.1) bB. =0, by' =0.

Therefore in general, the induced metric L(u,w) of F, ,(c) is given by

(42) L(u,w) = \fa,, (ww’

where a_,(u) =a; (x(u), y(u,w))B,B}. Clearly (4.2) is a Riemannian metric.
At a point of the hypersurface F"*(c), from (2.6), (2.8) and (2.10), we
obtain
1
Po =1, d, =4, a., =0, 0,=——7,
[94

(4.3) d, =5, pfl:—l, p,=0, &=1+4b°
a

4 1 b?

S =5 ST S, T
¢ @+4b®)" T a(l+4b?)’ 7 ?(1+4b?)

From (2.9) and (4.3), the inverse metric tensor g" is given by

A i, 1
(1+4b%) a(l+4b%)

2

a? (L+4b?)

(4.4) gl =a

(b'y’ +b’y")+ y'y'.
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Along the hypersurface F, ,(c), (4.1) and (4.4) yield

ij _ b2
(4.5) g9°bb, S a
which gives
(4.6) bi<x(u»=( ° jN
1+ 4b?

where b is the length of the vector b'.

From (4.4) and (4.5), we obtain

2

4.7) b’ = allb, =b(1/(1+4b2)) N —Zyi.
This leads to

Theorem4.1: Let F =(M,, L) bean n—dimensional Finsler space with
a’ + B
a+p
vector b. is a gradient vector, i.e. b (x)=0,b. If F_,(c) be a hypersurface of
the space F, given by the equation b(x) =c (constant), then the induced
metric L(u,w) of F, _,(c) is a Riemannian metric given by (4.2) and the
scalar function b(x) is given by (4.6) and (4.7).

the fundamental metric L= on a smooth manifold M such that the

Along the hypersurface F ,(c), the angular metric tensor h; and the
metric tensor g;; are given by

1
(4.8) hij = a; +4bibj —? vy,
and
1
(4.9) 0i = & +5bibj _;(biyj +bj Y,

respectively.
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Let h;;) be the angular metric tensor corresponding to the Riemannian
metric a; (x) . Using (3.4), (4.1) and (4.8), we get

(4.10) h,s =h%.

From (2.8), we obtain

ad, _ 240° B - 24a*
op (@+p)

Along the hypersurface F, ,(c), (4.11) gives

(4.11)

ody 24
B a
Therefore (2.12) gives us

(4.12)

(4.13) T

i i
(04

In view of (4.12) and (4.13), the Cartan tensor C;, becomes

1 6
(4.14) Cu = (b +hyb, +hb;) ~— bbb,

ij

From (3.4), (3.13), (4.1) and (4.14), the second fundamental v—tensor M,
can be written as

1 b
4.15 M, =—— h,.
) - za[mj »
Using (3.4), (3.13), (4.1) and (4.14) in (3.10), we get

(4.16) M =0.

a

Thus, (3.11) implies

(4.17) H,=H

aff il

Therefore, we conclude
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Theorem 4.2: The second fundamental v—tensor M, of a hypersurface

F,, of the Finsler space F, with the fundamental metric (2.1) is given by

(4.15) and the second fundamental h—tensor H,_, is symmetric.

Taking the covariant derivative of (4.1) with respect to the induced
connection, we get

(4.18) b,;B., +bB,,; =0.

Using (3.16) for the vector b., we get

(4.19) b, =by;B)+b [, N'H .

i
From (4.18), (4.19) and using the fact B,,, =H_,N', we obtain

(4.20) b,;B.B} +b |, B,N'H, +bN'H_, =0.

i|j o

Since b, |;=-b,Cj, using (3.10), (4.6) and (4.16) in (4.20), we get

r~ij?

(4.21) [ b ]Haﬂm BB) =0.

Since H,, is symmetric, (4.21) implies that b,; is also symmetric.
Transvecting (4.21) with w”, we get

(4.22) (\/LZ)HﬁbMB;yJ =0.
1+4b

Again transvecting (4.22) with w”, we obtain

(4.23)

b .
[—W}HO +bi|jy yJ =0.

In view of the Lemma 3.1 and (4.23), hypersurface F,, is the hyperplane of
first kind if and only if the condition

(4.24) b,,y'y’ =0
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holds.

Since b.(x) is a gradient vector, (2.13) reduces to
(4.25) E. =b

From (2.14) and (4.25), we have

(4.26) D, =B'b, +Biby, +Bby; —b,,9""B;,
_C;mA<m _CILmA;n +CjkmA§mgls
+2°(C},Cat +CiCq —CCpr).

jm~sk km™~sj

In view of (4.3) and (4.4), (2.15) becomes

1 . 5 1 :
B =5bh-—y, B'= b' — 'FEf=0,
TR Y 1+40))  a@+ap’)’’
1 1
(4.27) Bij = _Z(aij _? YiY; +24bibj)!
A" =B, +B"b,, B'=g"B,
A =B'hy,.

From (4.1), we have B,=0 and B;=0 which gives A"=B"b, .
Contracting (4.26) with y*, we have

(4.28) D', = B'b,, + Biby, — B"C} by

Contracting (4.28) with y’, we obtain

_ _ 5 _ 1 _
4.29 D,, = B'b,, = b'— "1y,
( ) 00 00 ((1+4b2) a(1+4b2) y ] 00

Contracting (4.28) by b, and then using (4.1) & (4.27), we find

: 5h? 1+ 24b? 5 o
(430) bi DjO = —2 jo - ( 2 oo™ - 2 b ijbibOO'
1+4b%) ° 2a(1+4b?) (1+4b?)

Contracting (4.29) by b and using (4.1), we obtain
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5b°

4.31 bD. =—— b .
( ) i —00 (1+4b2) 00

The covariant derivatives of the vector b with respect to x’ relative to the
Cartan connection CI" and the Riemannian connection are given by

(4.32) (@ b,=9,b-bF ., (b) b=Vb=0b-b{}

rtij ! 1j i i ij
respectively. Subtracting (4.32 a) and (4.32 b), we get
(4.33) b, =b; —b.Dj,
where Df =F/ —{E},

i ij

Contracting (4.33) by y'y' and using (4.31), we obtain

o 1-b?
(4:34) bvy(mjb

Therefore, with the help of (4.34), (4.23) may be written as

b 1-b?
4.35 ———— |H,+| —— |b,, =0
( ) (mj 0 (l+4b2j 00
From (4.35), it is clear that the hypersurface F _,(c) of the space F, is
hyperplane of first kind if and only if by (=b,y'y') vanishes. Since y'
satisfying (4.1) and quantity b; does not depend on the directional argument

y', hence b,y'y’ =0 may be written as
(4.36) byy'y' =(by)(e;y’)
for some c,(x) . Thus, we have

(4.37) 2b; =bc; +b;c.

Transvecting (4.37) with BB} and using (4.1), we get
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(4.38) b,B!B} =0.
Again transvecting (4.37) with B!y’ and using (4.1), we obtain

(4.39) b By =0.

ij —a

From (4.27) and (4.37), we have

B,B.B] __1y
2

11—01
a ?

(4.40) .
AB)=0, bgb'= Ebzco,
where b, =b,y’.

From (3.13), (4.5), (4.7), (4.15), (4.26), (4.27), (4.38), (4.39) and (4.40), we
have

| ¢ (b —1)
(441) bs DI] Ba s = _0—2 af
A (1+40°)

Since b,.B!'B) =—b D:B! BJ for the hypersurface F,_,(c), from (4.21) and

| "a—p s ] —a
(4.41), we obtain
2 (2
(4.42) _b Haﬂ+whaﬁ:
J1+4b? 4a(1+4b%)

This implies that H,_; oc h_ ;. Hence, we have

Theorem 4.3: Let F, be a Finsler space equipped with a metric (2.1). A
hypersurface F, ,(c) of the Finsler space F, is hyperplane of the first kind if

and only if the condition (4.37) holds. Further in this case, the second
fundamental h—tensor H_, of the hypersurface F_,(c) is proportional to

its angular metric tensor h,_,

According to Lemma 3.2, the necessary and sufficient condition for a
hypersurface F,_(c) of the Finsler space F is H_,=0, i.e. the second

fundamental h—tensor H_, vanishes. Thus, from (4.42), we find
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(4.43) ¢, =G (X)y' =0.

This implies that there exists a function ¢(x) which satisfies
C,(x) = p(x)b,(x) . Hence, equation (4.37) gives us

(4.44) bu. = (p(x)b,bj )
Thus, we have

Theorem 4.4. Let F, be a Finsler space equipped with a metric (2.1). A

hypersurface F, ,(c) of the Finsler space F, is hyperplane of the second kind
if and only if the condition (4.44) holds.

Further, in view of Lemma 3.3 and (4.15) & (4.16), we find that the
hypersurface F, ,(c) is not a hyperplane of the third kind.

Thus, we have

Theorem 45 Let F, be a Finsler space equipped with a metric

(2.1).Then the hypersurface F, ,(c) of the Finsler space F" is not a
hyperplane of the third kind.
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