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1. Introduction 

 

The aim of this work is to study the conditions under which certain 

fixed-point iteration procedures are stable. We will first recall all the fixed-

point iteration procedures whose stability we will study. Intuitively, a fixed 

point iteration procedure is called numerically stable if for any approximate 

sequence  ny  for  nx , i.e. ny  is in some sense close enough to nx  at each 

stage and  ny  still converges to the fixed point of ,T  where the fixed point 

iteration procedure is given by a general relation of the form  
 

 1 , , 0,1,2.............n nx f T x n    
 

where :T X X  is an operator and 0x X and  ,X d  is a metric space with 

 F T   where  F T  is the set of fixed points of the operator T  and  
0n n

x



 

is a sequence obtained by a certain fixed point iteration procedure which 

converges to a fixed point of T . Let us discuss the various fixed-point 

iteration procedures we will be using in this work.  
 

Let  ,X d  be a metric space, D X  a closed subset of X  and :T D D  

has at least one fixed point, say p , i.e.  p F T  where  F T  denotes the 
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fixed point set of the operator .T  For a given 0x X , we consider the 

sequence of iterates  
0n n

x



 determined by the successive of iteration method  

 

   1 0 T , 1, 2...........n

n nx x T x n    

 

The main interest lies in obtaining conditions on ,T D  and ,X  which can 

generate iterates  
0n n

x



 that converge to a fixed point of T  in .D  In most 

cases .D X  Generally by convergence we will mean strong convergence 

but the concept of weak convergence is also being considered where strong 

convergence cannot be obtained.  
 

The sequence  1 , 1, 2,...............n nx T x n   is called the Picard iteration. In 

many situations the Picard iteration does not converge or even if it 

converges, it does not converge to a fixed point of the operator ,T  then 

some other iteration procedures are considered. Let E  be a real normed 

space and :T E E  be a self-map, 0x E  and  0,1 .  The sequence  
0n n

x



 

defined by  
 

 1 1   ,      0,1, 2.......n n nx x Tx n       
 

is called the Krasnoselskij iteration or the K iteration. For 1,  this 

iteration reduces to the Picard iteration.  
 

The Mann iteration is defined as follows. For 0 ,x E  the sequence  
0n n

x



 

defined by  
 

 1 1   , 0,1, 2.............n n n n nx a x a Tx n      
 

where    
0

0,1n n
a




  satisfies certain conditions is called the Mann iteration. 

If na   (constant) the Mann iteration reduces to the Krasnoselskij iteration.  

The Ishikawa iteration is described as follows. Let 0x X and  
 

   1  1    1 , 0,1,2,............n n n n n n n nx a x a T b x b Tx n          

 

where      
0 0
, 0,1n nn n

a b
 

 
  satisfy certain conditions.  

 

 

The Ishikawa iteration was first applied to obtain strong convergence to 

a fixed point of T for a Lipschitzian and pseudo-contractive operator of a 

convex, compact subset of a Hilbert space. In this situation the Mann 

iteration failed to converge. We write this iteration as a type of two-step 

Mann iteration.  
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 1    1 ,       0,1,2,...............n n n n nx a x a T y n      
 

  .1   n n n n ny b x b T y    

 

For 0,nb   the Ishikawa iteration reduces to the Mann iteration. Another 

iteration procedure which has led to important results in the Krasnoselski-

Mann-Opial (K-M-O) iteration procedure which is defined as follows: 

For any given 0 ,x X  the iteration sequence  nx  is defined by 
  

 1 1   , 0n n nx x S x n       
 

where the iteration parameter  0,1  and :S D X X   is an operator.  

Let us now denote a fixed-point iteration procedure by 
  

 1   , ,       0,1,2............n nx f T x n    
 

where :T X X  is an operator and 0 .x X   , nf T x  contains all the 

parameters that define the given fixed point iteration procedure. 
 
 

Definition2 1.1: Let  ,X d   be a metric space and :T X X  be a 

mapping. Let 0x X and we assume that the iterates given by  
 

 1 ,         0,1,2......., .....nnx f T x n    
 

converges to a fixed point p  of .T   Let  ny  be an arbitrary sequence in X  

and define  

  1, , n n nd y f T y    for    0,1,2,........n   

 

We call the above iteration procedure T-stable or stable with respect to T  if 

and only if lim 0 lim .n n
n n

y p
 

    

 

In this work we will also discuss the rate of convergence of the iteration 

i.e. for which value of the iteration parameter  0 1 ,    in the K-iteration, 

the convergence rate is fastest.  

 

2. Stability Conditions for Krasnoselskij Iteration 

 

First we recall the KMO iteration. Let  0 , ,nx X x  a sequence in ,X  

where X  is a real Banach space 
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   1 1 ,    0 0,1n n nx x S x n         
 

This result is an improvement of Theorem 8.3.2 (a) since we drop the 

condition  
1

1 .n n

n

 




   Let us recall the Theorem which is by Dotson Jr.3  

 

Theorem 2.1: Let H be a Hilbert space and :T H H  a monotonic 

nonexpansive operator. For ,f H  define :S H H  by   , .S x T x f x H     

Then the Mann iteration defined by  1 , ,n n nx M x S  with  0,1 ,n   

 
1

1 ,n n

n

 




  converges strongly to the unique solution x v  of the 

operator equation .x T x f     
 

From Sx T x f   we have Sx Sy T x T y x y      for all , .x y H  The 

solution v  of the operator equation x T x f   is a fixed point of the non-

expansive operator .S  By the monotonicity  of ,T  we get  

 

                   , , 0Sx Sy x y T x Ty x y         for all , .x y H  

 

Since  1 0,    we have  

 
                               

2 2

1 1 2 1n nx v x v          
2 2

11 2 1 nx v                                                                                      

                                                                                                  
2

11 2 1
n

x v        . 

 

Now 
 

      2 1

1
1 2 1 exp 2 1 0

n

n
n

e
 

   


             as n . 

 

Hence  nx  converges strongly to the unique solution of the operator 

equation x T x f  . In the case of this iteration  
 

                      1 2 1      21 2 2     
 

giving   

                     2 4 0
d

d





    

1

2
  . 

 

Also,              
2

2
4 0

d

d




  .  
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Hence minima is attained for 1 2  . This iteration converges fastest for 

1 2   in the family  0 1 .   Next, we examine the KMO iteration for 

stability.  
 

Since the operator is non-expansive, the Lipschitz constant 1L  now 

putting 1L  in Prop5 we get,  

 

(2.1)   1 1

17

18
n n n n n nz q z p p q z q          

 

and 
 

(2.2)   1 1 1

17

18
n n n n n n nz p z q p q z q z q             .   

 

Lemma2 2.2:  Let    
0 0
,n nn n

a b
 

 
 be sequences of nonnegative numbers 

and 0 1,q   so that  
 

                        1n n na qa b      for all 0n   

 

Then if lim 0n
n

b


  then lim 0.n
n

a


  Now 1lim 0 lim 0.n n
n n

z q z q
 

      

 

Applying (2.2) gives lim 0 lim 0.n n
n n

 
 

    Conversely put 1 1n nz q a     and 

n nz q a  . Applying (2.1) we get  
 

                            1

17

18
n n na a    or 1

17
.

18
n n na a     

 

Put n nb   and 
17

.
18

q  Since 
17

0 1
18

   we get lim 0n
n




  giving lim .n
n

z q


  Thus 

lim lim 0.n n
n n

z q 
 

     

 

Hence the K-M-O type iteration is S-stable. The second result of this 

section is that we test the stability of the K-iteration procedure given in 

following theorem.  
 

Theorem2 2.3:  Let C  be a bounded closed convex subset of a Hilbert 

space H  and :T C C  be a non-expansive and demicompact operator. 

Then the set  F T  of fixed points of  T  is a nonempty convex set and for any 

given 0x  in C and any fixed number   with 0 1,    the K- iteration  nx  

given by  
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                        1 1 , 0,1,2,........n n nx x T x n       
 

converges strongly to a fixed point of .T   
 

 Now since the mapping is non-expansive, the Lipschitz constant 1.L  

From5 we get that for non-expansive mappings.  
 

                       
1

1 0

17

18

n

nx q x q





 
   

 
          for all 0.n   

 

q  is a fixed point of operator S  defined by  
 

                          , .S x f Ax f H    

 

Let  nz  be any sequence in H  Putting    1 0n n np z Sz n      

 

we have by5 that  
 

(2.3)   1

17

18
n n nz q z q        

 

and 
 

(2.4)   1

17

18
n n nz q z q     . 

 

Let us assume that lim 0.n
n

z q


   By inequality (2.4) we get that 

lim 0 lim 0.n n
n n

 
 

    Conversely let us assume that lim 0.n
n




  We recall the 

following Lemma 
 

Lemma2 2.4: Let    
0 0
,n nn n

a b
 

 
 be sequences of nonnegative numbers 

and 0 1q   so that 1n n na qa b    for all 0.n  If lim 0,n
n

b


  then lim 0.n
n

a


  
 

Let us apply this Lemma to inequality (2.3), since 
17

0 1
18

   and lim 0,n
n




  

we conclude that lim 0.n
n

z q


   Hence lim 0 lim 0.n n
n n

z 
 

    By definition of 

stability the K - M - O type iteration is S - stable.  From5 we get that 

 
 

2 21 1
.

1

L
Q






 



 Putting  

21 4
1, .

1
L Q







 


 The convergence rate is fastest 
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for 
 

2

1
.

2 1L
 


 Putting 1,L  we get 

1
.

8
   Hence for 

1
,

8
   the K-iteration 

converges fastest in the family 0 1.     
 

Same arguments as above will apply to the following theorems dealing 

with the K-iterations and concluding that the K-iterations in these cases will 

be stable. In all the following theorems, the mapping is non-expansive and 

therefore the Lipschitz constant 1.L  
 

Theorem 2.5: Let X  be a uniformly convex Banach space D  a closed 

bounded convex set in X  and T  a non-expansive mapping of D  into D  

such that T  satisfies any one of the following two conditions: 

(i) (I-T) maps closed sets in D  into closed sets in X ; 

(ii) T  is demicompact at 0.  

Then for any given 0x  in C  and any fixed number   with 0 1,   the K- 

iteration  nx  converges strongly to a fixed point of .T  
 

Theorem 2.6: Suppose E  is a real Banach space and :F E E  is a 

Lipschitzian strongly accretive operator. Let  n and  n  be real 

sequences satisfying  
 

     
0

0 1, 0 lim 0, lim 0 .n n n n n
n n

n

i n ii iii    


 


        

 

Then the sequence  nx  generated starting from any 0x E  by  

 

                     1 , 0n n n n ny x f I F x n        

 

                     1 1 , 0n n n n nx x f I F y n         

 

converges strongly to the solution of the equation .Fx f   
 

Putting 0,n   we get n ny x  and n    ,n  we get the K-iteration as 

before. The same arguments for stability will apply to the following 

Theorem. 
 

Theorem 2.7: Suppose E  is a real Banach space and :F E E  is a 

Lipschitzian accretive operator. Let  n  and  n  be real sequences 
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satisfying (i)-(iii) as in previous theorem. Then the sequence  nx  generated 

from an arbitrary 0x X  by  

 

                        1 , 0n n n n ny x f T x n       

 

                        1 1 , 0n n n n nx x f T y n        

 

converges strongly to the unique solution of the equation , .x Fx f f E    
 

Theorem 2.8:  Let X  be a strictly convex Banach space, C  a closed 

bounded convex subset of X  and :f C C  a densifying  nonexpansive 

mapping, let      1f x x f x     for constant   with 0 1,   then for each 

,nx C  the sequence  
 

                         1 1 , 0,1,2,.......n n nx x f x n       
 

converges strongly to a fixed point of f  in .C   

      

3. Stability Conditions for Mann Iteration 

 

This section deals with the stability of the Mann iteration procedure. Let 

us recall the following definition and theorem.  Let  ,X d  be a metric space 

and :T X X  satisfies the condition  

 

(3.1)        , , ,d Tx Ty a d x y L d x Tx   

 

for some  0,1 , 0a L   when L  is the Lipschitz constant, for all , .x y D X   
  

Definition2 3.1:  In a normed space ,E  on operator :T E E  is called 

Zamfirescu operator if there exist numbers ,   and , 0 1,0 , 0.5        

such that for any ,x y E  at least one of the following conditions is true : 

 

 (z1)   ;Tx Ty x y    

 

(z2)    ;Tx Ty x Tx y Ty        

 

(z3)              .Tx Ty x Tx y Ty         
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Theorem 3.2:  Let E  be a normed linear space and :T E E a mapping 

satisfying condition (3.1). Suppose T  has a fixed point .x  Let 0x  by 

arbitrary in E  and define 

 

                         1 , 0n n n n nz x T x n      
 

and 
 

                  1 1 , 0n n n n nx x T z n       

 

where    ,n n   are sequences in  0,1  such that 10 n     for some .  Let  

 ny  be any given sequence in E  and define 

 

                           1 , 0n n n n ns y T y n      

 

                          1 1 , 0n n n n n ny y T s n       . 

 

Then  nx  converges strongly to x  and is stable with respect to .T   
 

Now let us recall the following theorem. 
 

Theorem2 3.3:  Let E  be a uniformly convex Banach space, K  a closed 

convex subset of  E  and :T K K  be a Zamfirescu mapping. Then the 

Mann iteration  ,nx   
 

                         1 1 , 1,2,......n n n n nx x T x n       
 

with  n  satisfying the conditions: 
 

           1 1i    
 

           0 1nii    for 1n  
 

            1n niii     
 

converges to the unique fixed point of .T   
 

    We now show that  nx is stable with respect to T  by applyingTheorem2. 

Putting 0L  in condition (2.3) we set  

 

                          , ,d Tx Ty a d x y  where 0 1a   
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which is the first condition  1z  for Zamfirescu mapping. We take 0   and 

0   giving  , 0.d Tx Ty   Hence  nx  is stable with respect to .T  Using the 

same arguments as above we can prove the stability of the Mann iteration in 

the Theorem below.  
 

  Theorem2 3.4:  Let E  be an arbitrary Banach space, K  a closed 

convex subset of E  and :T K K  an operator satisfying conditions    1 2,z z   

and  3z  with  , .d x y x y   Let  nx  be a Mann iteration with    0,1na   

satisfying 
0

.n

n






  Then  nx  converges strongly to the unique fixed point of 

.T  
 

Same arguments as above can be used to prove stability of the iteration 

in the following Theorem.  

 

Theorem 3.5:  Let K  be a nonempty closed convex subset of a banach 

space E  and :T K K  a quasicontration, suppose 0n    for all 0n  and 

0

n

n






 . Let  nx  be the sequence defined by 0 ,x K  

  

    , 0
n n

n n

n i ii k i k
y Co x Tx n

 
   

 

       1 1 , 0,n n n n nx x Ty n       

 

where  nk  is a non-decreasing sequence of positive integers such that nk n  

and lim .n
n

k


  Then  nx  converges strongly to the unique fixed point of .T  

  

By2, quasi - contractive operators contain zamfirescu operators.  
 

Definition 3.6: A mapping in a normed space E  is called quasi- 

contraction if  

 

 , ,Tx Ty kM x y   , ,x y E  where 

 

   ,  max , , , , .M x y x y x Tx y Ty x Ty y Tx       

 

Since non-expansive mapping is a particular case of accretive mapping 

by applying5 we get the stability of the Mann iteration in the following 

results. 
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Theorem1 3.7:  Let C  be a nonempty closed convex bounded subset of a 

uniformly convex Banach space X  and T  a non-expansive  mapping of C  

into a compact subset of C . Let 1x C  be an arbitrary point in ,C  then the 

sequence  nx  defined by  

 1

1 1
, ,

2 2
n n n nx x Tx M x T

 
    

 
 

 

converges strongly to a fixed point T  in C . 
 

Theorem1 3.8:  Let C  be a nonempty closed subset of a banach space 

X  and let T  be a non-expansive mapping from C  into a compact subset of 

X . Suppose that there exist 1x C  and a sequence  nx  of real numbers 

satisfying  
 

           0 1ni         and    
1

n

n






  

 

          nii x C for all ,n N where  1 , ,n n nx M x T  , 
 

  then  nx  converges strongly to an element of  F T . 

 

Definition2 3.9:  Suppose E  is a real Banach space and T  is a self-map 

of E  with   .F T   Let 0x E  and let  nx  be an iteration procedure 

given by 
 

                    1 , , 0,1,2,.......n nx f T x n    

 

that converges strongly to a fixed point  .x F T  Let  ny  be a sequence 

in E  and  n  is a sequence of positive real numbers given by  

 

                      1 ,n n ny f T y    

If 
0

limn n
n

n

y x







   then the iteration procedure defined above is 

called almost T  stable. 

  

Definition2 3.10:  Let E  be a Banach space, K  a subset of E  and 

:T K K  is called a strongly pseudocontractive operator if there exists a 

number 1t  such that the inequality 
 

    1x y r x y rt Tx Ty       holds for all ,x y K  and 0.r   
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We now show that the fixed-point iteration used in the following 

theorem is almost T stable. 

   

Theorem2 3.11:  Let E  be a Banach space and K  a nonempty closed 

convex and bounded subset of .E  If :T K K  is a Lipschitzian strongly 

pseudocontractive operator such that the fixed point set of  ,T F T  is 

nonempty, then the Mann iteration   ,nx K  1x K   and the sequence 

   0,1 ,na   with  
 

          
1

n

n

i 




    and      0nii as n    

 

converges strongly to the unique fixed point (say p ) of .T   
 

Now2 gives that any strongly pseudocontractive operator is pseudo   

contraction for certain given rules of , ,a b c  and  .u  Applying2 we get that 

the Mann iteration (which is a special case of the Ishikawa iteration) is 

almost T stable. i.e.  
 

                        
0

lim .n n
n

n

y p





   

 

Using the same arguments as above we can show that the iteration 

procedure in the following theorem is almost T stable. 

  

Theorem 3.12:  Let E  be a real uniformly smooth Banach space and K  

a bounded closed convex and nonempty subset of E . Let :T K K  be a 

strongly pseudo contractive operator such that  T p p  for some p K  and 

let  nx  be the Mann iteration process generated by 1x K  and the sequence 

 na  satisfying the following conditions:   
 

            0 1ni    for all 1;n  

           lim 0;n
n

ii 


  

          
0

.n

n

iii 




  

 

Then, for arbitrary 1 ,x K  the sequence  nx  converges strongly to p  and p  

is unique.  
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4. Stability Conditions for Ishikawa Iteration 

 

In this section we will study the stability of the Ishikawa iteration 

process described in the Introduction. Let us recall the following theorem 
 

Theorem2 4.1: For E  a normed linear space and :T E E  a mapping 

satisfying.   

 

                  , , ,d Tx Ty a d x y L d x Tx   for some  0,1 ,a  0,L  , .x y D X   

 

Let  1 1 ,n n n n nx x T z      0n  where  1 ,n n n n nz x T x     0n  where 

     , 0,1 .n n    Let  ny  be any given sequence in E  and define 

 

                 1 ,n n n n nS y T y      0n  

 

                1 1 , 0n n n n ny y Ts n        

 

Then  nx  converges strongly to ,x  a fixed point of T  and is stable with 

respect to .T   
 

We apply this theorem to obtain stability of the Ishikawa iteration in the 

following result.  
 

Theorem2 4.2:  Let E  be a uniformly convex Banach space, K  a closed 

convex subset of E  and :T K K  a Zamfirescu operators. Let 

     , 0,1n n    with  n  satisfying the condition  
1

1n n

n

 




  diverges. Then 

for any 0 ,x K  the Ishikawa iteration process  0 , , ,n nI x T   converges 

strongly to the unique fixed point of .T  
 

The condition      , , ,d Tx Ty ad x y Ld x Tx   reduces to condition  1z  for 

the Zamfirescu operator when 0,L  and 0 1a   Hence we conclude that the 

Ishikawa iteration is T-stable. We apply2 to show almost stability of the 

Ishikawa iteration in the following results.  
 

Theorem1 4.3: Let C  be a nonempty compact convex subject of a 

Hilbert space H  and :T C C  a Lipschitzian Pseudo contractive mapping 

with   .F T   Let  nx  be an Ishikawa iteration, then  nx  converges 

strongly to a fixed point of .T  
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Theorem2 4.4:  Let K  be a convex compact subset of a Hilbert space 

H  and :T K K  be a Lipschitzian pseudo contractive map and 1 .x K  Then 

the Ishikawa iteration  ,nx  where    ,n n   satisfy  
 

         0 1, 1n ni n      

         lim 0n
n

ii 


  

        
1

,n n

n

iii  




  

 

converges strongly to a fixed point of .T  
  

Theorem2 4.5: Let E  be a real uniformly smooth Banach space and K  

a bounded closed convex and nonempty subset of E  Let :T K K  be a 

strongly pseudo contractive operator that has at least a fixed point  .x F T   

Let {αn}, {βn} satisfy 

  

         0 , 1, 0n ni n     
 

        lim 0, lim 0n n
n n

ii  
 

   
 

       
1

.n

n

iii 




  

 

Then for arbitrary 0 ,x K  the Ishikawa iteration converges strongly to ,x  

also x  is unique.  

 

5. Comparison of Convergence Rate of Various Iterations 

 

In this section we compare the convergence rate of the different iteration 

procedures. Let us recall the following Proposition from5.  
 

Proposition5 5.1:  Let X  be a real Banach space and :A X X  be a 

lipschitz accretive operator with Lipschitz constant  1 ,L L  then the 

sequence  nx  defined by  
 

                         1 1 , 0,n n nx x Sx n       
 

 0,1  is an iterative solution of  , ,x Ax f x f X     x, f Є X where the 

iterative parameter 
 

0 2

1
0, .

1L


 
   
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In this case    
2 21 1 1 ,Q L       where the above iteration is the K-

M-0 iteration. Now for the Picard iteration 1,  i.e. 1n nx S x   and 

     
2

1 1 1 2Q Q L     . The K-M-O iteration converges fastest for 

 
2

0 1 2 1L   . Putting this value of 0  in  Q   we get 

  2 2

0 4 8 5 4 8 6Q L L L L      . Since 1,L
 

22

2

1 14 8 5
.

4 8 6 2

LL L

L L

  


 
 Hence in this 

case the K-M-O iteration converges faster than the Picard iteration.  
 

Next, recall the following Theorem for Mann iteration. 
 

Theorem2 5.2:  Let E  be a arbitrary Banach space, K  a closed convex 

subset of  E  and :T K K  an operator satisfying conditions    1 2,z z  and 

 3z . Let  nx  be the Mann iteration with 0 ,x K   0,1n   satisfying 

0

.n

n






  Then  nx  converges strongly to the unique fixed point of .T  

  

In this case  
 

                         1 1n nQ       
 

and the convergence of the Picard iteration can be obtained from the above 

theorem by putting 1,n   because of the four restrictive assumptions, giving 

  .nQ    By      1 2 3, ,z z z  and , , ,a b c      we find  

 

               max , ,
1 1

b c
a

b c


 
  

  
 

 

giving 0 1.   If  1 1 ,n    then the Mann iteration will be faster than the 

Picard iteration. Since 0 1,   we get that 0 n n    and 1 1n n    , 

,n n  1.   Hence Mann iteration is faster than Picard iteration Recall the 

following theorem for Mann iteration. 
  

Theorem2 5.3: Let E  be a Banach space and K  a nonempty closed, 

convex and bounded subset of .E  If :T K K  is a Lipschitzian strongly 

pseudocontractive operator such that  F T   then the Mann iteration 

 nx K   0,1n   satisfying 



122                                                       Neeta Singh 

              
1

0n n

n

i ii as n 




    

 

converges strongly to the unique fixed point of .T  
 

Here   21 .n nQ k    Putting 1n   for Picard iteration we have 

  21 1 .Q k   Since 1,n   2 21 1 .nk k     Hence Picard iteration is faster than 

Mann iteration. Let us recall the following theorem for the Ishikawa 

iteration. 
  

Theorem 5.4:  Let E  be an arbitrary Banach space, K  a closed, 

convex subset of  E  and :T K K  an operator satisfying  conditions 

   1 2,z z  and  3 .z  Let  nx  be the Ishikawa iteration where      , 0,1n n    

with 
1

.n

n






  Then  nx .Then  nx converges strongly to the fixed point of 

.T  
 

In this case    
2

1 1 ,n nQ       for Picard iteration, 1,n   giving 
 

                  
2

1 1 1 .Q     
 

Since 1,n   we have    
2 2

1 1 1 1 .n        Hence the Picard iteration is 

faster than the Ishikawa iteration.  
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