Stability Conditions for Fixed Point Iteration Procedures

Neeta Singh

Department of Mathematics University of Allahabad, Allahabad-211002, India Email: n_s32132@yahoo.com

(Received April 29, 2017)

Abstract: In this paper, we study conditions under which certain fixed-point iteration procedures are stable. We also discuss the rate of convergence of the iterations and calculate the value of the iteration parameter for which the convergence rate is fastest.

Keywords: Stability, Mann iteration, Ishikawa iteration, Iteration parameter.

AMS Mathematics Subject Classification: 47H06, 47H10, 47H17.

1. Introduction

The aim of this work is to study the conditions under which certain fixed-point iteration procedures are stable. We will first recall all the fixed-point iteration procedures whose stability we will study. Intuitively, a fixed point iteration procedure is called numerically stable if for any approximate sequence $\{y_n\}$ for $\{x_n\}$, i.e. y_n is in some sense close enough to x_n at each stage and $\{y_n\}$ still converges to the fixed point of T, where the fixed point iteration procedure is given by a general relation of the form

 $x_{n+1} = f(T, x_n), \quad n = 0, 1, 2...$

where $T: X \to X$ is an operator and $x_0 \in X$ and (X,d) is a metric space with $F(T) \neq \phi$ where F(T) is the set of fixed points of the operator T and $\{x_n\}_{n=0}^{\infty}$ is a sequence obtained by a certain fixed point iteration procedure which converges to a fixed point of T. Let us discuss the various fixed-point iteration procedures we will be using in this work.

Let (X,d) be a metric space, $D \subset X$ a closed subset of X and $T: D \rightarrow D$ has at least one fixed point, say p, i.e. $p \in F(T)$ where F(T) denotes the fixed point set of the operator *T*. For a given $x_0 \in X$, we consider the sequence of iterates $\{x_n\}_{n=0}^{\infty}$ determined by the successive of iteration method

$$x_n = T(x_{n-1}) = T^n(x_0), \quad n=1, 2....$$

The main interest lies in obtaining conditions on T,D and X, which can generate iterates $\{x_n\}_{n=0}^{\infty}$ that converge to a fixed point of T in D. In most cases D=X. Generally by convergence we will mean strong convergence but the concept of weak convergence is also being considered where strong convergence cannot be obtained.

The sequence $x_n = T(x_{n-1})$, $n=1, 2, \dots$ is called the Picard iteration. In many situations the Picard iteration does not converge or even if it converges, it does not converge to a fixed point of the operator T, then some other iteration procedures are considered. Let E be a real normed space and $T: E \rightarrow E$ be a self-map, $x_0 \in E$ and $\lambda \in [0,1]$. The sequence $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_{n+1} = (1 - \lambda)x_n + \lambda T x_n, \quad n = 0, 1, 2....$$

is called the Krasnoselskij iteration or the *K*-iteration. For $\lambda = 1$, this iteration reduces to the Picard iteration.

The Mann iteration is defined as follows. For $x_0 \in E$, the sequence $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_{n+1} = (1-a_n) x_n + a_n T x_n, n = 0, 1, 2...$$

where $\{a_n\}_{n=0}^{\infty} \subset [0,1]$ satisfies certain conditions is called the Mann iteration. If $a_n = \lambda$ (constant) the Mann iteration reduces to the Krasnoselskij iteration. The Ishikawa iteration is described as follows. Let $x_0 \in X$ and

$$x_{n+1} = (1-a_n) x_n + a_n T \left[(1-b_n) x_n + b_n T x_n \right], n = 0, 1, 2, \dots$$

where $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty} \subset [0,1]$ satisfy certain conditions.

The Ishikawa iteration was first applied to obtain strong convergence to a fixed point of T for a Lipschitzian and pseudo-contractive operator of a convex, compact subset of a Hilbert space. In this situation the Mann iteration failed to converge. We write this iteration as a type of two-step Mann iteration.

$$x_{n+1} = (1-a_n)x_n + a_n T y_n, \quad n = 0, 1, 2, \dots$$
$$y_n = (1-b_n)x_n + b_n T y_n,$$

For $b_n = 0$, the Ishikawa iteration reduces to the Mann iteration. Another iteration procedure which has led to important results in the Krasnoselski-Mann-Opial (K-M-O) iteration procedure which is defined as follows: For any given $x_0 \in X$, the iteration sequence $\{x_n\}$ is defined by

$$x_{n+1} = (1 - \alpha)x_n + \alpha S x_n, \quad n \ge 0$$

where the iteration parameter $\alpha \in (0,1)$ and $S: D \subseteq X \to X$ is an operator.

Let us now denote a fixed-point iteration procedure by

$$x_{n+1} = f(T, x_n), \quad n = 0, 1, 2, \dots$$

where $T: X \to X$ is an operator and $x_0 \in X$. $f(T, x_n)$ contains all the parameters that define the given fixed point iteration procedure.

Definition² **1.1:** Let (X,d) be a metric space and $T:X \to X$ be a mapping. Let $x_0 \in X$ and we assume that the iterates given by

$$x_{n+1} = f(T, x_n), \quad n = 0, 1, 2....$$

converges to a fixed point p of T. Let $\{y_n\}$ be an arbitrary sequence in X and define

$$\mathcal{E}_n = d(y_{n+1}, f(T, y_n))$$
 for $n = 0, 1, 2, \dots$

We call the above iteration procedure T-stable or stable with respect to T if and only if $\lim_{n\to\infty} \varepsilon_n = 0 \Leftrightarrow \lim_{n\to\infty} y_n = p$.

In this work we will also discuss the rate of convergence of the iteration i.e. for which value of the iteration parameter $\alpha(0 < \alpha < 1)$, in the K-iteration, the convergence rate is fastest.

2. Stability Conditions for Krasnoselskij Iteration

First we recall the KMO iteration. Let $x_0 \in X, \{x_n\}$, a sequence in X, where X is a real Banach space

$$x_{n+1} = (1-\alpha)x_n + \alpha S x_n, n \ge 0 \ \alpha \in (0,1)$$

This result is an improvement of Theorem 8.3.2 (a) since we drop the condition $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$. Let us recall the Theorem which is by Dotson Jr.³

Theorem 2.1: Let *H* be a Hilbert space and $T:H \rightarrow H$ a monotonic nonexpansive operator. For $f \in H$, define $S:H \rightarrow H$ by $S(x)=-Tx+f, x \in H$. Then the Mann iteration defined by $x_{n+1}=M(x_n,\alpha_n,S)$ with $\alpha_n \in [0,1]$, $\sum_{n=1}^{\infty} \alpha_n (1-\alpha_n) = \infty$, converges strongly to the unique solution x=v of the operator equation x+Tx=f.

From Sx=-Tx+f we have $||Sx-Sy||=||Tx-Ty|| \le ||x-y||$ for all $x, y \in H$. The solution v of the operator equation x+Tx=f is a fixed point of the non-expansive operator S. By the monotonicity of T, we get

$$\langle Sx-Sy, x-y \rangle = -\langle Tx-Ty, x-y \rangle \ge 0$$
 for all $x, y \in H$.

Since $\alpha(1-\alpha)>0$, we have

$$\begin{aligned} \|x_{n+1}-v\|^{2} < & \left[1-2\alpha(1-\alpha)\right] \|x_{n}-v\|^{2} < & \left[1-2\alpha(1-\alpha)\right]^{2} \|x_{n+1}-v\|^{2} \\ < & \left[1-2\alpha(1-\alpha)\right]^{n} \|x_{1}-v\|^{2}. \end{aligned}$$

Now

$$\left[1-2\alpha(1-\alpha)\right]^n \le \exp\left[-2n\alpha(1-\alpha)\right] = \frac{1}{e^{2n\alpha(1-\alpha)}} \to 0 \text{ as } n \to \infty.$$

Hence $\{x_n\}$ converges strongly to the unique solution of the operator equation x+Tx=f. In the case of this iteration

$$\phi(\alpha) = 1 - 2\alpha(1 - \alpha) = 1 - 2\alpha + 2\alpha^2$$

giving

$$\frac{d\phi}{d\alpha} = -2 + 4\alpha = 0 \implies \alpha = \frac{1}{2}.$$

 $\frac{d^2\phi}{d\alpha^2} = 4 > 0.$

Also,

Since the operator is non-expansive, the Lipschitz constant L=1 now putting L=1 in Prop⁵ we get,

(2.1)
$$\|z_{n+1} - q\| \le \|z_{n+1} - p_n\| + \|p_n - q\| = \varepsilon_n + \frac{17}{18} \|z_n - q\|$$

and

(2.2)
$$\varepsilon_n = \|z_{n+1} - p_n\| \le \|z_{n+1} - q\| + \|p_n - q\| \le \|z_{n+1} - q\| + \frac{17}{18} \|z_n - q\|.$$

Lemma² 2.2: Let $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}$ be sequences of nonnegative numbers and $0 \le q < 1$, so that

$$a_{n+1} \leq qa_n + b_n$$
 for all $n \geq 0$

Then if $\lim_{n\to\infty} b_n = 0$ then $\lim_{n\to\infty} a_n = 0$. Now $\lim_{n\to\infty} ||z_n - q|| = 0 \Longrightarrow \lim_{n\to\infty} ||z_{n+1} - q|| = 0$.

Applying (2.2) gives $\lim_{n\to\infty} \varepsilon_n \le 0 \Rightarrow \lim_{n\to\infty} \varepsilon_n = 0$. Conversely put $||z_{n+1} - q|| = a_{n+1}$ and $||z_n - q|| = a_n$. Applying (2.1) we get

$$a_{n+1} \le \varepsilon_n + \frac{17}{18} a_n \text{ or } a_{n+1} \le \frac{17}{18} a_n + \varepsilon_n.$$

Put $b_n = \varepsilon_n$ and $q = \frac{17}{18}$. Since $0 \le \frac{17}{18} < 1$ we get $\lim_{n \to \infty} \varepsilon_n = 0$ giving $\lim_{n \to \infty} z_n = q$. Thus $\lim_{n \to \infty} z_n = q \Leftrightarrow \lim_{n \to \infty} \varepsilon_n = 0$.

Hence the K-M-O type iteration is S-stable. The second result of this section is that we test the stability of the K-iteration procedure given in following theorem.

Theorem² 2.3: Let C be a bounded closed convex subset of a Hilbert space H and T:C \rightarrow C be a non-expansive and demicompact operator. Then the set F(T) of fixed points of T is a nonempty convex set and for any given x_0 in C and any fixed number λ with $0 < \lambda < 1$, the K- iteration $\{x_n\}$ given by

$$x_{n+1} = (1 - \lambda) x_n + \lambda T x_n, n = 0, 1, 2, \dots$$

converges strongly to a fixed point of T.

Now since the mapping is non-expansive, the Lipschitz constant L=1. From⁵ we get that for non-expansive mappings.

$$||x_{n+1}-q|| \le \left(\frac{17}{18}\right)^{n+1} ||x_0-q||$$
 for all $n \ge 0$.

q is a fixed point of operator S defined by

$$S(x)=f-Ax, f\in H.$$

Let $\{z_n\}$ be any sequence in *H* Putting $p_n = (1-\alpha)z_n + \alpha S z_n$ $(n \ge 0)$

we have by⁵ that

(2.3)
$$||z_{n+1}-q|| \leq \varepsilon_n + \frac{17}{18} ||z_n-q||$$

and

(2.4)
$$\varepsilon_n \leq ||z_{n+1}-q|| + \frac{17}{18} ||z_n-q||.$$

Let us assume that $\lim_{n\to\infty} ||z_n - q|| = 0$. By inequality (2.4) we get that $\lim_{n\to\infty} \varepsilon_n \le 0 \Longrightarrow \lim_{n\to\infty} \varepsilon_n = 0$. Conversely let us assume that $\lim_{n\to\infty} \varepsilon_n = 0$. We recall the following Lemma

Lemma² 2.4: Let $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}$ be sequences of nonnegative numbers and $0 \le q < 1$ so that $a_{n+1} \le q a_n + b_n$ for all $n \ge 0$. If $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n = 0$.

Let us apply this Lemma to inequality (2.3), since $0 \le \frac{17}{18} < 1$ and $\lim_{n \to \infty} \varepsilon_n = 0$, we conclude that $\lim_{n \to \infty} ||z_n - q|| = 0$. Hence $\lim_{n \to \infty} z_n = 0 \Leftrightarrow \lim_{n \to \infty} \varepsilon_n = 0$. By definition of stability the K - M - O type iteration is S - stable. From⁵ we get that $Q(\alpha) = \frac{1 + (L+1)^2 \alpha^2}{1 + \alpha}$. Putting $L = 1, Q(\alpha) = \frac{1 + 4\alpha^2}{1 + \alpha}$. The convergence rate is fastest for $\alpha = \frac{1}{2(L+1)^2}$. Putting L=1, we get $\alpha = \frac{1}{8}$. Hence for $\alpha = \frac{1}{8}$, the K-iteration

converges fastest in the family $0 < \alpha < 1$.

Same arguments as above will apply to the following theorems dealing with the K-iterations and concluding that the K-iterations in these cases will be stable. In all the following theorems, the mapping is non-expansive and therefore the Lipschitz constant L=1.

Theorem 2.5: Let X be a uniformly convex Banach space D a closed bounded convex set in X and T a non-expansive mapping of D into Dsuch that T satisfies any one of the following two conditions:

(i) (I-T) maps closed sets in D into closed sets in X;

(ii) T is demicompact at 0.

Then for any given x_0 in C and any fixed number λ with $0 < \lambda < 1$, the Kiteration $\{x_n\}$ converges strongly to a fixed point of T.

Theorem 2.6: Suppose *E* is a real Banach space and $F:E \rightarrow E$ is a Lipschitzian strongly accretive operator. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences satisfying

(*i*)
$$0 \le \alpha_n \beta_n < 1, n \ge 0$$
 (*ii*) $\lim_{n \to \infty} \alpha_n = 0, \lim_{n \to \infty} \beta_n = 0$ (*iii*) $\sum_{n=0}^{\infty} \alpha_n = \infty.$

Then the sequence $\{x_n\}$ generated starting from any $x_0 \in E$ by

$$y_n = (1 - \beta_n) x_n + \beta_n (f + (I - F) x_n), \quad n \ge 0$$

 $x_{n+1} = (1 - \alpha_n) x_n + \alpha_n (f + (I - F) y_n), \quad n \ge 0$

converges strongly to the solution of the equation Fx=f.

Putting $\beta_n = 0$, we get $y_n = x_n$ and $\alpha_n = \alpha \quad \forall n$, we get the K-iteration as before. The same arguments for stability will apply to the following Theorem.

Theorem 2.7: Suppose *E* is a real Banach space and $F:E \rightarrow E$ is a Lipschitzian accretive operator. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences

satisfying (i)-(iii) as in previous theorem. Then the sequence $\{x_n\}$ generated from an arbitrary $x_0 \in X$ by

$$y_n = (1 - \beta_n) x_n + \beta_n (f - T x_n), \qquad n \ge 0$$
$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n (f - T y_n), \qquad n \ge 0$$

converges strongly to the unique solution of the equation $x+Fx=f, f \in E$.

Theorem 2.8: Let X be a strictly convex Banach space, C a closed bounded convex subset of X and $f:C \rightarrow C$ a densifying nonexpansive mapping, let $f_{\lambda}(x) = \lambda x (1-\lambda) f(x)$ for constant λ with $0 < \lambda < 1$, then for each $x_n \in C$, the sequence

$$x_{n+1} = \lambda x_n + (1 - \lambda) f x_n, n = 0, 1, 2, \dots$$

converges strongly to a fixed point of f in C.

3. Stability Conditions for Mann Iteration

This section deals with the stability of the Mann iteration procedure. Let us recall the following definition and theorem. Let (X,d) be a metric space and $T:X \rightarrow X$ satisfies the condition

(3.1)
$$d(Tx,Ty) \le a d(x,y) + L d(x,Tx)$$

for some $a \in [0,1]$, $L \ge 0$ when L is the Lipschitz constant, for all $x, y \in D \subset X$.

Definition²**3.1:** In a normed space *E*, on operator $T:E \rightarrow E$ is called Zamfirescu operator if there exist numbers α, β and $\gamma, 0 \le \alpha < 1, 0 \le \beta, \gamma < 0.5$ such that for any $x, y \in E$ at least one of the following conditions is true :

$$(z_1) ||Tx-Ty|| \le \alpha ||x-y||;$$

(z₂)
$$||Tx-Ty|| \le \beta \left[||x-Tx|| + ||y-Ty|| \right];$$

$$(z_3) ||Tx-Ty|| \le \gamma [||x-Tx||+||y-Ty||].$$

Theorem 3.2: Let *E* be a normed linear space and $T:E \rightarrow E$ a mapping satisfying condition (3.1). Suppose *T* has a fixed point x^* . Let x_0 by arbitrary in *E* and define

$$z_n = (1 - \beta_n) x_n + \beta_n T x_n, \qquad n \ge 0$$

and

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T z_n, \qquad n \ge 0$$

where $\{\alpha_n\}, \{\beta_n\}$ are sequences in [0,1] such that $0 < \alpha \le \alpha_{n+1}$ for some α . Let $\{y_n\}$ be any given sequence in E and define

$$s_n = (1 - \beta_n) y_n + \beta_n T y_n, \quad n \ge 0$$

$$\varepsilon_n = \left\| y_{n+1} - (1 - \alpha_n) y_n - \alpha_n T s_n \right\|, \quad n \ge 0.$$

Then $\{x_n\}$ converges strongly to x^* and is stable with respect to T.

Now let us recall the following theorem.

Theorem² 3.3: Let *E* be a uniformly convex Banach space, *K* a closed convex subset of *E* and $T:K \rightarrow K$ be a Zamfirescu mapping. Then the Mann iteration $\{x_n\}$,

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T x_n, \qquad n = 1, 2, \dots$$

with $\{\alpha_n\}$ satisfying the conditions:

(i) $\alpha_1 = 1$

(*ii*)
$$0 \le \alpha_n < 1$$
 for $n > 1$

(*iii*) $\sum \alpha_n (1-\alpha_n) = \infty$

converges to the unique fixed point of T.

We now show that $\{x_n\}$ is stable with respect to T by applying Theorem². Putting L=0 in condition (2.3) we set

$$d(Tx,Ty) \le a d(x,y)$$
 where $0 \le a < 1$

which is the first condition (z_1) for Zamfirescu mapping. We take $\beta=0$ and $\gamma=0$ giving $d(Tx,Ty)\leq 0$. Hence $\{x_n\}$ is stable with respect to *T*. Using the same arguments as above we can prove the stability of the Mann iteration in the Theorem below.

Theorem² 3.4: Let *E* be an arbitrary Banach space, *K* a closed convex subset of *E* and $T:K \to K$ an operator satisfying conditions $(z_1), (z_2)$ and (z_3) with d(x,y) = ||x-y||. Let $\{x_n\}$ be a Mann iteration with $\{a_n\} \subset [0,1]$ satisfying $\sum_{n=0}^{\infty} \alpha_n = \infty$. Then $\{x_n\}$ converges strongly to the unique fixed point of *T*.

Same arguments as above can be used to prove stability of the iteration in the following Theorem.

Theorem 3.5: Let K be a nonempty closed convex subset of a banach space E and T:K \rightarrow K a quasicontration, suppose $\alpha_n > 0$ for all $n \ge 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$. Let $\{x_n\}$ be the sequence defined by $x_0 \in K$, $y_n \in Co\{x_i\}_{i=k_n}^n \cup \{Tx_i\}_{i=k_n}^n, \quad n \ge 0$ $x_{n+1} = (1-\alpha_n)x_n + \alpha_n Ty_n, \quad n \ge 0$,

where $\{k_n\}$ is a non-decreasing sequence of positive integers such that $k_n \le n$ and $\lim_{n\to\infty} k_n = \infty$. Then $\{x_n\}$ converges strongly to the unique fixed point of T.

By², quasi - contractive operators contain zamfirescu operators.

Definition 3.6: A mapping in a normed space E is called quasicontraction if

$$||Tx-Ty|| \le kM(x, y), x, y \in E$$
, where
 $M(x, y) = \max\{||x-y||, ||x-Tx||, ||y-Ty||, ||x-Ty||, ||y-Tx||\}.$

Since non-expansive mapping is a particular case of accretive mapping by applying⁵ we get the stability of the Mann iteration in the following results.

Theorem¹ **3.7**: Let C be a nonempty closed convex bounded subset of a uniformly convex Banach space X and T a non-expansive mapping of C into a compact subset of C. Let $x_1 \in C$ be an arbitrary point in C, then the sequence $\{x_n\}$ defined by

$$x_{n+1} = \frac{1}{2}(x_n + Tx_n) = M(x_n, \frac{1}{2}, T)$$

converges strongly to a fixed point T in C.

Theorem¹ **3.8:** Let *C* be a nonempty closed subset of a banach space *X* and let *T* be a non-expansive mapping from *C* into a compact subset of *X*. Suppose that there exist $x_1 \in C$ and a sequence $\{x_n\}$ of real numbers satisfying

- (i) $0 \le \alpha_n \le \alpha < 1$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$
- (ii) $x_n \in C$ for all $n \in N$, where $x_{n+1} = M(x_n, \alpha_n, T)$,

then $\{x_n\}$ converges strongly to an element of F(T).

Definition² **3.9:** Suppose *E* is a real Banach space and *T* is a self-map of *E* with $F(T) \neq \phi$. Let $x_0 \in E$ and let $\{x_n\}$ be an iteration procedure given by

$$x_{n+1} = f(T, x_n), \quad n = 0, 1, 2, \dots$$

that converges strongly to a fixed point $x^* \in F(T)$. Let $\{y_n\}$ be a sequence in *E* and $\{\varepsilon_n\}$ is a sequence of positive real numbers given by

$$\varepsilon_{n} = \left\| y_{n+1} - f\left(T, y_{n}\right) \right\|$$

If $\sum_{n=0}^{\infty} \varepsilon_n < \infty \Rightarrow \lim_{n \to \infty} y_n = x^*$ then the iteration procedure defined above is called almost T – stable.

Definition² 3.10: Let *E* be a Banach space, *K* a subset of *E* and $T:K \rightarrow K$ is called a strongly pseudocontractive operator if there exists a number t>1 such that the inequality

$$||x-y|| \le ||(1+r)(x-y)-rt(Tx-Ty)||$$
 holds for all $x, y \in K$ and $r > 0$.

We now show that the fixed-point iteration used in the following theorem is almost T-stable.

Theorem² 3.11: Let *E* be a Banach space and *K* a nonempty closed convex and bounded subset of *E*. If $T:K \rightarrow K$ is a Lipschitzian strongly pseudocontractive operator such that the fixed point set of T,F(T) is nonempty, then the Mann iteration $\{x_n\} \subset K, x_1 \in K$ and the sequence $\{a_n\} \subset (0,1]$, with

(i)
$$\sum_{n=1}^{\infty} \alpha_n = \infty$$
 and (ii) $\alpha_n \to 0 (as \ n \to \infty)$

converges strongly to the unique fixed point (say p) of T.

Now² gives that any strongly pseudocontractive operator is pseudo ϕ contraction for certain given rules of *a,b,c* and $\phi(u)$. Applying² we get that
the Mann iteration (which is a special case of the Ishikawa iteration) is
almost *T*-stable. i.e.

$$\sum_{n=0}^{\infty} \varepsilon_n < \infty \Longrightarrow \lim_{n \to \infty} y_n = p.$$

Using the same arguments as above we can show that the iteration procedure in the following theorem is almost T-stable.

Theorem 3.12: Let *E* be a real uniformly smooth Banach space and *K* a bounded closed convex and nonempty subset of *E*. Let $T:K \rightarrow K$ be a strongly pseudo contractive operator such that T(p)=p for some $p \in K$ and let $\{x_n\}$ be the Mann iteration process generated by $x_1 \in K$ and the sequence $\{a_n\}$ satisfying the following conditions:

(*i*) $0 \le \alpha_n < 1$ for all $n \ge 1$;

(*ii*)
$$\lim_{n\to\infty}\alpha_n=0$$

$$(iii) \quad \sum_{n=0}^{\infty} \alpha_n = \infty.$$

Then, for arbitrary $x_1 \in K$, the sequence $\{x_n\}$ converges strongly to p and p is unique.

4. Stability Conditions for Ishikawa Iteration

In this section we will study the stability of the Ishikawa iteration process described in the Introduction. Let us recall the following theorem

Theorem² 4.1: For E a normed linear space and $T:E \rightarrow E$ a mapping satisfying.

$$d(Tx,Ty) \le a d(x,y) + L d(x,Tx) \text{ for some } a \in [0,1], L \ge 0, x, y \in D \subset X.$$

Let $x_{n+1} = (1-\alpha_n)x_n + \alpha_n T z_n$, $n \ge 0$ where $z_n = (1-\beta_n)x_n + \beta_n T x_n$, $n \ge 0$ where $\{\alpha_n\}, \{\beta_n\} \subset [0,1]$. Let $\{y_n\}$ be any given sequence in E and define

$$S_n = (1 - \beta_n) y_n + \beta_n T y_n, \quad n \ge 0$$

$$\varepsilon_n = \|y_{n+1} - (1 - \alpha_n) y_n - \alpha T s_n\|, \quad n \ge 0$$

Then $\{x_n\}$ converges strongly to x^* , a fixed point of T and is stable with respect to T.

We apply this theorem to obtain stability of the Ishikawa iteration in the following result.

Theorem² **4.2:** Let *E* be a uniformly convex Banach space, *K* a closed convex subset of *E* and $T:K \rightarrow K$ a Zamfirescu operators. Let $\{\alpha_n\}, \{\beta_n\} \subset [0,1]$ with $\{\alpha_n\}$ satisfying the condition $\sum_{n=1}^{\infty} \alpha_n(1-\alpha_n)$ diverges. Then for any $x_0 \in K$, the Ishikawa iteration process $I(x_0, \alpha_n, \beta_n, T)$ converges strongly to the unique fixed point of *T*.

The condition $d(Tx,Ty) \le ad(x,y) + Ld(x,Tx)$ reduces to condition (z_1) for the Zamfirescu operator when L=0, and $0 \le a < 1$ Hence we conclude that the Ishikawa iteration is T-stable. We apply² to show almost stability of the Ishikawa iteration in the following results.

Theorem¹ **4.3:** Let *C* be a nonempty compact convex subject of a Hilbert space *H* and $T:C \rightarrow C$ a Lipschitzian Pseudo contractive mapping with $F(T) \neq \phi$. Let $\{x_n\}$ be an Ishikawa iteration, then $\{x_n\}$ converges strongly to a fixed point of *T*.

Theorem² 4.4: Let K be a convex compact subset of a Hilbert space H and $T:K \rightarrow K$ be a Lipschitzian pseudo contractive map and $x_1 \in K$. Then the Ishikawa iteration $\{x_n\}$, where $\{\alpha_n\}, \{\beta_n\}$ satisfy

(i) $0 \le \alpha_n \le \beta_n \le 1, n \ge 1$ (ii) $\lim_{n \to \infty} \beta_n = 0$ (iii) $\sum_{n \to \infty}^{\infty} \alpha_n \beta_n = \infty,$

converges strongly to a fixed point of T.

Theorem² 4.5: Let *E* be a real uniformly smooth Banach space and *K* a bounded closed convex and nonempty subset of *E* Let $T:K \rightarrow K$ be a strongly pseudo contractive operator that has at least a fixed point $x^* \in F(T)$. Let $\{\alpha_n\}, \{\beta_n\}$ satisfy

(*i*) $0 \le \alpha_n, \beta_n \le 1, n \ge 0$

(*ii*)
$$\lim_{n\to\infty}\alpha_n=0, \lim_{n\to\infty}\beta_n=0$$

$$(iii) \sum_{n=1}^{\infty} \alpha_n = \infty.$$

Then for arbitrary $x_0 \in K$, the Ishikawa iteration converges strongly to x^* , also x^* is unique.

5. Comparison of Convergence Rate of Various Iterations

In this section we compare the convergence rate of the different iteration procedures. Let us recall the following Proposition from⁵.

Proposition⁵ **5.1:** Let X be a real Banach space and $A:X \to X$ be a lipschitz accretive operator with Lipschitz constant $L(L\geq 1)$, then the sequence $\{x_n\}$ defined by

$$x_{n+1} = (1-\alpha)x_n + \alpha S x_n, \qquad n \ge 0,$$

 $\alpha \in (0,1)$ is an iterative solution of x+Ax=f, $x, f \in X$ where the iterative parameter $\alpha_0 \in \left(0, \frac{1}{(L+1)^2}\right)$.

In this case $Q(\alpha)=1+(L+1)^2 \alpha^2/1+\alpha$, where the above iteration is the K-M-0 iteration. Now for the Picard iteration $\alpha=1$, i.e. $x_{n+1}=Sx_n$ and $Q(\alpha)=Q(1)=1+(L+1)^2/2$. The K-M-O iteration converges fastest for $\alpha_0=1/2(L+1)^2$. Putting this value of α_0 in $Q(\alpha)$ we get $Q(\alpha_0)=4L^2+8L+5/4L^2+8L+6$. Since $L\geq 1$, $\frac{4L^2+8L+5}{4L^2+8L+6}<\frac{1+(L+1)^2}{2}$. Hence in this case the K-M-O iteration converges faster than the Picard iteration.

Next, recall the following Theorem for Mann iteration.

Theorem² 5.2: Let *E* be a arbitrary Banach space, *K* a closed convex subset of *E* and $T:K \to K$ an operator satisfying conditions $(z_1), (z_2)$ and (z_3) . Let $\{x_n\}$ be the Mann iteration with $x_0 \in K$, $\alpha_n \subset [0,1]$ satisfying $\sum_{n=0}^{\infty} \alpha_n = \infty$. Then $\{x_n\}$ converges strongly to the unique fixed point of *T*.

In this case

$$Q(\alpha_n) = 1 - (1 - \delta)\alpha_n$$

and the convergence of the Picard iteration can be obtained from the above theorem by putting $\alpha_n = 1$, because of the four restrictive assumptions, giving $Q(\alpha_n) = \delta$. By $(z_1), (z_2), (z_3)$ and $a = \alpha, b = \beta, c = \gamma$, we find

$$\delta \!=\! \max\!\left\{\!a,\!\frac{b}{1\!-\!b},\!\frac{c}{1\!-\!c}\right\}$$

giving $0 < \delta < 1$. If $1-(1-\delta)\alpha_n$, then the Mann iteration will be faster than the Picard iteration. Since $0 < \delta < 1$, we get that $0 < \delta \alpha_n < \alpha_n$ and $1-\alpha_n + \delta \alpha_n < 1$, $\delta \alpha_n < \alpha_n$, $\delta < 1$. Hence Mann iteration is faster than Picard iteration Recall the following theorem for Mann iteration.

Theorem² 5.3: Let *E* be a Banach space and *K* a nonempty closed, convex and bounded subset of *E*. If $T:K \rightarrow K$ is a Lipschitzian strongly pseudocontractive operator such that $F(T) \neq \phi$ then the Mann iteration $\{x_n\} \subset K \quad \alpha_n \in (0,1)$ satisfying Neeta Singh

(i)
$$\sum_{n=1}^{\infty} \alpha_n = \infty$$
 (ii) $\alpha_n \to 0 \text{ as } n \to \infty$

converges strongly to the unique fixed point of T.

Here $Q(\alpha_n)=1-k^2\alpha_n$. Putting $\alpha_n=1$ for Picard iteration we have $Q(1)=1-k^2$. Since $\alpha_n<1$, $1-k^2<1-k^2\alpha_n$. Hence Picard iteration is faster than Mann iteration. Let us recall the following theorem for the Ishikawa iteration.

Theorem 5.4: Let *E* be an arbitrary Banach space, *K* a closed, convex subset of *E* and $T:K \to K$ an operator satisfying conditions $(z_1),(z_2)$ and (z_3) . Let $\{x_n\}$ be the Ishikawa iteration where $\{\alpha_n\},\{\beta_n\} \subset (0,1)$ with $\sum_{n=1}^{\infty} \alpha_n = \infty$. Then $\{x_n\}$. Then $\{x_n\}$ converges strongly to the fixed point of *T*.

In this case $Q(\alpha_n)=1-(1-\delta)^2\alpha_n$, for Picard iteration, $\alpha_n=1$, giving

$$Q(1)=1-(1-\delta)^2$$
.

Since $\alpha_n < 1$, we have $1 - (1 - \delta)^2 < 1 - (1 - \delta)^2 \alpha_n$. Hence the Picard iteration is faster than the Ishikawa iteration.

References

- 1. R. P. Agarwal, Donal O' Regan and D. R. Sahu, *Fixed Point Theory for Lipschitzian-type Mappings with Applications*, Topological Fixed-Point Theory and its Applications, Springer, **6**, 2009.
- 2. V. Berinde, *Iterative Approximation of Fixed Points*, Lecture Notes in Mathematics Springer, **1912**, 2007.
- 3. W. G. Dotson Jr., An iterative process for nonlinear monotonic non-expansive operators in Hilbert spaces, *Math comp.*, **32** (1978) 223-225.
- Sankatha Singh, Bruce Watson and P. Srivastava, Fixed Point Theory & Best Approximation: The KKM - Map Principle, *Kluwer Academic Publishers*, 1997.
- 5. Yuguang Xu, Zeqin Liu and Zuhua Liu, Krasnosel'skii Mann Opial type iterative solution of m accretive operator equation and its stability in arbitrary Banach spaces, *Fixed Point Theory and Applications*, Open Access 2014/1/41 Springer.

122