On Directional Recurrence in Cartan Sense

Siddhi Kesarwani and P. N. Pandey
Department of Mathematics, University of Allahabad
Allahabad-211002
Email: siddhikesarwani25@gmail.com; pnpiaps@gmail.com

(Received January 13, 2017)

Abstract

Shivalika Saxena ${ }^{7}$ introduced the concept of directional recurrence of Berwald curvature tensor, which is a generalization of recurrence Berwald curvature tensor and obtained several results for such a space. In the present paper, the concept of directional recurrence of Cartan curvature tensor is being introduced and certain properties of such space are obtained.

Keywords: Finsler space, directional recurrence, Cartan curvature tensor.
2010 MS Classification No.: 53B40.

1. Introduction

In 1949, H. S. Ruse ${ }^{1}$ introduced a 3-dimensional Riemannian space whose curvature tensor is recurrent in every direction. Such Riemannian space was named as Riemannian space with recurrent curvature. The concept was extended to an n-dimensional Riemannian space by A. G. Walker ${ }^{2}$ which was further extended to non-Riemannian spaces and to Finsler spaces by several authors including A. Moor ${ }^{3}$. Significant contribution were made by several Indian Finsler geometers including R. S. Mishra and H. D. Pande ${ }^{4}$, R. N. Shen ${ }^{5}$, U. P. Singh, B. N. Prasad, R. B. Mishra, P. N. Pandey ${ }^{6}$, H. S. Shukla and T. N. Pandey in this field. Shivalika Saxena ${ }^{7}$ introduced the concept of directional recurrence of Berwald curvature tensor, which is a generalization of recurrence Berwald curvature tensor and obtained several results for such a space.

In the present paper, the concept of directional recurrence of Cartan curvature tensor is being introduced and certain properties of such space are obtained.

2. Preliminaries

Suppose F_{n} be an n-dimensional Finsler space having F as a metric function satisfying the requisite conditions ${ }^{8}$, $g_{i j}$ is corresponding metric tensor, $G_{j k}^{i}$ Berwald connection coefficients and $\Gamma_{j k}^{*}$ Cartan connection coefficients.

Cartan covariant derivative of an arbitrary tensor field T_{j}^{i} is given by

$$
\begin{equation*}
T_{j \mid k}^{i}=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} \Gamma_{r k}^{* i}-T_{r}^{i} \Gamma_{j k}^{* r} . \tag{2.1}
\end{equation*}
$$

The commutation formulae between Cartan covariant differentiation with respect to x^{k} and partial differentiation with respect to y^{j} are given by
(2.2) $\dot{\partial}_{j}\left(X_{\mid k}^{i}\right)-\left(\dot{\partial}_{j} X^{i}\right)_{\mid k}=X^{r}\left(\dot{\partial}_{j} \Gamma_{r k}^{* i}\right)-\left(\dot{\partial}_{r} X^{i}\right)\left(\dot{\partial}_{j} \Gamma_{s k}^{* r}\right) y^{s}$.

Berwald defined the curvature tensor $H_{j k h}^{i}$ whichsatisfies the following conditions

$$
\begin{equation*}
\text { (a) } \dot{\partial}_{j} H_{k h}^{i}=H_{j k h}^{i} \text { (b) } \dot{x}^{j} H_{j k h}^{i}=H_{k h}^{i} \tag{2.3}
\end{equation*}
$$

(c) $\dot{x}^{k} H_{k h}^{i}=H_{h}^{j}(\mathrm{~d}) H_{j r}^{r}=H_{j}$
(e) $H_{r}^{r}=\dot{x}^{j} H_{j}=(n-1) H$
(f) $\dot{x}^{k} H_{k}^{i}=0$.

Cartan defined the curvature tensor $K_{j k h}^{i}$ whichsatisfies the following conditions
(a) $\dot{x}^{j} K_{j k h}^{i}=H_{k h}^{i}$
(b) $K_{j k r}^{r}=K_{j k}$,
where $K_{j k}$ be Cartan Ricci tensor.

The projective deviation tensor W_{h}^{i} of a Finsler space is defined as
(2.5) $W_{h}^{i}=H_{h}^{i}-H \delta_{h}^{i}-\frac{y^{i}}{n+1}\left(\dot{\partial}_{r} H_{h}^{r}-\dot{\partial}_{h} H\right)$.

Definition 2.1: A vector field $v^{i}\left(x^{j}\right)$ in a Finsler space F_{n} is called contra, concurrent, special concircular and torse forming vector fields respectively, ifit satisfies the following conditions
(a) $v_{\mid k}^{i}=0$ (b) $v_{\mid k}^{i}=c \delta_{k}^{i}$
(c) $v_{k}^{i}=\rho \delta_{k}^{i}$ (d) $v_{\mid k}^{i}=\rho \delta_{k}^{i}+\mu_{k} v^{i}$,
where c is a nonzero constant, ρ is a scalar field and μ_{k} is a nonzero covariant vector field.

3. Directional Recurrence of Geometric Objects in Berwald Sense and Cartan Sense

Let Ω be any geometric object and v^{i} be the components of a contravariant vector field in a Finsler space. Shivalika Saxena ${ }^{7}$ calls the geometric object Ω recurrent in the direction v^{i} if there exists a non-null scalar field ϕ such that

$$
\begin{equation*}
\Omega_{(k)} v^{k}=\phi \Omega . \tag{3.1}
\end{equation*}
$$

We shall call it directional recurrence in the sense of Berwald.
We define a directional recurrence of the geometric object Ω in the direction by v^{i} by

$$
\begin{equation*}
\Omega_{\mid k} v^{k}=\phi \Omega, \tag{3.2}
\end{equation*}
$$

and call it the directional derivative of the geometric object Ω in the direction v^{i}, in the sense of Eli Cartan.
Directional derivatives in the sense of Berwald and Eli Cartan are in general, different. However, if the geometrical object Ω is a scalar field, both directional derivatives coincide. This can be seen with the help of definitions of Berwald covariant derivative and Cartan covariant derivative of a scalar field.

If T_{j}^{i} are components of a tensor field, then its directional derivative in the direction v^{i} in Berwald sense and Cartan sense are given by
$T_{j(k)}^{i} \nu^{k}=v^{k}\left[\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} G_{r k}^{i}-T_{r}^{i} G_{j k}^{r}\right]$
and
$T_{j \mid k}^{i} v^{k}=v^{k}\left[\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} \Gamma_{r k}^{* i}-T_{r}^{i} \Gamma_{j k}^{* r}\right]$,
respectively for $G_{j k}^{i} \neq \Gamma_{j k}^{*_{i}}$ in general. However, $G_{j k}^{i}=\Gamma_{j k}^{*_{i}}$ if the space is a Landsberg space. Therefore, in a Landsberge space, both directional derivatives coincide.
A geometric object Ω is called recurrent in the sense of Eli Cartan if there exists a non-zero vector field λ_{m} such that

$$
\begin{equation*}
\Omega_{\mid m}=\lambda_{m} \Omega . \tag{3.3}
\end{equation*}
$$

Transvecting (3.3) with v^{m} and putting $\lambda_{m} v^{m}=\phi$, we get (3.2). This shows that a geometrical object which is recurrent, is recurrent in the direction v^{i}. Its converse is not necessarily true.
A contra vector field v^{i} characterized by

$$
\begin{equation*}
v_{\mid k}^{i}=0, \tag{3.4}
\end{equation*}
$$

is not recurrent in any direction.
A concurrent vector field is characterized by

$$
\begin{equation*}
v_{\mid k}^{i}=c \delta_{k}^{i} . \tag{3.5}
\end{equation*}
$$

Tansvecting equation (3.5) with ν^{k}, we get

$$
\begin{equation*}
v_{\mid k}^{i} v^{k}=c v^{i} . \tag{3.6}
\end{equation*}
$$

Transvecting equation (3.5) with w^{k}, we get

$$
\begin{equation*}
v_{\mid k}^{i} w^{k}=c w^{i} . \tag{3.7}
\end{equation*}
$$

From equations (3.6) and (3.7), we conclude that
Theorem3.1:A concurrentvector fieldin a Finsler space is recurrent in its own direction but not recurrent in the direction of any other vector.

Transvecting equation (2.2 c) with v^{k}, we get

$$
\begin{equation*}
v_{\mid k}^{i} v^{k}=\rho v^{i} . \tag{3.8}
\end{equation*}
$$

Again transvecting (2.2 c) with w^{k}, we obtain

$$
\begin{equation*}
v_{\mid k}^{i} w^{k}=\rho w^{i} \tag{3.9}
\end{equation*}
$$

This leads to
Theorem 3.2:A special concircular vector field in a Finsler space is recurrent in its own direction but not recurrent in the direction of any other vector.

Transvecting equation (2.2 d) with ν^{k}, we get
$v_{\mid k}^{i} v^{k}=\rho v^{i}+\mu_{k} v^{k} v^{i}$,
which implies

$$
\begin{equation*}
v_{\mid k}^{i} v^{k}=\left(\rho+\mu_{k} v^{k}\right) v^{i} . \tag{3.10}
\end{equation*}
$$

Again transvecting equation (2.2 d) with w^{k}, we get

$$
\begin{equation*}
v_{\mid k}^{i} w^{k}=\rho w^{i}+\left(\mu_{k} w^{k}\right) v^{i} . \tag{3.11}
\end{equation*}
$$

From equations (3.10) and (3.11), we conclude that
Theorem 3.3: A torse forming vector field in a Finsler space is recurrent in its own direction but not recurrent in the direction of any other vector.

Cartan covariant derivative of the metric tensor $g_{i j}$ is given by

$$
\begin{equation*}
g_{i j \mid k}=0 \tag{3.12}
\end{equation*}
$$

This shows that the metric tensor $g_{i j}$ is not recurrent in any direction.

4. Directional Recurrence of Cartan Curvature Tensor

Let us consider a Finsler space whose Cartan curvature tensor $K_{j k h}^{i}$ is recurrent in the direction v^{i}. Such space is characterized by

$$
\begin{equation*}
K_{j k l \mid m}^{i} v^{m}=\phi K_{j k h}^{i}, \tag{4.1}
\end{equation*}
$$

where the scalar field $\phi \neq 0$.
Transvecting equation (4.1) with y^{j} and using equation (2.4 b), we get

$$
\begin{equation*}
H_{k h \mid m}^{i} v^{m}=\phi H_{k h}^{i} \tag{4.2}
\end{equation*}
$$

Transvecting equation (4.2) with y^{k} and using equation (2.4 c), we have

$$
\begin{equation*}
H_{h \mid m}^{i} v^{m}=\phi H_{h}^{i} . \tag{4.3}
\end{equation*}
$$

Contracting the indices i and h in equation (4.1), (4.2) and (4.3) and using equations (2.4 b), (2.3 d) and (2.3 e) respectively, we obtain

$$
\begin{align*}
& K_{j k \mid m} v^{m}=\phi K_{j k} \tag{4.4}\\
& H_{k \mid m} \nu^{m}=\phi H_{k} . \tag{4.5}\\
& H_{\mid m} v^{m}=\phi H . \tag{4.6}
\end{align*}
$$

From equation (4.2), (4.3), (4.4), (4.5) and (4.6), we conclude that:
Theorem 4.1: Cartan Ricci tensor $K_{j k}$, Berwald torsion tensor $H_{k k}^{i}$, Berwald deviation tensor H_{k}^{i}, the vector H_{k} and the scalar curvature H of a Finsler space which is recurrent in the direction v^{i}, in Cartan sense, are necessarily recurrent in the direction v^{i}.

Differentiating (4.5) partially with respect to y^{j}, we get

$$
\begin{equation*}
v^{m} \dot{\partial}_{j} H_{k \mid m}=\left(\dot{\partial}_{j} \phi\right) H_{k}+\phi\left(\dot{\partial}_{j} H_{k}\right) . \tag{4.7}
\end{equation*}
$$

Using the commutative formula exhibited by (2.2), we get
(4.8) $\quad v^{m}\left[\left(\dot{\partial}_{j} H_{k}\right)_{\mid m}-H_{r} \dot{\partial}_{j} \Gamma_{k m}^{* r}-\left(\dot{\partial}_{r} H_{k}\right)\left(\dot{\partial}_{j} \Gamma_{s m}^{* r}\right) y^{s}\right]=\left(\dot{\partial}_{j} \phi\right) H_{k}+\phi\left(\dot{\partial}_{j} H_{k}\right)$, which implies

$$
\begin{equation*}
H_{j k \mid m} v^{m}-v^{m} H_{r} \dot{\partial}_{j} \Gamma_{k m}^{* r}-v^{m} H_{r k}\left(\dot{\partial}_{j} \Gamma_{s m}^{* r}\right) y^{s}=\left(\dot{\partial}_{j} \phi\right) H_{k}+\phi H_{j k} . \tag{4.9}
\end{equation*}
$$

We may write (4.9) as

$$
\begin{equation*}
H_{j k \mid m} v^{m}-\phi H_{j k}=v^{m} H_{r} \dot{\partial}_{j} \Gamma_{k m}^{* r}-v^{m} H_{r k}\left(\dot{\partial}_{j} \Gamma_{s m}^{* r}\right) y^{s}+\left(\dot{\partial}_{j} \phi\right) H_{k} . \tag{4.10}
\end{equation*}
$$

This leads to

Theorem 4.2: Let a Finsler space be recurrent in the direction of the vector field v^{i}, in Cartan sense. Then the Berwald Ricci tensor $H_{j k}$ is recurrent in the direction v^{i} if and only if there holds the condition

$$
\begin{equation*}
v^{m} H_{r} \dot{\partial}_{j} \Gamma_{k m}^{* r}-v^{m} H_{r k}\left(\dot{\partial}_{j} \Gamma_{s m}^{* r}\right) y^{s}+\left(\dot{\partial}_{j} \phi\right) H_{k}=0 \tag{4.11}
\end{equation*}
$$

Differentiating (4.2) partially with respect to y^{j}, we get

$$
\begin{equation*}
v^{m} \dot{\partial}_{j} H_{k l \mid m}^{i}=\left(\dot{\partial}_{j} \phi\right) H_{k h}^{i}+\phi\left(\dot{\partial}_{j} H_{k h}^{i}\right) . \tag{4.12}
\end{equation*}
$$

Using the commutation formula (2.2) in equation (4.12), we get

$$
\begin{equation*}
v^{m}\left[\left(\dot{\partial}_{j} H_{k h}^{i}\right)_{\mid m}+H_{k h}^{r} \dot{\partial}_{j} \Gamma_{r m}^{* i}-H_{r h}^{i} \dot{\partial}_{j} \Gamma_{k m}^{* r}-H_{k r}^{i} \dot{\partial}_{j} \Gamma_{h m}^{* r}\right. \tag{4.13}
\end{equation*}
$$

$$
\left.\left.-\left(\dot{\partial}_{r} H_{k h}^{i}\right)\left(\dot{\partial}_{j} \Gamma_{s m}^{* r}\right) y^{s}\right]=\left(\dot{\partial}_{j} \phi\right) H_{k h}^{i}+\phi \dot{\partial}_{j} H_{k h}^{i}\right)
$$

In view of (2.3 a), (4.13) may be written as

$$
\begin{equation*}
H_{j k l \mid m}^{i} v^{m}-\phi H_{j k h}^{i}=\left(\dot{\partial}_{j} \phi\right) H_{k h}^{i}+v^{m}\left[H_{r h}^{i} \dot{\partial}_{j} \Gamma_{k m}^{* r}+H_{k r}^{i} \dot{\partial}_{j} \dot{F}_{h m}^{* r}\right. \tag{4.14}
\end{equation*}
$$

$$
\left.+H_{r k h}^{i} \dot{\partial}_{j} \Gamma_{s m}^{* r} y^{s}-H_{k h}^{r} \dot{\partial}_{j} \Gamma_{r m}^{*_{i}^{i}}\right]
$$

From equation (4.14), we conclude that
Theorem 4.3: Let a Finsler space be recurrent in the direction of the vector field v^{i}, in Cartan sense. Then its Berwald curvature tensor is recurrent in the direction v^{i}, in Cartan sense, if and only if the following condition holds (4.15) $\left(\dot{\partial}_{j} \phi\right) H_{k h}^{i}+v^{m}\left[H_{r h}^{i} \dot{\partial}_{j} \Gamma_{k m}^{* r}+H_{k r}^{i} \dot{\partial}_{j} \Gamma_{h m}^{* r}+H_{r k h}^{i} \dot{\partial}_{j} \Gamma_{s m}^{* r} y^{s}-H_{k h}^{r} \dot{\partial}_{j} \Gamma_{r m}^{*_{i}}\right]=0$.

Covariant differentiation of (2.5) with respect to x^{m} in the sense of Cartan, we have

$$
\begin{equation*}
W_{h \mid m}^{i}=H_{h \mid m}^{i}-H_{\mid m} \delta_{h}^{i}-\frac{y^{i}}{n+1}\left(\dot{\partial}_{r} H_{h}^{r}-\dot{\partial}_{h} H\right)_{\mid m} . \tag{4.17}
\end{equation*}
$$

Transvecting equation (4.17) with v^{m}, we get

$$
\begin{equation*}
v^{m} W_{h \mid m}^{i}=v^{m} H_{h \mid m}^{i}-v^{m} H_{\mid m} \delta_{h}^{i}-\frac{y^{i}}{(n+1)}\left[\left(\dot{\partial}_{r} H_{h}^{r}\right)_{\mid m}-\left(\dot{\partial}_{h} H\right)_{\mid m}\right] v^{m} . \tag{4.18}
\end{equation*}
$$

Using the commutation formula for Cartan covariant differentiation and directional differentiation, we have

$$
\dot{\partial}_{k}\left(H_{h \mid m}^{i}\right)-\left(\dot{\partial}_{k} H_{h}^{i}\right)_{\mid m}=H_{h}^{r} \dot{\partial}_{k} \Gamma_{h m}^{* i}-H_{r}^{i} \dot{\partial}_{k} \Gamma_{h m}^{* r}-\left(\dot{\partial}_{r} H_{h}^{i}\right) \dot{\partial}_{k} \Gamma_{s m}^{* r} y^{s}
$$

and

$$
\dot{\partial}_{k}\left(H_{\mid m}\right)-\left(\dot{\partial}_{k} H\right)_{\mid m}=-\left(\dot{\partial}_{r} H\right) \dot{\partial}_{k} \Gamma_{s m}^{* r} y^{s} .
$$

Transvecting these equation with v^{m} and using (4.3) and (4.6), we get
(4.19) $\left(\dot{\partial}_{k} H_{h}^{i}\right)_{\mid m} v^{m}=\phi \dot{\partial}_{k} H_{h}^{i}+H_{h}^{i} \dot{\partial}_{k} \phi-H_{h}^{r} \dot{\partial}_{k} \Gamma_{r m}^{*_{i}} v^{m}$
$+H_{r}^{i} \dot{\partial}_{k} \Gamma_{h m}^{* r} w^{m}+\left(\dot{\partial}_{r} H_{h}^{i}\right) \dot{\partial}_{k} \Gamma_{s m}^{* r} y^{s} v^{m}$
and

$$
\begin{equation*}
\dot{\partial}_{k}(H)_{\mid m} v^{m}=\phi \dot{\partial}_{k} H+H \dot{\partial}_{k} \phi+\left(\dot{\partial}_{r} H\right) \dot{\partial}_{k} \Gamma_{s m}^{* r} y^{s} v^{m} \tag{4.20}
\end{equation*}
$$

Contracting the indices k and i in (4.19), we have

$$
\begin{equation*}
\left(\dot{\partial}_{r} H_{h}^{r}\right)_{\mid m} v^{m}=\phi \dot{\partial}_{r} H_{h}^{r}+H_{h}^{r} \dot{\partial}_{r} \phi-H_{h}^{t} \dot{\partial}_{r} \Gamma_{t m}^{*_{i}} v^{m} \tag{4.21}
\end{equation*}
$$

$$
+H_{t}^{i} \dot{\partial}_{k} \Gamma_{h m}^{* t} w^{m}+\left(\dot{\partial}_{t} H_{h}^{r}\right) \dot{\partial}_{r} \Gamma_{s m}^{* t} y^{s} v^{m}
$$

From (4.20) and (4.21), we get

$$
\begin{equation*}
\left[\left(\dot{\partial}_{r} H_{h}^{r}\right)_{\mid m}-\left(\dot{\partial}_{h} H\right)_{\mid m}\right] v^{m}=\phi\left(\dot{\partial}_{r} H_{h}^{r}-\dot{\partial}_{h} H\right)+H_{h}^{r}\left(\dot{\partial}_{r} \phi\right)-H\left(\dot{\partial}_{h} \phi\right) \tag{4.22}
\end{equation*}
$$

$+v^{m} H_{s}^{r} \dot{\partial}_{r} \Gamma_{h m}^{* s}-v^{m} H_{h}^{s} \dot{\partial}_{r} \Gamma_{s m}^{* r}+v^{m}\left(\dot{\partial}_{s} H_{h}^{r}\right)$

$$
\left(\dot{\partial}_{r} \Gamma_{l m}^{* s}\right) y^{l}-v^{m}\left(\dot{\partial}_{r} H\right)\left(\dot{\partial}_{h} \Gamma_{s m}^{* r}\right) y^{s}
$$

Using (4.22) in equation (4.18), we find

$$
\begin{equation*}
v^{m} W_{h \mid m}^{i}=\phi W_{h}^{i}-\frac{y^{i}}{(n+1)}\left[H_{h}^{r} \dot{\partial}_{r} \phi-H \dot{\partial}_{h} \phi+v^{m} H_{s}^{r} \dot{\partial}_{r} \Gamma_{h m}^{* s}\right. \tag{4.23}
\end{equation*}
$$

$\left.-v^{m} H_{h}^{s} \dot{\partial}_{r} \Gamma_{s m}^{* r}+v^{m}\left(\dot{\partial}_{s} H_{h}^{r}\right)\left(\dot{\partial}_{r} \Gamma_{l m}^{* s}\right) y^{l}-v^{m}\left(\dot{\partial}_{r} H\right)\left(\dot{\partial}_{h} \Gamma_{s m}^{* r}\right) y^{s}\right]$.
This leads to
Theorem 4.4:If a Finsler space is recurrent in the direction v^{i} in Cartan sense, then the projective deviation tensor of the Finsler space is recurrent in that direction if the following condition is satisfied

$$
\begin{equation*}
\left[H_{h}^{r} \dot{\partial}_{r} \phi-H \dot{\partial}_{h} \phi+v^{m} H_{s}^{r} \dot{\partial}_{r} \Gamma_{h m}^{* s}-v^{m} H_{h}^{s} \dot{\partial}_{r} \Gamma_{s m}^{* r}\right. \tag{4.24}
\end{equation*}
$$

$$
\left.+v^{m}\left(\dot{\partial}_{s} H_{h}^{r}\right)\left(\dot{\partial}_{r} \Gamma_{l m}^{* s}\right) y^{l}-v^{m}\left(\dot{\partial}_{r} H\right)\left(\dot{\partial}_{h} \Gamma_{s m}^{* r}\right) y^{s}\right]=0
$$

References

1. H. S. Ruse, Three-dimensional spaces of recurrent curvature, Proc. London Math. Soc.,50(2) (1949) 438-446.
2. A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc.,52(2) (1950) 36-64
3. A. Moór, Untersuchungen uber Finslerraume Von rekurrenter Krummung, Tensor, N. S., 13 (1963) 1-18.
4. R. S. Mishra and H. D. Pande, Recurrent Finsler space, J. Indian Math. Soc., 32 (1968) 17-22.
5. R. N. Sen, Finsler space of recurrent curvature, Tensor (N. S.), 19 (1968) 291-299.
6. P. N. Pandey, A recurrent Finsler manifold admitting special recurrent transformation, Progress of Mathematics, 13 (1979) 85-98.
7. Shivalika Saxena, Differential geometry of certain special Finsler spaces, D. Phil. thesis, University of Allahabad, Allahabad, 2013.
8. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, 1959.
