Conformal $\boldsymbol{\beta}$-Change of Finsler Metric

H. S. Shukla and Neelam Mishra
Department of Mathematics \& Statistics
DDU Gorakhpur University, Gorakhpur, India
Email: profhsshuklagkp@rediffmail.com, pneelammishra@gmail.com

(Received January 20, 2017)

Abstract

The purpose of the present paper is to find the necessary and sufficient conditions under which a conformal β-change of Finsler metric becomes a projective change .We have also found a condition under which a conformal β-change of Finsler metric leads a Douglas space into a Douglas space.

Keywords: FinslerSpace, Finslermetric, conformal β-change, projective change, Douglas space.
2010 Mathematics Subject Classification:53B40.

1. Introduction

Let $F^{n}=\left(M^{n}, L\right)$ be an n - dimensional Finsler space on the differentiable manifold M^{n}, equipped with the fundamental function $L(x, y)$. B. N. Prasad and Bindu Kumari ${ }^{1}$ and C. Shibata ${ }^{2}$ have considered the β - change of Finsler metric given by

$$
L^{*}(x, y)=f(L, \beta)
$$

where f is positively homogeneous function of degree one in L and β, where β given by

$$
\beta(x, y)=b_{i}(x) y^{i}
$$

is a one-form on M^{n}.
The conformal theory of Finsler space was initiated by M. S. Knebelman ${ }^{3}$ in 1929 and has been investigated in detail by many authors (Hashiguchi ${ }^{4}$, Izumi ${ }^{5,6}$ and Kitayama ${ }^{7}$). The conformal change is defined as

$$
L^{*}(x, y) \rightarrow e^{\sigma(x)} L(x, y),
$$

where $\sigma(x)$ is a function of position only and known as conformal factor.
In this paper we have combined the above two changes and have introduced another Finsler metric defined as

$$
\begin{equation*}
\bar{L}(x, y)=e^{\sigma} f(L, \beta) \tag{1.1}
\end{equation*}
$$

where $\sigma(x)$ is a function of x and $\beta(x, y)=b_{i}(x) y^{i}$ is a 1 -form on M^{n}.
This conformal change of $(L, \beta)-$ metric will be called as conformal $\beta-$ change of Finsler metric. When $\sigma=0$, it reduces to a β-change. When $\sigma=$ constant, it becomes a homothetic β-change. When $f(L, \beta)$ has special forms as $L+\beta, \frac{L^{2}}{L-\beta}, \frac{L^{2}}{\beta}, \frac{L^{m+1}}{\beta^{m}}(m \neq 0,-1)$, we get conformal Randers change, conformal Matsumoto change, conformal Kropina change, conformal generalized Kropina change of Finsler metric respectively. The Finsler space equipped with the metric \bar{L} given by (1.1) will be denoted by \bar{F}^{n}. Throughout the paper the quantities corresponding to \bar{F}^{n} will be denoted by putting bar on the top of them. The fundamental quantities of F^{n} are given by

$$
g_{i j}=\frac{1}{2} \frac{\partial^{2} L^{2}}{2 y^{i} \partial y^{j}}, l_{i}=\frac{\partial L}{\partial y^{i}} \text { and } h_{i j}=L \frac{\partial^{2} L^{2}}{\partial y^{i} \partial y^{j}}=g_{i j}-l_{i} l_{j} .
$$

We shall denote the partial derivatives with respect to x^{i} and y^{i} by ∂_{i} and $\dot{\partial}_{i}$ respectively and write

$$
L_{i}=\dot{\partial}_{i} L, L_{i j}=\dot{\partial}_{j} \dot{\partial}_{i} L, L_{i j k}=\dot{\partial}_{k} \dot{\partial}_{j} \dot{\partial}_{i} L .
$$

Then $L_{i}=l_{i}, L^{-1} h_{i j}=L_{i j}$. The geodesics of F^{n} are given by the system of differential equations

$$
\frac{d^{2} x^{i}}{d s^{2}}+2 G^{i}\left(x, \frac{d x}{d s}\right)=0
$$

where $G^{i}(x, y)$ are positively homogeneous of degree two in y^{i} and are given by

$$
2 G^{i}=g^{i j}\left(y^{r} \dot{\partial}_{j} \partial_{r} F-\partial_{j} F\right), F=\frac{L^{2}}{2}
$$

where $g^{i j}$ are the inverse of $g_{i j}$.
Berwald connection $B \Gamma=\left(G_{j k}^{i}, G_{j}^{i}, 0\right)$ of Finsler space is given by ${ }^{8}$:

$$
G_{j}^{i}=\frac{\partial G^{i}}{\partial y^{j}}, G_{j k}^{i}=\frac{\partial G_{j}^{i}}{\partial y^{k}} .
$$

The Cartan's connection $\left(F_{j k}^{i}, G_{j}^{i}, C_{j k}^{i}\right)$ is constructed from the metric function L with the help of following axioms ${ }^{8}$:
(1) Cartan's connection $\mathrm{C} \Gamma$ is v-metrical.
(2) Cartan's connection $\mathrm{C} \Gamma$ is h-metrical.
(3) The (v) v-torsion tensor field S of Cartan's connection vanishes.
(4) The (h) h-torsion tensor field T of Cartan's connection vanishes.
(5) The deflection tensor field D of Cartan's connection vanishes.

The h - and r - covariant derivatives with respect to Cartan's connection aredenoted by ${ }_{\mid k}$ and $\left.\right|_{k}$ respectively. It is clear that the h-covariant derivative of L with respect to $\mathrm{B} \Gamma$ and $\mathrm{C} \Gamma$ is the same and vanishes identically. Further-more, the h-covariant derivatives of $L_{i}, L_{i j}$ with respect to $\mathrm{C} \Gamma$ are also zero. We shall write

$$
2 r_{i j}=b_{i \mid j}+b_{j i i}, \quad 2 s_{i j}=b_{i j j}-b_{j \mid i} .
$$

2. Difference Tensor of Conformal $\boldsymbol{\beta}$-Change

The conformal β - change of Finsler metric L is given by

$$
\bar{L}(x, y)=e^{\sigma} f(L, \beta),
$$

where f is positively homogeneous function of degree one in L and β. Homogeneity of f gives

$$
L f_{1}+\beta f_{2}=f,
$$

where subscripts " 1 " and " 2 " denote the partial derivatives with respect to L and β respectively.

Differentiating above equations with respect to L and β respectively, we get

$$
L f_{12}+\beta f_{22}=0 \text { and } L f_{11}+\beta f_{21}=0
$$

Hence, we have

$$
\frac{f_{11}}{\beta^{2}}=\frac{-f_{12}}{L \beta}=\frac{f_{22}}{L^{2}},
$$

which gives

$$
f_{11}=\beta^{2} \omega, \quad f_{12}=-L \beta \omega, \quad f_{22}=L^{2} \omega,
$$

where Weierstrass function ω is positively homogeneous of degree-3 in L and β. Therefore

$$
L \omega_{1}+\beta \omega_{2}+3 \omega=0,
$$

where ω_{1} and ω_{2} are positively homogeneous of degree -4 in L and β.
Throughout the paper we frequently use the above equations without quoting them. Also we have assumed that f is not a linear function of L and β so that $\omega \neq 0$. We now put

$$
\begin{equation*}
\bar{G}^{i}=G^{i}+D^{i} . \tag{2.1}
\end{equation*}
$$

Then $\bar{G}_{j}^{i}=G_{j}^{i}+D_{j}^{i}$ and $\bar{G}_{j k}^{i}=G_{j k}^{i}+D_{j k}^{i}$, where $D_{j}^{i}=\dot{\partial}_{j} D^{i}$ and $D_{j k}^{i}=\dot{\partial}_{k} D_{j}^{i}$.
The tensors D^{i}, D_{j}^{i} and $D_{j k}^{i}$ are positively homogeneous in y^{i} of degree two, one and zero respectively. To find D^{i} we deal with equation $L_{i j ı k}=0^{9}$, i.e.,

$$
\begin{equation*}
\partial_{k} L_{i j}-L_{i j r} G_{k}^{r}-L_{r j} F_{i k}^{r}-L_{i r} F_{j k}^{r}=0 . \tag{2.2}
\end{equation*}
$$

Since $\dot{\partial}_{t} \beta=b_{\mathrm{i}}$, from (1.1), we have

$$
\begin{align*}
& \bar{L}_{i}=e^{\sigma}\left(f_{1} L_{i}+f_{2} b_{i}\right), \tag{2.3}\\
& \bar{L}_{i j}=e^{\sigma}\left[f_{1} L_{i j}+\beta^{2} \omega L_{i} L_{j}-L \beta \omega\left(L_{i} b_{j}+L_{j} b_{i}\right)+L^{2} b_{i} b_{j}\right],
\end{align*}
$$

$$
\left.\begin{array}{l}
\bar{L}_{i j k}=e^{\sigma}\left[\begin{array}{l}
f_{1} L_{i j k}+\beta^{2} \omega\left(L_{i} L_{j k}+L_{j} L_{i k}+L_{k} L_{i j}\right)-L \beta \omega\left(b_{i} L_{j k}+b_{j} L_{i k}+b_{k} L_{i j}\right) \\
+\beta\left(2 \omega+\beta \omega_{2}\right)\left(L_{i} L_{j} b_{k}+L_{i} L_{k} b_{j}+L_{j} L_{k} b_{i}\right)+\beta^{2} \omega_{1} L_{i} L_{j} L_{k} \\
-L\left(\omega+\beta \omega_{2}\right)\left(b_{i} b_{j} L_{k}+b_{i} b_{k} L_{j}+b_{j} b_{k} L_{i}\right)+L^{2} \omega_{2} b_{i} b_{j} b_{k}
\end{array}\right],
\end{array}\right], \begin{aligned}
& \partial_{j} \bar{L}_{i}=e^{\sigma}\left[\begin{array}{l}
f_{1} \partial_{j} L_{i}+\omega\left(\beta^{2} L_{i}-L \beta b_{i}\right) \partial_{j} L+\omega\left(L^{2} b_{i}-L \beta L_{i}\right) \partial_{j} \beta \\
+f_{2} \partial_{j} b_{i}+\left(f_{1} L_{i}+f_{2} b_{i}\right) \sigma_{j}
\end{array}\right] \\
& \partial_{k} \bar{L}_{i j}=e^{\sigma}\left[\begin{array}{l}
f_{1} \partial_{k} L_{i j}+\left\{\begin{array}{l}
\beta^{2} \omega L_{i j}-\beta\left(\omega+L \omega_{1}\right)\left(L_{i} b_{j}+L_{j} b_{i}\right) \\
+\beta^{2} \omega_{1} L_{i} L_{j}+L\left(2 \omega+L \omega_{1}\right) b_{i} b_{j}
\end{array}\right\} \partial_{k} L \\
+\left\{\begin{array}{l}
-L \beta \omega L_{i j}+\beta\left(2 \omega+\beta \omega_{2}\right) L_{i} L_{j} \\
\left.\left.-L\left(\omega_{1}+\beta \omega_{2}\right)\left(L_{i} b_{j}+L_{j} b_{i}\right)+L^{2} \omega_{2} b_{j} b_{i}\right\} \partial_{j}-L \beta \omega b_{j}\right) \partial_{k} L_{i}+\left(\beta^{2} \omega L_{i}-L \beta \omega b_{i}\right) \partial_{k} L_{j} \\
+\omega\left(L^{2} b_{j}-L \beta L_{j}\right) \partial_{k} b_{i}+\omega\left(L^{2} b_{i}-L \beta L_{i}\right) \partial_{k} b_{j} \\
+\left\{\begin{array}{l}
\left.f_{1} L_{i j}+\beta^{2} \omega L_{i} L_{j}-L \beta \omega\left(L_{i} b_{j}+L_{j} b_{i}\right)+L^{2} \omega b_{j} b_{i}\right\}
\end{array}\right] \sigma_{k}
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

where $\sigma_{k}=\frac{\partial \sigma}{\partial x^{k}}$.
Since $\bar{L}_{i j \mid k}=0$ in \bar{F}^{n}, after using (2.1), we have

$$
\begin{equation*}
\partial_{k} \bar{L}_{i j}-\bar{L}_{i j r} \bar{G}_{k}^{r}-\bar{L}_{r j} \bar{F}_{i k}^{r}-\bar{L}_{i r} \bar{F}_{j k}^{r}=0 . \tag{2.4}
\end{equation*}
$$

Substituting in the above equation the values of $\partial_{k} \bar{L}_{i j}, \bar{L}_{i r}$ and $\bar{L}_{i j k}$ from (2.3) in (2.4) and then contracting the equation thus obtained with y^{k}, we get

$$
\left\{\begin{array}{l}
2 \bar{L}_{i j r} D^{r}+\bar{L}_{j r} D_{i}^{r}+\bar{L}_{i r} D_{j}^{r}-\omega\left(L^{2} b_{j}-L \beta L_{j}\right)\left(r_{i 0}+s_{i 0}\right) \tag{2.5}\\
-\omega\left(L^{2} b_{i}-L \beta L_{i}\right)\left(r_{j 0}+s_{j 0}\right)-\left\{\begin{array}{l}
-L \beta \omega L_{i j}+\beta\left(2 \omega+\beta \omega_{2}\right) L_{i} L_{j} \\
-L\left(\omega+\beta \omega_{2}\right)\left(L_{i} b_{j}+L_{j} b_{i}\right)+L^{2} \omega_{2} b_{j} b_{i}
\end{array}\right\} r_{00} \\
+\left\{f_{1} L_{i j}+\beta^{2} \omega L_{i} L_{j}-L \beta \omega\left(L_{i} b_{j}+L_{j} b_{i}\right)+L^{2} \omega b_{j} b_{i}\right\} \sigma_{0}=0
\end{array}\right.
$$

where ${ }^{\prime} 0^{\prime}$ stands for contraction with y^{k}, viz., $r_{j 0}=r_{j k} y^{k}, r_{00}=r_{j k} y^{j} y^{k}, \sigma_{0}=\sigma_{i} y^{i}$ and we have used the fact that $D^{i}{ }_{j k} y^{k}={ }^{c} D^{i}{ }_{j k} y^{k}=D^{i}{ }_{j}{ }^{9}$, where ${ }^{c} D^{i}{ }_{j k}=\bar{F}^{i}{ }_{j k}-F^{i}{ }_{j k}$. Next, we deal with $\bar{L}_{i \mid j}=0$, that is,

$$
\begin{equation*}
\partial_{j} \bar{L}_{i}-\bar{L}_{i r} \bar{G}_{j}^{r}-\bar{L}_{r} \bar{F}_{i j}^{r}=0 . \tag{2.6}
\end{equation*}
$$

Putting the values of $\partial_{j} \bar{L}_{i}, \bar{L}_{i r}$ and \bar{L}_{r} from (2.3) in (2.6) we get,

$$
\begin{aligned}
f_{2} b_{i \mid j}= & \left\{f_{1} L_{i r}+\beta^{2} \omega L_{i} L_{r}-L \beta \omega\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} \omega b_{i} b_{r}\right\} D_{j}^{r} \\
& +\left(f_{1} L_{r}+f_{2} b_{r}\right)^{c} D_{i j}^{r}-\left(L^{2} \omega b_{i}-L \beta \omega L_{i}\right)\left(r_{0 j}+s_{0 j}\right)-\left(f_{1} L_{i}+f_{2} b_{i}\right) \sigma_{j}
\end{aligned}
$$

hence after using $2 r_{i j}=b_{i \mid j}+b_{j \mid i}$ and $2 s_{i j}=b_{i \mid j}-b_{j \mid i}$, we get

$$
\begin{align*}
\left\{\begin{aligned}
2 f_{2} r_{i j}= & \left\{f_{1} L_{i r}+\beta^{2} \omega L_{i} L_{r}-L \beta \omega\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} \omega b_{i} b_{r}\right\} D_{j}^{r} \\
& +\left\{f_{1} L_{j r}+\beta^{2} \omega L_{j} L_{r}-L \beta \omega\left(L_{j} b_{r}+L_{r} b_{j}\right)+L^{2} \omega b_{j} b_{r}\right\} D_{i}^{r} \\
& -\left(L^{2} \omega b_{i}-L \beta \omega L_{i}\right)\left(r_{0 j}+s_{0 j}\right)-\left(L^{2} \omega b_{j}-L \beta \omega L_{j}\right)\left(r_{0 i}+s_{0 i}\right) \\
& -\left(f_{1} L_{i}+f_{2} b_{i}\right) \sigma_{j}-\left(f_{1} L_{j}+f_{2} b_{j}\right) \sigma_{i}+2\left(f_{1} L_{r}+f_{2} b_{r}\right)^{c} D_{i j}^{r},
\end{aligned}\right. \\
\left\{\begin{aligned}
2 f_{2} s_{i j}= & \left\{f_{1} L_{i r}+\beta^{2} \omega L_{i} L_{r}-L \beta \omega\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} \omega b_{i} b_{r}\right\} D_{j}^{r} \\
& +\left\{f_{1} L_{j r}+\beta^{2} \omega L_{j} L_{r}-L \beta \omega\left(L_{j} b_{r}+L_{r} b_{j}\right)+L^{2} \omega b_{j} b_{r}\right\} D_{i}^{r} \\
& -\left(L^{2} \omega b_{i}-L \beta \omega L_{i}\right)\left(r_{0 j}+s_{0 j}\right)+\left(L^{2} \omega b_{j}-L \beta \omega L_{j}\right)\left(r_{0 i}+s_{0 i}\right) \\
& -\left(f_{1} L_{i}+f_{2} b_{i}\right) \sigma_{j}+\left(f_{1} L_{j}+f_{2} b_{j}\right) \sigma_{i}+2\left(f_{1} L_{r}+f_{2} b_{r}\right)^{c} D_{i j}^{r} .
\end{aligned}\right. \tag{2.7}
\end{align*}
$$

Subtracting (2.7) from (2.5) and contracting the resulting equation with y^{i}, we get

$$
\left\{\begin{array}{l}
-2\left\{f_{1} L_{j r}+\beta^{2} \omega L_{j} L_{r}-L \beta \omega\left(L_{j} b_{r}+L_{r} b_{j}\right)+L^{2} \omega b_{j} b_{r}\right\} D^{r} \tag{2.9}\\
+\left(L^{2} \omega b_{j}-L \beta \omega L_{j}\right) r_{00}+2 f_{2} r_{0 j}=2 \bar{L}_{r} D_{j}^{r}-\left(f_{1} L+f_{2} \beta\right) \sigma_{j}-\left(f_{1} L_{j}+f_{2} b_{j}\right) \sigma_{0}
\end{array}\right.
$$

Contracting (2.9) with y^{j}, we get

$$
\begin{equation*}
\left\{f_{1} L_{r}+f_{2} b_{r}\right\} D^{r}=\frac{1}{2}\left(f_{2} r_{00}+f \sigma_{0}\right) . \tag{2.10}
\end{equation*}
$$

Subtracting (2.8) from (2.5) and contracting the resulting equation with y^{j}, we get

$$
\left\{\begin{array}{l}
\left\{f_{1} L_{i r}+\beta^{2} \omega L_{i} L_{r}-L \beta \omega\left(L_{i} b_{r}+L_{r} b_{i}\right)+L^{2} \omega b_{i} b_{r}\right\} D^{r} \tag{2.11}\\
=f_{2} s_{i 0}+\frac{1}{2}\left(L^{2} \omega b_{i}-L \beta \omega L_{i}\right) r_{00}+L \beta \omega\left(L_{i} \beta-L b_{i}\right) y^{k} \sigma_{k} \\
\quad+\frac{1}{2}\left(f_{1} L_{i}+f_{2} b_{i}\right) \sigma_{0}-\frac{1}{2} f \sigma_{i} .
\end{array}\right.
$$

In view of $L L_{i r}=g_{i r}-L_{i} L_{r}$, equation (2.11) can be written as

$$
\left\{\begin{array}{c}
\frac{f_{1}}{L} g_{i r} D^{r}+\left\{\left(-\frac{f_{1}}{L}+\beta^{2} \omega\right) L_{i}-L \beta \omega b_{i}\right\} L_{r} D^{r}+\left\{L^{2} \omega b_{i}-L \beta \omega L_{i}\right\} b_{r} D^{r} \tag{2.12}\\
\quad=f_{2} s_{i 0}+\frac{1}{2}\left(L^{2} \omega b_{i}-L \beta \omega L_{i}\right) r_{00}+\frac{1}{2}\left(f_{1} L_{i}+f_{2} b_{i}\right) \sigma_{0}-\frac{1}{2} f \sigma_{i}
\end{array}\right.
$$

Contracting (2.12) by $b^{i}=g^{i j} b_{j}$, we get

$$
\left\{\begin{array}{l}
\left\{-\frac{f_{1} \beta}{L^{2}}-L \beta \omega \Delta\right\} L_{r} D^{r}+\left\{\frac{f_{1}}{L}+L^{2} \omega \Delta\right\} b_{r} D^{r} \tag{2.13}\\
\quad=\frac{L^{2} \omega \Delta}{2} r_{00}+f_{2} s_{0}+\frac{1}{2}\left(\frac{f_{1} \beta}{L}+f_{2} b^{2}\right)-\frac{1}{2} f \sigma_{1}
\end{array}\right.
$$

where $\Delta=b^{2}-\frac{\beta^{2}}{L^{2}}$ and $\sigma_{1}=\sigma_{i} b^{i}$.
The equation (2.10) and (2.13) are algebraic equations in $L_{r} D^{r}$ and $b_{r} D^{r}$, whose solution is given by

$$
b_{r} D^{r}=\frac{\left(f_{1} f_{2} \beta+L^{3} \omega f \Delta\right) r_{00}+2 f_{1} f_{2} L^{2} s_{0}+\left\{\begin{array}{l}
\beta\left(f_{1}+L^{3} \omega \Delta\right) \tag{2.14}\\
+L\left(f_{1}^{2} \beta+L b^{2} f_{1} f_{2}\right)
\end{array}\right\} \sigma_{0}-f f_{1} L^{2} \sigma_{1}}{2 f\left(f_{1}+L^{3} \omega \Delta\right)}
$$

and

$$
\begin{equation*}
L_{r} D^{r}=\frac{L f_{1} f_{2} r_{00}-f_{2}^{2} L^{2} s_{0}+L\left\{f\left(f_{1}+L^{3} \omega \Delta\right)-\left(L f_{2}^{2} b^{2}+\beta f_{1} f_{2}\right)\right\} \sigma_{0}-f f_{2} L^{2} \sigma_{1}}{2 f\left(f_{1}+L^{3} \omega \Delta\right)} . \tag{2.15}
\end{equation*}
$$

Contracting (2.12) by $g^{i j}$ and putting the values of $L_{r} D^{r}$ and $b_{r} D^{r}$, we get

$$
\left\{\begin{align*}
D^{i}= & \left\{\frac{\left(f_{1} f_{2}-L \beta \omega f\right)\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}+\sigma_{0}+\frac{\left(f_{1} f_{2}-L \beta \omega f\right)\left[\begin{array}{l}
L f \sigma_{1} \\
-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}
\end{array}\right]}{2 f f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}\right\} y^{i} \\
& +\left\{\frac{L^{3} \omega\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}+\frac{L f_{2}}{2 f_{1}} \sigma_{0}+\frac{L^{3} \omega\left[L f \sigma_{1}-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}\right]}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}\right\} b^{i} \tag{2.16}\\
& -\frac{L f}{2 f_{1}} \sigma_{j} g^{i j}+\frac{L f_{2}}{f_{1}} s_{0}^{i},
\end{align*}\right.
$$

where $l^{i}=y^{i} L^{-1}$.
Proposition 2.1: The difference tensor $D^{i}=\bar{G}^{i}-G^{i}$ of conformal β-change of Finsler metric is given by (2.16).

3. Projective Change of FinslerMetric

The Finsler space \bar{F}^{n} is said to be projective to Finsler space F^{n} if every geodesic of F^{n} is transformed to a geodesic of \bar{F}^{n} and vice-versa. It is well known that the change $L \rightarrow \bar{L}$ is projective iff $\bar{G}^{i}=G^{i}+P(x, y) y^{i}$, where $P(x, y)$ is a homogeneous scalar function of degree one in y^{i}, called projective factor ${ }^{10}$. Thus from (2.1) it follow that $L \rightarrow \bar{L}$ is projective iff $D^{i}=P y^{i}$. Now we consider that the changes $L \rightarrow \bar{L}$ is projective .Then from equation (2.16), we have

$$
\left\{\begin{align*}
P y^{i}= & \left\{\frac{\left(f_{1} f_{2}-L \beta \omega f\right)\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)}{2 f f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}+\sigma_{0}+\frac{\left(f_{1} f_{2}-L \beta \omega f\right)\left[\begin{array}{l}
L f \sigma_{1} \\
-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}
\end{array}\right]}{2 f f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}\right\} y^{i} \\
& +\left\{\frac{L^{3} \omega\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}+\frac{L f_{2}}{2 f_{1}} \sigma_{0}+\frac{L^{3} \omega\left[L f \sigma_{1}-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}\right]}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}\right\} b^{i} \tag{3.1}\\
& -\frac{L f}{2 f_{1}} \sigma_{j} g^{i j}+\frac{L f_{2}}{f_{1}} s_{0}^{i},
\end{align*}\right.
$$

Contracting (3.1) with $y_{i}\left(=g_{i j} y^{j}\right)$ and using the fact that $s_{0}^{i} y_{i}=0$ and $y_{i} y^{i}=L^{2}$, we get

$$
\begin{equation*}
P=\frac{f_{2}\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)}{2 f\left(f_{1}+L^{3} \omega \Delta\right)}+\frac{f_{2} L f \sigma_{1}+\left\{f\left(f_{1}+L^{3} \omega \Delta\right)-f_{2}\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}\right\}}{2 f\left(f_{1}+L^{3} \omega \Delta\right)} . \tag{3.2}
\end{equation*}
$$

Putting the value of P from (3.2) in (3.1), we get

$$
\left\{\begin{array}{l}
\left(L \beta \omega y^{i}-L^{3} \omega b^{i}\right)\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)-\left(f_{1} y^{i}+f_{2} b^{i}\right)\left(f_{1}+L^{3} \omega \Delta\right) \tag{3.3}\\
+\left\{L f \sigma_{1}-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}\right\}\left(L \beta \omega y^{i}-L^{3} \omega b^{i}\right) \\
=-L f\left(f_{1}+L^{3} \omega \Delta\right) \sigma_{j} g^{i j}+2 L f_{2}\left(f_{1}+L^{3} \omega \Delta\right) s_{0}^{i} .
\end{array}\right.
$$

Transvecting (3.3) by b_{i}, we get

$$
\begin{equation*}
r_{00}=\frac{-2 L f_{2} s_{0}+L f \sigma_{1}-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}}{L^{3} \omega \Delta} \tag{3.4}
\end{equation*}
$$

Substituting the value of r_{00} from (3.4) in (3.2), we get

$$
\begin{equation*}
P=\frac{-2 f_{2}^{2} s_{0}+L f f_{2} \sigma_{1}-f_{2}\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}+f L^{3} \omega \Delta \sigma_{0}}{2 f L^{3} \omega \Delta} \tag{3.5}
\end{equation*}
$$

Substituting the value of r_{00} from (3.4) in (3.3), we get

$$
\begin{equation*}
s_{0}^{i}=\left(b^{i}-\frac{\beta}{L^{2}} y^{i}\right) \frac{s_{0}}{\Delta}+\frac{f}{2 f_{2}} \sigma_{j} g^{i j}-\frac{\left(f_{1} y^{i}+f_{2} b^{i}\right) \sigma_{0}}{2 L f_{2}}+\frac{\left\{L f \sigma_{1}-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}\right\}}{2 f_{2} L^{4} \omega \Delta} . \tag{3.6}
\end{equation*}
$$

The equations (3.4) and (3.6) give the necessary conditions under which the change $L \rightarrow \bar{L}$ becomes a projective change.

Conversely, if conditions (3.4) and (3.6) are satisfied, then putting the values of r_{00} and s_{0}^{i} from (3.4) and (3.6) respectively in (2.16), we get

$$
D^{i}=\frac{-2 f_{2}^{2} s_{0}+L f f_{2} \sigma_{1}-f_{2}\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}+f L^{3} \omega \Delta \sigma_{0}}{2 f L^{3} \omega \Delta} y^{i}
$$

i.e. $D^{i}=P y^{i}$, where P is given by (3.5). Thus \bar{F}^{n} is projective to F^{n}.

Theorem 3.1: The conformal β-change of Finsler metric is projective iff (3.4) and (3.6) hold good, the projective factor P is given by (3.5).

When $\sigma=0$, the change (1.1) is simply a β-change of original metric and the condition (3.4) reduces to

$$
\begin{equation*}
r_{00}=\frac{-2 L f_{2} s_{0}}{L^{3} \omega \Delta} . \tag{3.7}
\end{equation*}
$$

where as the condition (3.6) reduces to

$$
\begin{equation*}
s_{0}^{i}=\left(b^{i}-\frac{\beta}{L^{2}} y^{i}\right) \frac{s_{0}}{\Delta} . \tag{3.8}
\end{equation*}
$$

Thus we get
Corollary 3.1: The β-change of Finsler metric is projective iff (3.7) and (3.8) hold good .

This result has been investigated in ${ }^{12}$.

4. Douglas Space

The Finsler space F^{n} is called a Douglas space iff $G^{i} y^{j}-G^{j} y^{i}$ is homogeneous polynomial of degree three in $y^{i 11}$.We shall write $h p(r)$ to denote a homogeneous polynomial in y^{i} of degree r. If we write $B^{i j}=D^{i} y^{j}-D^{j} y^{i}$, then from (2.16), we get

$$
\left\{\begin{align*}
B^{i j}= & \left\{\frac{L^{3} \omega\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}+\frac{L f_{2}}{2 f_{1}} \sigma_{0}+\frac{L^{3} \omega\left[L f \sigma_{1}-\left(L f_{2} b^{2}+\beta f_{1}\right) \sigma_{0}\right]}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}\right\}\left(b^{i} y^{j}-b^{j} y^{i}\right) \tag{4.1}\\
& +\frac{L f_{2}}{f_{1}}\left(s_{0}^{i} y^{j}-s^{j} y^{i} y^{i}\right) .
\end{align*}\right.
$$

If a Douglas space is transformed to a Douglas space by a conformal β change of Finsler metric (2.1) then $B^{i j}$ must be hp (3) and vice-versa.

Theorem 4.1: The conformal β-change of Finsler metric leads a Douglas space into a Douglas space iff $B^{i j}$ given by (4.1) is hp(3).

When $\sigma=0$, the change (1.1)is simply a β-change of original metric and the condition (4.1) reduces to
(4.2) $\quad B^{i j}=\left\{\frac{L^{3} \omega\left(f_{1} r_{00}-2 L f_{2} s_{0}\right)}{2 f_{1}\left(f_{1}+L^{3} \omega \Delta\right)}\right\}\left(b^{i} y^{j}-b^{j} y^{i}\right)+\frac{L f_{2}}{f_{1}}\left(s_{0}^{i} y^{j}-s_{0}^{j}{ }^{j}{ }^{i}\right)$.

Thus we get
Corollary 4.1:The β-change of Finsler metric leads a Douglas space into a Douglas space iff $B^{i j}$ given by (4.2) is hp(3).

This result has been investigated in ${ }^{12}$.

Acknowledgement

The work contained in this research paper is part of Major Research Project 'Certain Investigations in Finsler Geometry' financed by the U.G.C., New Delhi.

References

1. B. N. Prasad and Bindu Kumari, The β-change of Finsler metric and imbedding classes of their tangent spaces, Tensor N. S., 74(1) (2013) 48-59.
2. C. Shibata, On invariant tensors of β-changes of Finslermetric, J. Math. Kyoto Univ., 24 (1984) 163-188.
3. M. S. Knebelman, Conformal geometry of generalized metric spaces, Proc. Nat. Acad. Sci., 15 (1929) 33-41, 376-379.
4. M. Hashiguchi, On conformal transformation of Finslerspaces, J. Math. Kyoto Univ., 16 (1976) 25-50.
5. H. Izumi, Conformal transformations of Finsler spaces I, Tensor N. S., 31 (1977) 3341.
6. H. Izumi, Conformal transformations of Finsler spaces II. An h-conformally flat Finsler space, Tensor N. S., 33 (1980) 337-359.
7. M. Kitayama, Geometry of transformations of Finsler metrics, Hokkaido University of Education, Kushiro Campus, Japan, 2000.
8. M. Mastsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu520, Japan, 1986.
9. H. S. Shukla, O. P. Pandey and Honey Dutt Joshi, Matsumoto change of Finsler metric, J. Int. Acad. Phys. Sci., 16(4) (2012) 329-341.
10. M. Mastumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phy., 31 (1992) 43-83.
11. M. Matsumoto, Finsler spaces with (α, β)-metric of Douglas type, Tensor N. S., $\mathbf{6 0}$ (1998) 123-134.
12. Khageshwar Mandal, β-change of Finsler metric, Ph. D. Thesis, 2014, Singhania University, Rajasthan, India.
13. Akansha and P. N. Pandey, Hypersurfaces of a Finsler space with projective generalized Kropina conformal change metric, Facta Universitatis, 32(5) (2017) 763779.
