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1. Introduction 

 

       Ricci soliton is a natural generalization of an Einstein metric and is 

defined on a Riemannian manifold  ,M g . A Ricci soliton is a triple 

 , ,g V   with g  a Riemannian metric, V  a vector field, and   a real scalar 

such that 
 

(1.1)              2 2 0VL g S g   , 

 

where S  is a Ricci tensor of M  and VL  denotes the Lie derivative operator 

along the vector field V .The Ricci soliton is said to be shrinking, steady, 

and expanding accordingly as   is negative, zero, and positive, 

respectively1. In 1967, D. E. Blair2 introduced the notion of quasi-Sasakian 

manifold to unify Sasakian and cosympletic manifolds and in 1977. The 

authors in3–7 have studied Ricci solitons in contact and Lorentzian manifolds. 

G. Kaimakamis and K. Panagiotidou8 initiated the notion of ∗-Ricci 

soliton where they essentially modified the definition of Ricci soliton by 

replacing the Ricci tensor Ric in (1.1) with the ∗-Ricci tensor Ric∗. A 

pseudo-Riemannian metric g  on a smooth manifold M is called a ∗-

Ricci soliton if there exists a smooth vector field V , such that 
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(1.2)                 £ ,
1

, ,)( ( )
2

V g X Y Ric X Y g X Y  , 

 

where  

(1.3)              * 1
( , ) ( { , ( , )})

2
Ric X Y trace R X Y  , 

 

for all vector fields ,X Y  on M    

The notion  of ∗-Ricci tensor was first introduced by S. Tachibana9
 on 

almost Hermitian manifolds and further studied by T. Hamada10 on real 

hypersurfaces of non-flat complex space forms. 

In the present paper, we have studied ∗-Ricci soliton on Para-Sasakian  

manifold and prove the following result: 

       Theorem 1.1: Let M (φ, ξ, η, g) be a (2n + 1)-dimensional Para-

Sasakian manifold. If g is a ∗-Ricci soliton on M, then either M is D-

homothetic to an Einstein manifold, or the Ricci tensor of M with 

respect to canonical paracontact connection vanishes. In the first case, 

the soliton vector field is Killing and in the second case, the soliton 

vector field leaves φ invariant. 

 

2. Preliminaries  

 

       Let M  be an almost contact manifold equipped with an almost contact 

metric structure ( , , , )g   consisting of a (1,1) tensor field  , a vector field  

 , a 1-form   and a compatible Riemannian metric g satisfying 

(2.1)              I     , ( ) 1   , ( ) 0   , 0   , 
 

                    ( , ) ( , ) ( ) ( )g X Y g X Y X Y     , 
(2.2) 

                ( , ) ( , ), ( , ) ( )g X Y g X Y g X X     , 
 

for all  , ( )X Y M . 

An almost contact metric manifold M is a Para-Sasakian manifold if and 

only if   
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(2.3)                          , 2 , ,X g X Y Y X X Y X Y TMY           , 

 

where   is Levi-Civita connection of the Riemannian metric g . 

       From the above equation it follows that 
 

(2.4)               ( ),X X X T M    , 

 

(2.5)              ( ) ( , ) ( )X YY g X Y X      . 
 

Moreover, the curvature tensor R  and Ricci tensor S  satisfy  

 

(2.6)                   ( ),  Y ) (X YR Y XX    . 

 

Let M  be a three-dimensional Para-Sasakian manifold. The Ricci tensor S  

of M  is given by   
 

(2.7)                 ( , ) ( , ) ( 1) ( ) ( )S X Y S X Y n X Y      , 

 

where R  is the Riemannian curvature tensor and S  is the Ricci tensor of 

type (0, 2) such that 
 

(2.8)                  ( , ) ( , )g QX Y S X Y , 

 

where Q  is the Ricci operator. 

       Lemma 2.1: Let  , , ,M g    be a Para-Sasakian  manifold. Then 

(i) 0Q  , and (ii)  X QQ X X    . 

       Proof: Since   is Killing, we have £ 0V Ric  . This implies 

 £ 0Q X   for any vector field X  on M . From which it follows that 

 

                        0 £ £QX Q X    
 

                          +QQX XQX Q X        
 

                          QX XQ X Q       . 
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˜ 

Using (2.4) in the above equation gives Q Q Q     . Since the Ricci 

operator Q  commutes with   on Para-Sasakian manifold, we have (i). 

Next, taking covariant differentiation of (2.8) along an arbitrary vector 

field X  on M  and using (2.4), we obtain (ii). This completes the proof. 

       If the Ricci tensor of a Para-Sasakian manifold M  is of the form 
 

                            , ,Ric X Y Ag X Y B X Y   , 

 

for any vector fields X , Y  on M , where A  and B  being constants, then 

M  is called an  Einstein manifold. 

       The 1-form   is determined up to a horizontal distribution and 

hence D Ker  connected by    for a positive smooth function   

on a paracontact manifold M . This paracontact form   defines  the 

structure tensor  , , g   corresponding to   using the condition given 

in the paper11.  We call the transformation of the structure tensors given 

by Lemma 4.1 of11 a gauge (conformal) transformation of paracontact 

pseudo-Riemannian structure. When   is constant this is a D-

homothetic transformation. Let  , , ,M g    be a paracontact manifold 

and 
 

                 21
, , , ( ) const. 0g g           


          

 

to be  D-homothetic  transformation.  Then  , , , g    is also a para 

contact structure. Using the formula appeared in11 for D-homothetic 

deformation, one can easily verify that if  , , ,M g    is a  2 1n  

dimensional  1n   Einstein Para-Sasakian structure with scalar 

curvature 2r n , then there exists  a constant    such  that  , , ,M g    

is an Einstein  Para-Sasakian structure. So we have following result. 

       Lemma 2.2: Any  2 1n  dimensional  Einstein Para-Sasakian 

manifold with scalar curvature not equal to 2n  is D-homothetic to an 

Einstein manifold. 
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3. Proof of Theorem  

 

       First, we state and prove some lemmas which will be used to prove 

Theorem. 

       Lemma 3.1: The ∗-Ricci tensor on a  2 1n  dimensional Para-

Sasakian manifold  , , ,M g    is given by  

 

(3.1)                     * , , 2 ) (1 ( ),Ric X Y Ric X Y n g X Y X Y      , 

 

 for any vector fields X, Y on M . 

       Proof: The Ricci tensor Ric of a  2 1n  dimensional Para-Sasakian 

manifold  , , ,M g    satisfies the relation (c.f. Lemma 3.15 in11: 

 

(3.2)              
2 1

1

( , ) ( , , , ) (2 1) ( , ) ( ) ( )
n

i i

i

Ric X Y R X Y e e n g X Y X Y   




    , 

 

for any vector fields X , Y   on M .  By the skew-symmetric property of 

 , we have 

                          
2 1 2 1 2 1

1 1 1

( , , , ) ( , , , ) ( ( , ), , )
n n n

i i i i i i

i i i

R X Y e e R X Y e e g R X Y e e     
  

  

    

 

By this, (3.2) becomes 
 

(3.3)           
2 1

1

( ( , ), , ) 2 ( , ) 2(2 1) ( , ) 2 ( ) ( )
n

i i

i

g R X Y e e Ric X Y n g X Y X Y   




    . 

 

By (1.3) and (3.3), we have (3.1). 

       Lemma 3.2: For a Para-Sasakian manifold, we have the following 

relation 
 

(3.4)               ( ) )£ (£V V       . 

       Proof: By virtue of Lemma 3.1, the ∗-Ricci soliton equation (1.2) 

can be expressed as 
 

(3.5)                   £ , 2 , 2 2 1 ,( ) ( ) ( ) ( )2 .V g X Y Ric X Y n g X Y X Y        
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Taking Y   in (3.5) and using (2.7) we have  £ ,( )( ) 2V g X X  . 

Lie-differentiating the equation   ( , )X g X  along V  and by (3.5), 

we have 
 

(3.6)                ( ) (£ £ , 0) 2V VX g X X     . 

 

Now, Lie-derivative of  , 1g     along V  and equation (3.6) completes 

proof. 

       Lemma 3.3: Let  , , ,M g    be a  2 1n  dimensional Para-

Sasakian manifold. If g  is a ∗-Ricci soliton, then M  is an  Einstein 

manifold and the Ricci tensor can be written as 
 

(3.7)              ( , ) 2 1 ( , ) 1 ( ) ( )
2 2

Ric X Y n g X Y X Y
 

 
   

       
   

, 

 

for any vector fields X , Y  on M . 

       Proof: Taking covariant differentiation of (3.5) along an arbitrary 

vector field Z , we get 
 

(3.8)            £ ,  2 ,( )( ) ( ) ( ) ( ) ( ), ,Z V Zg X Y Ric X Y g X Z Y g Y Z X        . 

 

According to Yano12, we have 
 

                 
 , 

( )( )£ £ ,  V Z Z V V Z g
g g X Y     

         

   (( ) )£ ,  , (( ) )£ ,  ,  ,V Vg Z X Y g Z Y X    

 

for any vector fields X , Y , Z  on M . 

In view of the parallelism of the pseudo-Riemannian metric g , we have 

from above relation  
 

(3.9)              £ , £ ,( )( ) (( )( ) ), £ ,(( )( ),)Z V V Vg X Y g Z X Y g Z Y X     . 

 

From (3.8) and (3.9), we have 
 

(3.10)               £ ,  ,(( ) ) (( )£ ,  ,  )V Vg Z X Y g Z Y X    
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                                2 ,(  ,  ,  )Z Ric X Y g X Z Y g Y Z X       . 

 

Which gives 
 

(3.11)                £ ,  (( ) ) ( ) (,  , ,)V Z Xg X Y Z Ric X Y Ric Y Z       
 

                        , 2 , 2 ,( ) ) ( ) ( ( )Y Ric Z X g X Z Y g Y Z X       . 

 

Taking   in place of Y  in (3.11) and Lemma 2.1, we get 

 

(3.12)             £ , 2 2( )( 2 1)V X Y n X Q X     . 

 

Differentiating (3.12) covariantly along an arbitrary vector field Y  on M  

and using the relations (2.3) and (2.8), we have 
 

(3.13)               ( )( ) (£ , £ ) ,  Y V VX X Y                                                                                                                                                     

        ( ) 2 2 1 ,  .YQ X X QY n X Y g X Y        

 

According to Yano 12 we have 
 

(3.14)             ( ) ( )( ) ( )(£ ), £ , £ ,V X V Y VR X Y Z Y Z X Z      .  

 

Taking   in place of Z  in (3.14) and by (3.13), we have 

 

(3.15)                £ , £( )( ,) ( ), £V V VR X Y Y X X Y       
 

                         ) )2 (  (X YQ Y Q X Y QX X QY          
 

                               2 1n Y X X Y    . 

 

Taking   for Y  in (3.15), then using (2.8), (3.12) and Lemma 2.1, we 

have (3.16)     

                           £ , 2( ) 4 1V R X QX n X X       . 

 

Taking Lie-derivative of (2.6) along V  and by (2.5) and (3.4) we have 
 

(3.17)               ( ) ( ) ( )£ , £ £ , 2V V VR X X g X X        . 

 

Comparing (3.16) with (3.17), and use of (3.6), gives the required result. 
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Proof of Theorem: By (3.7), the soliton equation (3.5) can be written 

as 
 

(3.18)              £ ,( )( ( (,) ) )V g X Y g X Y X Y    . 

 

Taking Lie-differentiation of (3.7) along the vector field V  and using 

(3.5) we have 
 

(3.19)             )( , ) 1 ( )((£ £ )( ) ( )( )£ )(
2

V V VRic X Y Y X X Y


   
 

   
 

 

 

                                        2 1 ( , ) ( ) ( )
2

n g X Y X Y


  
 

    
 

. 

 

Differentiating (3.7) covariantly along an arbitrary vector field Z  on M

and using (2.4) we have 
 

(3.20)             )( , ) 1 ( , ) ( ) ( , )( ( )
2

Z Ric X Y g X Z Y g Y Z X


   
 

    
 

. 

 

By (3.20), equation (3.11) becomes 
 

(3.21)              ( )( ) {£ ,  ( ) }V X Y Y X X Y        . 

 

Differentiating (3.21) covariantly along an arbitrary vector field Z  on 

M  and by (2.3) and (2.4), we have 
 

(3.22)                 £ , ,  ,  ( ) {Z V X Y g Y Z X g X Z Y        
 

                            ,   , 2  ( ) ( ) }g X Z Y g Y Z X X Y Z        . 

 

Using (3.22) in (3.14) and using (2.4) we have 
 

(3.23)             ) { ( ) ( ) (£ , , , 2 ,V R X Y Z g X Z Y g Y Z X g X Y Z         

                              ( ) ( ) ( ) ( ) }, , 2 2g X Z Y g Y Z X Y Z X X Z Y           . 

 

Contracting (3.23) over Z, we get 
 

(3.24)                  ( ) ( ) ( )£ , 2 , 2 1V Ric Y Z g Y Z n Y Z     . 
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By (3.19) and (3.24), we have 
 

(3.25)             1 ( )( )( ) ( )(£ )( )
2

£V VY Z Z Y


   
 

  
 

 

 

                     2 1 ( , ) ( ) ( )
2

n g Y Z Y Z


  
 

    
 

 

 

                      2 ( , ) (2 1) ( ) ( )g Y Z n Y Z     . 

 

Replacing Y  by 2Y  in (3.25) and then using (2.1) and (3.4) we get 

 

(3.26)           1 ( )( ) ( ) 1 2 ( , ) 2 ( ) ( )
2 2

£V Y Z n g Y Z n Y Z
 

    
    

        
    

. 

 

By (3.26) and (3.25) and then replacing Z  by Z , we have 

 

(3.27)            1 2 ( , ) 0
2

n g Y Z


 
 
   

 
. 

 

As ( ( ), ,)Y Z g Y Z  is non-vanishing everywhere on M , so either 

0   or  2 2 1n    . 

Case I: If 0  , from (3.18) we have £ 0V g  , therefore, V  is Killing. 

From (3.7) we have 
 

(3.28)                , 2 1 ,) ) ( (Ric X Y n g X Y X Y     . 

 

Contracting the equation (3.28) we have 24r n  , where r is the scalar 

curvature of the manifold M. This shows that M  is a  Einstein 

manifold with scalar curvature 2r n . So, M  is Dhomothetic to an 

Einstein manifold. 

Case II: If  2 2 1n    , then taking   in place of Z  in (3.26) and 

then replace Y  by Y  the resulting equation gives 

 

                      1 ( )
2

£ 0V Y



 

 





. 

     

Since  2 2 1n    , we have 2  . Thus we have (£V η) (φY) = 0. 
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˜ 

Replacing Y  by Y  and using (2.1), we have 

 

(3.29)             £ 2 )( ) ( )2 1( V Y n X    . 

 

Taking exterior differentiation d  on (3.29) we have 
 

(3.30)               £ , 2 2 1)( ) ( ,V d X Y n g X Y    , 

 

as d  commutes with £V .  

Taking the Lie-derivative of ) ,( (, )d X Y g X Y  along the soliton vect- 

or  field V  provides 
 

(3.31)                )( ) )£ , £ ( , , £(V V Vd X Y g X Y g X Y    . 

 

From (3.18) we have 
 

(3.32)                £ , 2 2)( ) (1 ,V g X Y n g X    . 

 

Using (3.30) and (3.32) in (3.31) we have £ 0V   . Therefore,  soliton 

vector field V  leaves   invariant. Putting  2 2 1n     in (3.7) we 

have 

(3.33)                , 2 ,( (2) )2Ric X Y g X Y n X Y    . 

 

Contracting (3.33) we obtain 2r n  (i.e., the manifold M  cannot be 

D  homothetic to an Einstein manifold. Ricci tensor Ric  of a  2 1n   

dimensional Para-Sasakian manifold with respect to canonical 

paracontact connection   is defined as11 
 

(3.34)                      , , 2 , 2 2Ric X Y Ric X Y g X Y n X Y     . 

 

Using (3.33) in (3.34) we have  , 0Ric X Y  .  Therefore, the Ricci 

tensor with respect to the connection   vanishes. This completes the 

proof of theorem. 
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