pp. 13-24

*Ricci Solitons on Para-Sasakian Manifold

Sushil Shukla

Department of Mathematics Uma Nath singh Institute of engineering and technology, Veer Bahadur Singh Purvanchal University, Jaunpur 222001, India Email: sushilcws@gmail.com

(Received December 26, 2019)

Abstract: The object of present paper is to study a special type of metric called *Ricci solitons on Para-Sasakian manifold. **Keywords:** Ricci solitons, Para-Sasakian manifold, Einstein manifold. **2010 AMS Classification Number:** 53C15, 53C25.

1. Introduction

Ricci soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V a vector field, and λ a real scalar such that

$$(1.1) L_V g + 2S + 2\lambda g = 0,$$

where *S* is a Ricci tensor of *M* and L_V denotes the Lie derivative operator along the vector field *V*. The Ricci soliton is said to be shrinking, steady, and expanding accordingly as λ is negative, zero, and positive, respectively¹. In 1967, D. E. Blair² introduced the notion of quasi-Sasakian manifold to unify Sasakian and cosympletic manifolds and in 1977. The authors in³⁻⁷ have studied Ricci solitons in contact and Lorentzian manifolds. G. Kaimakamis and K. Panagiotidou⁸ initiated the notion of *-Ricci soliton where they essentially modified the definition of Ricci soliton by replacing the Ricci tensor *Ric* in (1.1) with the *-Ricci tensor *Ric**. A pseudo-Riemannian metric *g* on a smooth manifold *M* is called a *-Ricci soliton if there exists a smooth vector field *V*, such that

(1.2)
$$\frac{1}{2}(\pounds_V g)(X,Y) + Ric^*(X,Y) = \lambda g(X,Y),$$

where

(1.3)
$$Ric^{*}(X,Y) = \frac{1}{2}(trace\{\phi, R(X,\phi Y)\}),$$

for all vector fields X, Y on M

The notion of *-Ricci tensor was first introduced by S. Tachibana⁹ on almost Hermitian manifolds and further studied by T. Hamada¹⁰ on real hypersurfaces of non-flat complex space forms.

In the present paper, we have studied *-Ricci soliton on Para-Sasakian manifold and prove the following result:

Theorem 1.1: Let $M(\varphi, \xi, \eta, g)$ be a (2n + 1)-dimensional Para-Sasakian manifold. If g is a *-Ricci soliton on M, then either M is Dhomothetic to an Einstein manifold, or the Ricci tensor of M with respect to canonical paracontact connection vanishes. In the first case, the soliton vector field is Killing and in the second case, the soliton vector field leaves φ invariant.

2. Preliminaries

Let *M* be an almost contact manifold equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a (1,1) tensor field ϕ , a vector field

 ξ , a 1-form η and a compatible Riemannian metric g satisfying

(2.1)
$$\phi = -I + \eta \otimes \xi, \ \eta(\xi) = 1, \ \phi(\xi) = 0, \ \eta \circ \phi = 0,$$

$$g(X,Y) = g(\phi X, \phi Y) + \eta(X)\eta(Y),$$

(2.2)

$$g(X,\phi Y) = -g(\phi X,Y), g(X,\xi) = \eta(X),$$

for all $X, Y \in \chi(M)$.

An almost contact metric manifold M is a Para-Sasakian manifold if and only if

(2.3)
$$(\nabla_X \phi)(Y) = -g(X,Y)\xi - \eta(Y)\phi(X) + 2\eta(X)\eta(Y), X, Y \in TM,$$

where ∇ is Levi-Civita connection of the Riemannian metric g.

From the above equation it follows that

(2.4)
$$\nabla_{X}\xi = \phi(X), \quad X \in T(M),$$

(2.5)
$$(\nabla_X \eta) Y = g(X, \phi Y) = (\nabla_Y \eta) X .$$

Moreover, the curvature tensor R and Ricci tensor S satisfy

(2.6)
$$R(X, Y)\xi = \eta(X)Y - \eta(Y)X.$$

Let M be a three-dimensional Para-Sasakian manifold. The Ricci tensor S of M is given by

(2.7)
$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y),$$

where R is the Riemannian curvature tensor and S is the Ricci tensor of type (0, 2) such that

(2.8)
$$g(QX,Y)=S(X,Y),$$

where Q is the Ricci operator.

Lemma 2.1: Let $M(\phi, \xi, \eta, g)$ be a Para-Sasakian manifold. Then (i) $\nabla_{\xi}Q = 0$, and (ii) $(\nabla_{\chi}Q)\xi = Q\phi X + \lambda\phi X$.

Proof: Since ξ is Killing, we have $\pounds_V Ric = 0$. This implies $(\pounds_{\xi} Q) X = 0$ for any vector field X on M. From which it follows that

$$0 = \mathfrak{t}_{\xi}(QX) - Q(\mathfrak{t}_{\xi}X)$$
$$= \nabla_{\xi}QX + \nabla_{QX}\xi - Q(\nabla_{\xi}X) + Q(\nabla_{X}\xi)$$
$$= (\nabla_{\xi}Q)X + \nabla_{QX}\xi + Q(\nabla_{X}\xi).$$

Using (2.4) in the above equation gives $\nabla_{\xi}Q = Q\phi - \phi Q$. Since the Ricci operator Q commutes with ϕ on Para-Sasakian manifold, we have (*i*). Next, taking covariant differentiation of (2.8) along an arbitrary vector field X on M and using (2.4), we obtain (*ii*). This completes the proof.

If the Ricci tensor of a Para-Sasakian manifold M is of the form

$$Ric(X, Y) = Ag(X, Y) + B\eta(X)\eta(Y),$$

for any vector fields X, Y on M, where A and B being constants, then M is called an η -Einstein manifold.

The 1-form η is determined up to a horizontal distribution and hence $D = Ker \eta$ connected by $\tilde{\eta} = \sigma \eta$ for a positive smooth function σ on a paracontact manifold M. This paracontact form $\bar{\eta}$ defines the structure tensor $(\bar{\phi}, \bar{\xi}, \bar{g})$ corresponding to η using the condition given in the paper¹¹. We call the transformation of the structure tensors given by Lemma 4.1 of¹¹ a gauge (conformal) transformation of paracontact pseudo-Riemannian structure. When σ is constant this is a Dhomothetic transformation. Let $M(\phi, \xi, \eta, g)$ be a paracontact manifold and

$$\overline{\phi} = \phi, \overline{\xi} = \frac{1}{\alpha} \xi, \overline{\eta} = \alpha \eta, \overline{g} = \alpha g + (\alpha^2 - \alpha) \eta \otimes \eta \alpha = \text{const.} \neq 0$$

to be D-homothetic transformation. Then $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$ is also a para contact structure. Using the formula appeared in11 for D-homothetic deformation, one can easily verify that if $M(\phi, \xi, \eta, g)$ is a (2n+1)dimensional $(n > 1) \eta$ -Einstein Para-Sasakian structure with scalar curvature $r \neq 2n$, then there exists a constant α such that $M(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$ is an Einstein Para-Sasakian structure. So we have following result.

Lemma 2.2: Any (2n+1)-dimensional η -Einstein Para-Sasakian manifold with scalar curvature not equal to 2n is D-homothetic to an Einstein manifold.

3. Proof of Theorem

First, we state and prove some lemmas which will be used to prove Theorem.

Lemma 3.1: The *-Ricci tensor on a (2n+1)-dimensional Para-Sasakian manifold $M(\phi, \xi, \eta, g)$ is given by

(3.1)
$$\operatorname{Ric}^{*}(X,Y) = -\operatorname{Ric}(X,Y) - (2n-1)g(X,Y) - \eta(X)\eta(Y),$$

for any vector fields X, Y on M.

Proof: The Ricci tensor *Ric* of a (2n+1)-dimensional Para-Sasakian manifold $M(\phi, \xi, \eta, g)$ satisfies the relation (c.f. Lemma 3.15 in¹¹:

(3.2)
$$Ric(X,Y) = \sum_{i=1}^{2n+1} R'(X,\phi Y,e_i,\phi e_i) - (2n-1)g(X,Y) - \eta(X)\eta(Y),$$

for any vector fields X, Y on M. By the skew-symmetric property of ϕ , we have

$$\sum_{i=1}^{2n+1} R'(X,\phi Y,e_i,\phi e_i) = \sum_{i=1}^{2n+1} R(X,\phi Y,e_i,\phi e_i) = \sum_{i=1}^{2n+1} g(\phi R(X,\phi Y),e_i,e_i)$$

By this, (3.2) becomes

(3.3)
$$\sum_{i=1}^{2n+1} g(\phi R(X,\phi Y),e_i,e_i) = -2Ric(X,Y) - 2(2n-1)g(X,Y) - 2\eta(X)\eta(Y).$$

By (1.3) and (3.3), we have (3.1).

Lemma 3.2: For a Para-Sasakian manifold, we have the following relation

(3.4)
$$(\pounds_{V}\eta)(\xi) = -\eta(\pounds_{V}\xi) = \lambda.$$

Proof: By virtue of Lemma 3.1, the *-Ricci soliton equation (1.2) can be expressed as

(3.5)
$$(\pounds_V g)(X,Y) = 2Ric(X,Y) + 2(2n-1+\lambda)g(X,Y) + 2\eta(X)\eta(Y).$$

Taking $Y = \xi$ in (3.5) and using (2.7) we have $(\pounds_V g)(X,\xi) = 2\lambda \eta(X)$. Lie-differentiating the equation $\eta(X) = g(X,\xi)$ along *V* and by (3.5), we have

(3.6)
$$(\pounds_{V}\eta)(X) - g(\pounds_{V}\xi, X) - 2\lambda\eta(X) = 0.$$

Now, Lie-derivative of $g(\xi, \xi)=1$ along *V* and equation (3.6) completes proof.

Lemma 3.3: Let $M(\phi, \xi, \eta, g)$ be a (2n+1)-dimensional Para-Sasakian manifold. If g is a *-Ricci soliton, then M is an η -Einstein manifold and the Ricci tensor can be written as

(3.7)
$$\operatorname{Ric}(X,Y) = -\left[2n-1+\frac{\lambda}{2}\right]g(X,Y) + \left[\frac{\lambda}{2}-1\right]\eta(X)\eta(Y),$$

for any vector fields X, Y on M.

Proof: Taking covariant differentiation of (3.5) along an arbitrary vector field Z, we get

(3.8)
$$(\nabla_Z \mathfrak{t}_V g)(X, Y) = 2 \left\{ (\nabla_Z Ric) (X, Y) - g(X, \phi Z) \eta(Y) - g(Y, \phi Z) \eta(X) \right\}.$$

According to Yano¹², we have

$$(\pounds_{V} \nabla_{Z} g - \nabla_{Z} \pounds_{V} g - \nabla_{[V, Z]g})(X, Y)$$
$$= -g((\pounds_{V} \nabla)(Z, X), Y) - g((\pounds_{V} \nabla)(Z, Y), X),$$

for any vector fields X, Y, Z on M.

In view of the parallelism of the pseudo-Riemannian metric g, we have from above relation

(3.9)
$$(\nabla_Z \mathfrak{t}_V g)(X,Y) = g((\mathfrak{t}_V \nabla)(Z,X),Y) + g((\mathfrak{t}_V \nabla)(Z,Y),X).$$

From (3.8) and (3.9), we have

(3.10)
$$g((\pounds_V \nabla)(Z, X), Y) + g((\pounds_V \nabla)(Z, Y), X)$$

$$= 2\left\{ (\nabla_{Z} Ric)(X, Y) - g(X, \phi Z) \eta(Y) - g(Y, \phi Z) \eta(X) \right\}.$$

Which gives

(3.11)
$$g((\pounds_{V}\nabla)(X, Y), Z) = -(\nabla_{Z}Ric)(X,Y) + (\nabla_{X}Ric)(Y,Z)$$
$$+(\nabla_{Y}Ric)(Z,X) + 2g(X,\phi Z)\eta(Y) + 2g(Y,\phi Z)\eta(X).$$

Taking ξ in place of Y in (3.11) and Lemma 2.1, we get

(3.12)
$$(\pounds_V \nabla)(X,Y) = 2(2n-1)\phi X + 2Q\phi X.$$

Differentiating (3.12) covariantly along an arbitrary vector field Y on M and using the relations (2.3) and (2.8), we have

(3.13)
$$(\nabla_{Y} \mathfrak{t}_{V} \nabla)(X, \xi) + (\mathfrak{t}_{V} \nabla)(X, \varphi Y)$$
$$= 2 \{ (\nabla_{Y} Q) \varphi X + \eta (X) Q Y + (2n-1) \eta (X) Y + g (X, Y) \xi \}.$$

According to Yano¹² we have

(3.14)
$$(\mathfrak{t}_{V}R)(X,Y)Z = (\nabla_{X}\mathfrak{t}_{V}\nabla)(Y,Z) - (\nabla_{Y}\mathfrak{t}_{V}\nabla)(X,Z) \, .$$

Taking ξ in place of Z in (3.14) and by (3.13), we have

$$(3.15) \qquad (\pounds_{V}R)(X,Y)\xi + (\pounds_{V}\nabla)(Y,\varphi X) - (\pounds_{V}\nabla)(X,\varphi Y) \\ = 2\{(\nabla_{X}Q)\varphi Y - (\nabla_{Y}Q)\varphi X + \eta(Y)QX - \eta(X)QY \\ + (2n-1)(\eta(Y)X - \eta(X)Y)\}.$$

Taking ξ for Y in (3.15), then using (2.8), (3.12) and Lemma 2.1, we have (3.16)

$$\left(\pounds_{V}R\right)(X,\xi)\xi=4\left\{QX+\left(2n-1\right)X+\eta\left(X\right)\xi\right\}.$$

Taking Lie-derivative of (2.6) along V and by (2.5) and (3.4) we have

(3.17)
$$(\pounds_V R)(X,\xi)\xi = (\pounds_V \eta)(X)\xi - g(\pounds_V X,\xi) - 2\lambda X .$$

Comparing (3.16) with (3.17), and use of (3.6), gives the required result.

Proof of Theorem: By (3.7), the soliton equation (3.5) can be written as

(3.18)
$$(\pounds_V g)(X,Y) = \lambda \left\{ g(X,Y) + \eta \left(X \right) \eta(Y) \right\}.$$

Taking Lie-differentiation of (3.7) along the vector field V and using (3.5) we have

(3.19)
$$(\pounds_{V} \operatorname{Ric})(X,Y) = \left(\frac{\lambda}{2} - 1\right) \left\{ \eta(Y)(\pounds_{V} \eta)(X) + \eta(X)(\pounds_{V} \eta)(Y) \right\}$$
$$- \left[\frac{\lambda}{2} + 2n - 1\right] \lambda \left\{ g(X,Y) + \eta(X)\eta(Y) \right\}.$$

Differentiating (3.7) covariantly along an arbitrary vector field Z on M and using (2.4) we have

(3.20)
$$(\nabla_Z Ric)(X,Y) = \left(1 - \frac{\lambda}{2}\right) \left\{ g(X,\phi Z)\eta(Y) + g(Y,\phi Z)\eta(X) \right\}.$$

By (3.20), equation (3.11) becomes

(3.21)
$$(\pounds_{V}\nabla)(X,Y) = -\lambda\{\eta(Y) \ \varphi X + \eta(X)\varphi Y\}.$$

Differentiating (3.21) covariantly along an arbitrary vector field Z on M and by (2.3) and (2.4), we have

(3.22)
$$(\nabla_{Z} \pounds_{V} \nabla) (X, Y) = \lambda \{ g(Y, \phi Z) \phi X + g(X, \phi Z) \phi Y + g(X, Z) \eta(Y) \xi + g(Y, Z) \eta(X) \xi - 2\eta(X) \eta(Y) Z \}$$

Using (3.22) in (3.14) and using (2.4) we have

(3.23)
$$(\pounds_{V}R)(X,Y)Z = \lambda \{g(\phi X,Z)\phi Y - g(\phi Y,Z)\phi X + 2g(\phi X,Y)\phi Z + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi - 2\eta(Y)\eta(Z)X + 2\eta(X)\eta(Z)Y\}.$$

Contracting (3.23) over Z, we get

(3.24)
$$\left(\pounds_{V} Ric \right)(Y,Z) = 2\lambda \left\{ g(Y,Z) - (2n+1)\eta(Y)\eta(Z) \right\}.$$

By (3.19) and (3.24), we have

(3.25)
$$\left(\frac{\lambda}{2} - 1\right) \left\{ \eta(Y)(\pounds_{V}\eta)(Z) + \eta(Z)(\pounds_{V}\eta)(Y) \right\}$$
$$- \left[\frac{\lambda}{2} + 2n - 1\right] \lambda \left\{ g(Y, Z) + \eta(Y)\eta(Z) \right\}$$
$$= 2\lambda \left\{ g(Y, Z) - (2n + 1)\eta(Y)\eta(Z) \right\}.$$

Replacing Y by $\phi^2 Y$ in (3.25) and then using (2.1) and (3.4) we get

(3.26)
$$\left(\frac{\lambda}{2}-1\right)\left\{\left(\pounds_{V}\eta\right)(Y)\eta(Z)=\lambda\left[1+2n+\frac{\lambda}{2}\right]g(Y,Z)-2n\lambda\eta(Y)\eta(Z)\right\}$$

By (3.26) and (3.25) and then replacing Z by ϕZ , we have

(3.27)
$$\lambda \left[1+2n+\frac{\lambda}{2}\right]g(Y,\phi Z) = 0$$

As $\phi(Y,Z) = g(Y, \phi Z)$ is non-vanishing everywhere on M, so either $\lambda = 0$ or $\lambda = -2(2n+1)$.

Case I: If $\lambda = 0$, from (3.18) we have $\pounds_{V}g = 0$, therefore, *V* is Killing. From (3.7) we have

(3.28)
$$Ric(X,Y) = -(2n-1)g(X,Y) - \eta(X)\eta(Y).$$

Contracting the equation (3.28) we have $r = -4n^2$, where *r* is the scalar curvature of the manifold *M*. This shows that *M* is a η -Einstein manifold with scalar curvature $r \neq 2n$. So, *M* is *D*-homothetic to an Einstein manifold.

Case II: If $\lambda = -2(2n+1)$, then taking ξ in place of Z in (3.26) and then replace Y by ϕY the resulting equation gives

$$\left(\frac{\lambda}{2}-1\right)\left(\pounds_{V}\eta\right)(\phi Y)=0.$$

Since $\lambda = -2(2n+1)$, we have $\lambda \neq 2$. Thus we have $(\pounds_V \eta) (\varphi Y) = 0$.

Replacing Y by ϕY and using (2.1), we have

(3.29)
$$(\pounds_V \eta)(Y) = -2 (2n+1)\eta(X).$$

Taking exterior differentiation d on (3.29) we have

(3.30)
$$\left(\pounds_{V} d\eta\right)(X,Y) = -2(2n+1)g(X,\phi Y),$$

as d commutes with f_v .

Taking the Lie-derivative of $d\eta(X,Y) = g(X, \phi Y)$ along the soliton vector field *V* provides

(3.31)
$$(\pounds_V d\eta)(X,Y) = (\pounds_V g)(X,\phi Y) + g(X,(\pounds_V \phi)Y).$$

From (3.18) we have

(3.32)
$$(\pounds_V g)(X, \phi Y) = -2(2n+1)g(X, \phi).$$

Using (3.30) and (3.32) in (3.31) we have $\pounds_V \phi = 0$. Therefore, soliton vector field *V* leaves ϕ invariant. Putting $\lambda = -2(2n+1)$ in (3.7) we have

(3.33)
$$Ric(X,Y) = 2g(X,Y) - (2n+2)\eta(X)\eta(Y).$$

Contracting (3.33) we obtain r = 2n (i.e., the manifold M cannot be D-homothetic to an Einstein manifold. Ricci tensor $Ri\tilde{c}$ of a (2n+1) dimensional Para-Sasakian manifold with respect to canonical paracontact connection $\tilde{\nabla}$ is defined as¹¹

(3.34)
$$Ri\tilde{c}(X,Y) = Ric(X,Y) - 2g(X,Y) + (2n+2)\eta(X)\eta(Y).$$

Using (3.33) in (3.34) we have $Ri\tilde{c}(\tilde{X}, Y) = 0$. Therefore, the Ricci tensor with respect to the connection $\tilde{\nabla}$ vanishes. This completes the proof of theorem.

References

1. B. Chow, P. Lu, and L. Ni, Hamilton's *Ricci Flow*, vol. 77 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 2006.

- D. E. Blair, Theory of Quasi-Sasakian Structure, J. Differential Geom., 1 (1967), 331-345.
- A. M. Blaga, M. C. Crasmareanu, Torse-Forming η Ricci Solitons in Almost Para-Contact η – Einstein Geometry, *Filomat*, **31(2)** (2017), 499–504.
- M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio and S. Gavino-Fernandez, Three-Dimensional Lorentzian Homogeneous Ricci Solitons, *Israel J. Math.*, 188 (2012), 385–403.
- 5. G. Calvaruso and A. Fino, Four-Dimensional Pseudo-Riemannian Homogeneous Ricci Solitons, *Int. J. Geom. Methods Mod. Phys.*, **12** (2015), 1550056.
- 6. G. Calvaruso and D. Perrone, Geometry of H-Paracontact Metric Manifolds, *Publ. Math. Debrecen*, **86** (2015), 325–346.
- G. Calvaruso and A. Zaeim, A Complete Classification of Ricci and Yamabe Solitons of Non-Reductive Homogeneous, J. Geom. Phys., 80 (2014), 15–25.
- G. Kaimakamis and K. Panagiotidou, *-Ricci Solitons of Real Hypersurfaces in Non-Flat Complex Space Forms, J. Geom. Phys., 86 (2014), 408–413.
- S. Tachibana, On Almost-Analytic Vectors in Almost Kahlerian Manifolds, *Tohoku Math. J.*, 11 (1959), 247–265.
- T. Hamada, Real Hypersurfaces of Complex Space Forms in Terms of Ricci *- Tensor, *Tokyo J. Math.*, 25 (2002), 473-483.
- 11. S. Zamkovoy, Canonical Connections on Paracontact Manifolds, Ann. Glob. Anal. Geom., **36(1)** (2009), 37–60.
- 12. K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
- 13. Sushil Shukla, On Relativistic Fluid Space Time Admitting Heat Flux of a Generalized Recurrent and Ricci Recurrent Kenmotsu Manifold, *Journal of International Academy Of Physical Sciences*, **15** (2011), 143-146.
- Sushil Shukla, On Kenmotsu Manifold, *Journal of Ultra Scientist of Physical Sciences*, 21 (2009), 485-490.
- 15. Uday Chand De, Ahmet Yildiz, Mine Turan and Bilal E. Acet, 3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection , *Hacettepe Journal of Mathematics and Statistics*, **41**(1) (2012), 127–137.
- 16. D. E. Blair, Riemannian Geometry of Contact and Sympletic Manifolds, *Progress in Mathematics*, 203 (2002).
- U. C. De and A. K. Mondal, Three Dimensional Quasi-Sasakian Manifolds and Ricci Solitons, SUT J. Math., 48(1) (2012), 71–81.
- 18. K. T. Pradeep, Venkatesh, and C. S. Bagawadi, On ϕ -Recurrent Para-Sasakian Manifold Admitting Quarter Symmetric Metric Connection, *ISRN Geometry*, (2012), Article ID 317253.
- 19. Z. Olszak, Normal Almost Contact Metric Manifolds of Dimension Three, Ann. Polon.

Math., 47 (1986), 41-50.

- S. K. Hui , On Pseudo Symmetric Para-Sasakian Manifold, Acta Universities Apulensis, 39 (2014), 161-178.
- M. D. Siddiqi, Conformal η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds, Int. J. Maps Math. (IJMM.), 1 (2018), 15–34.
- 22. M. M. Tripathi, Ricci Solitons in Contact Metric Manifolds, arXiv:0801.4222.
- 23. M. D. Siddiqi, Generalized Ricci Soliton on Trans Sasakian Manifolds, *Khayyam J. Math.*, **4** (2018), 178–186.
- M. Turan, C Yetima and S. K. Chaubey, On Quasi-Sasakian 3-Manifolds Admitting η-Ricci Solitons, *Filomat*, 33 (2019), 4923–4930.
- A. Sarkar, A Sil and A. K. Paul, Ricci Almost Solitons on Three-Dimensional Quasi-Sasakian Manifolds, Proc. Nat. Inst. Sci. India, 89 (2019), 705-710.