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1. Introduction

Ricci soliton is a natural generalization of an Einstein metric and is
defined on a Riemannian manifold (M, g). A Ricci soliton is a triple

(9,vV,4) with g a Riemannian metric, V a vector field, and 2 a real scalar
such that

(1.2) L,g+2S+24g=0,

where S is a Ricci tensor of M and L, denotes the Lie derivative operator

along the vector field V .The Ricci soliton is said to be shrinking, steady,
and expanding accordingly as A is negative, zero, and positive,
respectively®. In 1967, D. E. Blair? introduced the notion of quasi-Sasakian
manifold to unify Sasakian and cosympletic manifolds and in 1977. The
authors in*” have studied Ricci solitons in contact and Lorentzian manifolds.
G. Kaimakamis and K. Panagiotidou® initiated the notion of *-Ricci
soliton where they essentially modified the definition of Ricci soliton by
replacing the Ricci tensor Ric in (1.1) with the *-Ricci tensor Ric*. A
pseudo-Riemannian metric g on a smooth manifold M is called a *-

Ricci soliton if there exists a smooth vector field V , such that
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(1.2) %(£V 9)(X,Y)+Ric"(X,Y)=2g9(X,Y),
where
(1.3) Ric”(X,Y) =%(trace{¢,R(X,¢Y)}),

for all vector fields X,Y on M

The notion of =-Ricci tensor was first introduced by S. Tachibana® on
almost Hermitian manifolds and further studied by T. Hamada®™ on real
hypersurfaces of non-flat complex space forms.

In the present paper, we have studied *-Ricci soliton on Para-Sasakian
manifold and prove the following result:

Theorem 1.1: Let M (¢, & 7, g) be a (2n + 1)-dimensional Para-
Sasakian manifold. If g is a =-Ricci soliton on M, then either M is D-
homothetic to an Einstein manifold, or the Ricci tensor of M with
respect to canonical paracontact connection vanishes. In the first case,
the soliton vector field is Killing and in the second case, the soliton
vector field leaves ¢ invariant.

2. Preliminaries

Let M Dbe an almost contact manifold equipped with an almost contact

metric structure (¢,&,7,9) consisting of a (1,1) tensor field ¢, a vector field

¢, al-form n and a compatible Riemannian metric g satisfying
(21) g=—1+n®¢, n(&)=1, ¢#(5)=0, n-¢=0,

g(X,Y)=g(gX,4Y)+n(X)n(Y),
(2.2)

g(x1¢Y):_g(¢X’Y)1g(X1§):77(X) )

forall XY e y(M).
An almost contact metric manifold M is a Para-Sasakian manifold if and

only if
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(2.3) (VX¢)(Y):—9(X,Y)§—77(Y)¢(X)+277(X)77(Y), X, Y eTM,

where V is Levi-Civita connection of the Riemannian metric g .
From the above equation it follows that

(2.4) ViE=¢(X), XeT(M),

(2.5) (Viem)Y =9(X,4Y) =(Vym) X

Moreover, the curvature tensor R and Ricci tensor S satisfy

(2.6) R(X, Y)&=n(X)Y —n(Y)X .

Let M be a three-dimensional Para-Sasakian manifold. The Ricci tensor S
of M is given by

(2.7) S(#X,¢Y)=S(X,Y)+(n-Dn(X)n(Y).

where R is the Riemannian curvature tensor and S is the Ricci tensor of
type (0, 2) such that

(2.8) g(QX,Y)=S(X.Y),

where Q is the Ricci operator.

Lemma 2.1: LetM (¢, &, 7, g) be a Para-Sasakian manifold. Then
(()V.Q=0, and (ii) (V,Q)&=QpX +AgX .

Proof: Since ¢ is Killing, we have £, Ric=0. This implies
(£:Q)X =0 for any vector field X on M. From which it follows that

0=£,(QX)-Q(£:X)
=V QX + Vg £=Q(V:X)+Q(V¢)
=(VAQ)X + Ve E+Q(V€).
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Using (2.4) in the above equation gives V.Q=Q¢-¢Q. Since the Ricci

operator Q commutes with ¢ on Para-Sasakian manifold, we have (i).

Next, taking covariant differentiation of (2.8) along an arbitrary vector
field X on M and using (2.4), we obtain (ii). This completes the proof.

If the Ricci tensor of a Para-Sasakian manifold M is of the form
Ric(X,Y)=Ag(X,Y)+Bn(X)n(Y),

for any vector fields X, Y on M, where A and B being constants, then
M is called an » — Einstein manifold.

The 1-form 7 is determined up to a horizontal distribution and
hence D=Kerz; connected by 77=0n for a positive smooth function o«
on a paracontact manifold M. This paracontact form 7 defines the
structure tensor (;z?, £, g) corresponding to » using the condition given

in the paper. We call the transformation of the structure tensors given
by Lemma 4.1 of** a gauge (conformal) transformation of paracontact
pseudo-Riemannian structure. When o is constant this is a D-

homothetic transformation. Let M (¢, &, 77, g) be a paracontact manifold
and

¢ :¢,é?=£§,77=af7,§=ag +(a® —a)n®n a =const.#0
a

to be D-homothetic transformation. Then ((Z, 7, g) is also a para

contact structure. Using the formula appeared in11l for D-homothetic
deformation, one can easily verify that if M (¢4 ¢&,7,9) is a (2n+1)-

dimensional (n>1) »—Einstein Para-Sasakian structure with scalar
curvature r=2n, then there exists a constant o such that M (4, &, 7, g)
is an Einstein Para-Sasakian structure. So we have following result.

Lemma 2.2: Any (2n+1)—dimensional 7 -Einstein Para-Sasakian

manifold with scalar curvature not equal to 2n is D-homothetic to an
Einstein manifold.
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3. Proof of Theorem

First, we state and prove some lemmas which will be used to prove
Theorem.

Lemma 3.1: The *-Ricci tensor on a (2n+1)-dimensional Para-
Sasakian manifold M (¢, &, 77, 9) is given by

(3.1) Ric”(X,Y)=-Ric(X,Y)-(2n-1)g(X,Y)-n(X)n(Y),

for any vector fields X, Y on M .
Proof: The Ricci tensor Ric of a (2n+1)-dimensional Para-Sasakian
manifold M (¢, &, 7, g) satisfies the relation (c.f. Lemma 3.15 in™:

(3.2) Ric(X ,Y)=§R'(X1¢Y,ep¢ei)—(2” —-Dg(X,Y)-n(X)n(Y),

i=1

for any vector fields X, Y on M. By the skew-symmetric property of
¢, we have

2n+1 2n+1 2n+l

Z R'(X,¢Y,ei,¢ei)=z R(X1¢Y’ei’¢ei):Z g(¢R(X1¢Y)'ei’ei)

By this, (3.2) becomes

2n+1

3.3) Z g(#R(X,¢Y).e € )=—2Ric(X,Y)-2(2n-1)g(X,Y) - 2n(X)n(Y) .

By (1.3) and (3.3), we have (3.1).

Lemma 3.2: For a Para-Sasakian manifold, we have the following
relation

(3.4) En)(E)=-nE, E)=A.

Proof: By virtue of Lemma 3.1, the *-Ricci soliton equation (1.2)
can be expressed as

(3.5) (£,9)(X,Y)=2Ric(X,Y)+2(2n -1+ 2)g(X,Y) +2n(X)n(Y).
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Taking Y=¢ in (3.5) and using (2.7) we have (£, g)(X,&)=24n(X).
Lie-differentiating the equation »(X)=g(X,&)along vV and by (3.5),
we have

(3.6) (B, (X) - 9(&, & X)~227(X) =0.

Now, Lie-derivative of g(&, £)=1 along V and equation (3.6) completes
proof.

Lemma 3.3: Let M(4, &, 7,9) be a (2n+1)-dimensional Para-
Sasakian manifold. If g is a *-Ricci soliton, then M is an 7 —Einstein
manifold and the Ricci tensor can be written as

3.7) Ric(X ,Y):—[Zn —1+ﬂg(x ,Y){%—l}](X)n(Y) ,

for any vector fields X, Y on M.

Proof: Taking covariant differentiation of (3.5) along an arbitrary
vector field zZ, we get

(38)  (V,£,9)(X, Y)=2{(V,Ric)(X,Y)=g(X,4Z)n(Y)—9(Y.$Z)n(X)} -
According to Yano®, we have

(Evvzg_vzf'vg_v[v,z]g)(xi Y)

——g((E,V)(Z, X).Y)-g(E,V)(Z, Y), X),

for any vector fields X, Y, Z on M.
In view of the parallelism of the pseudo-Riemannian metric g, we have

from above relation
(3.9) (V £, 9)(X,Y)=9(E, V)(Z,X),Y)+g((E, V)(Z,Y), X) .
From (3.8) and (3.9), we have

(3.10) 9((E,V)(Z, X).Y)+9((E,V)(Z, Y), X)
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= 2{(V,Ric)(X, Y)=g(X, 6Z)n(Y)-g(Y, 4Z)n(X)}.
Which gives
(3.11) 9(E, V)(X, Y), Z) =—(V,Ric)(X,Y )+ (VRic)(Y,Z)
+(V,Ric)(Z,X)+29(X,8Z)n(Y )+ 29(Y,¢Z)n(X).
Taking & inplace of Y in (3.11) and Lemma 2.1, we get
(3.12) (€, V)(X,Y) =2(2n-1)$X +2Q¢X .

Differentiating (3.12) covariantly along an arbitrary vector field Y on M
and using the relations (2.3) and (2.8), we have

(3.13) (Vv £, V)(X, &) +(E, V)(X,9Y)
= 2{(V,Q)@X +7(X)QY +(2n-1)n(X)Y +g(X, Y)&}.

According to Yano ** we have

(3.14) (£,R)(X,Y)Z =(Vy £, V)(Y,Z) - (V, £, V)(X,Z).

Taking ¢ in place of Z in (3.14) and by (3.13), we have

(3.15) (EV R)(X,Y)§+(EVV)(Y,goX)—(EVV)(X,(pY)
=2{(VxQ)¢Y - (V,Q)pX +71(Y)QX —7(X)QY
+(2n-1)(n(Y)X =n(X)Y)}.

Taking & for Y in (3.15), then using (2.8), (3.12) and Lemma 2.1, we
have (3.16)

(£, R)(X,&)&E=4{QX +(2n-1) X +7(X)&} .
Taking Lie-derivative of (2.6) along V and by (2.5) and (3.4) we have
(3.17) (EVR)(X,&)E=(E,m(X)E—g(E, X,£)-2AX .

Comparing (3.16) with (3.17), and use of (3.6), gives the required result.
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Proof of Theorem: By (3.7), the soliton equation (3.5) can be written
as

(3.18) (€, 9)(X,Y) =A{g(X,Y) +1(X)n(Y)} -

Taking Lie-differentiation of (3.7) along the vector field vV and using
(3.5) we have

(3.19) (£, Ric)(X N){% - j{U(Y)(f'v m(X)+n(X)(E, m(Y)}

_{g.;.zn—l:ll{g(X,Y) +n(X)n(Y)} .

Differentiating (3.7) covariantly along an arbitrary vector field Z on M
and using (2.4) we have

(3.20) (VzRiC)(X,Y)=(1—§j{g(X,¢Z)77(Y) (Y, 2)n(X)}

By (3.20), equation (3.11) becomes
(3.21) (E, V)X, Y) ==Hn(Y) pX +7(X)@Y}.

Differentiating (3.21) covariantly along an arbitrary vector field Z on
M and by (2.3) and (2.4), we have

(3.22) (VLEV)(X,Y)=Hg(Y, ¢Z)gX +g(X, ¢Z)eY
+9(X, Z)n(Y)&+ g(Y, Z)n(X)&—2n(X)n(Y) Z}.
Using (3.22) in (3.14) and using (2.4) we have

(3.23) (£,R)(X,Y)Z = Hg(#X,Z)Y — g(4Y,Z)$X +2g(#X,Y )¢Z
+9(X,Z)n(Y)E-g(Y, Z)n(X)E=2n(Y)n(Z) X +2n(X)n(Z)Y}.

Contracting (3.23) over Z, we get

(3.24) (£, Ric)(Y,Z) =22{g(Y.Z)-(2n+1)n(Y)n(Z)}.
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By (3.19) and (3.24), we have

(3.25) (g— ]{n(v)@v MZ) +1Z)E, )(Y))

—[%+2n—1}/1{g(Y,Z)+77(Y)77(Z)}
=22{9(Y.Z)-(2n+)n(Y)n(Z)} .

Replacing Y by ¢y in (3.25) and then using (2.1) and (3.4) we get

(3.26) (%—1){(& n)(Y)n(Z)=/1{l+ 2n+%}g(Y,Z)—2n/177(Y)77(Z)} .
By (3.26) and (3.25) and then replacing Z by ¢z, we have

(3.27) z[1+2n+ﬂg(v,¢2):o.

As ¢(Y,Z)=9(Y, #Z)is non-vanishing everywhere on M, so either
A=0 or A=-2(2n+1).

Case I: If 2=0, from (3.18) we have £,g9=0, therefore, V is Killing.
From (3.7) we have

(3.28) Ric(X,Y)=—(2n-1)g(X,Y)-n(X)n(Y).

Contracting the equation (3.28) we have r =—4n®, where r is the scalar
curvature of the manifold M. This shows that M is a n—Einstein

manifold with scalar curvature r=2n. So, M is D—-homothetic to an
Einstein manifold.
Case IlI: If 2=-2(2n+1), then taking ¢ in place of Z in (3.26) and

then replace Y by ¢Y the resulting equation gives

@—@(ﬁvn)w):o.

Since 2=-2(2n+1), we have 1=2. Thus we have (Ev 7) (¢Y) = O
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Replacing Y by ¢Y and using (2.1), we have

(3.29) E,mMY)=-2(2n +1)77(X) :
Taking exterior differentiation d on (3.29) we have
(3.30) (£,dn)(X,Y)=-2(2n+1)g(X,¢Y),

as d commutes with £, .
Taking the Lie-derivative of dn(X,Y)=g(X, ¢Y) along the soliton vect-
or field v provides

(3.31) (£, dm(X.Y) = (£, 9)(X.¢Y )+ (X, (£, ¢)Y).
From (3.18) we have
(3.32) (£, 9)(X, #Y)=-2(2n+Dg(X, ¢).

Using (3.30) and (3.32) in (3.31) we have£, ¢=0. Therefore, soliton
vector field v leaves ¢ invariant. Putting 2=-2(2n+1) in (3.7) we
have

(3.33) Ric(X,Y)=2g(X,Y)—(2n+2)n(X)n(Y).

Contracting (3.33) we obtain r=2n (i.e., the manifold M cannot be
D - homothetic to an Einstein manifold. Ricci tensor Ri¢ of a (2n+1)
dimensional Para-Sasakian manifold with respect to canonical
paracontact connection V is defined as“

(3.34) RIE(X,Y)=Ric(X,Y)=2g(X,Y)+(2n+2)n(X)n(Y).

Using (3.33) in (3.34) we have Ri¢(X,Y)=0. Therefore, the Ricci

tensor with respect to the connection V vanishes. This completes the
proof of theorem.
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