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Abstract: Recently Yehuda Rav has given the concept of Semi-prime
ideals in a general lattice by generalizing the notion of O-distributive
lattices. In this paper we have included several characterizations of Semi-
prime ideals. We give a simpler proof of a prime Separation theorem in a
general lattice by using semi-prime ideals. We also study different
properties of minimal prime ideals containing a semi prime ideal in

proving some interesting results. By defining a p-algebra L relative to a
principal semi prime ideal J , we prove that when L is 1-distributive,
then L is a relative S-algebra if and only if every prime ideal containing
J contains a unique minimal prime ideal containing J , which is also
equivalent to the condition that for anyXx,y€ L,x A y€ J implies

x"v y+ =1. Finally, we prove that every relative S-algebra is a

relative D- algebra if L is 1-distributive and modular with respect to J .
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1. Introduction

In generalizing the notion of pseudo complemented lattice, J. C. Varlet'
introduced the notion of O-distributive lattices. Several characterizations of
these lattices are given in P. Balasubramani and P. V. Venkatanarasimhan 2,
On the other hand, Y. S. Powar and N. K. Thakare® have studied them in
meet semi lattices. A lattice L with Ois called a O-distributive lattice if for
all a,b,ce L with anb=0=aAc imply an(bvc)=0. Of course every
distributive lattice with 0 is O-distributive. O-distributive lattice L can be
characterized by the fact that the set of all elements disjoint to ae L forms
an ideal. So every pseudo complemented lattice is O-distributive. Similarly,
a lattice L with 1 is called a I-distributive lattice if avb=1=av ¢ imply
av(bac)=1,forall a,b,ce L.

Y. Rav* has generalized this concept and has given the definition of
semi prime ideals in a lattice. For a non-empty subset / of L, [ is called a
down set if ael andx<a imply xel. Moreover [ is an ideal if
avbel forall a,be I.Similarly, F is called a filter of L if for a,be F,

anbe F and for ae F and x=2aimply xe F. Fis called a maximal
filter if for any filter M O F it is implied that either M =For M =L. A
proper ideal (down set) [ is called a prime ideal (down set) if fora,be L,
anbe Iimply eitherae [ or be I. A prime ideal P is called a minimal
prime ideal if it does not contain any other prime ideal. Similarly, a proper
filter Q is called a prime filter it avbe Q (a,be L) implies either ae Q
orbe Q. It is very easy to check that F is a filter of L if and only if L—F
is a prime down set. Moreover, F is a prime filter if and only if L—F is a
prime ideal.

An ideal I of a lattice L is called a semi prime ideal if for all
x,v,z€ L, xaAnyel and xAzel 1implyxa(yvz)el. Thus, for a
lattice L with O, L is called O-distributive if and only if (0] is a semi
prime ideal. In a distributive lattice L, every ideal is a semi prime ideal.
Moreover, every prime ideal is semi prime. In a pentagonal
lattice {0, a,b,c,l;a<b}, (0] is semi prime but not prime. Here (b] and
(c] are prime, but (a] is not even semi prime. Again in
M, ={0, a,b,c,l,anb=bac=anc=0avb=avc=bvc=1}

(0], (al, (b],(c] are not semi prime.

Following lemmas are due to R. M. Hafizur Rahaman, Md Ayub Ali and A.
S. A. Noor’
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Lemma 1. Every filter disjoint from an ideal [ is contained in a
maximal filter disjoint from I .

Lemma 2. Let I be an ideal of a lattice L. A filter M disjoint from [
is a maximal filter disjoint from [ if and only if for alla¢ M , there exists
be M suchthat anbel.

Let L be a lattice with 0. For A ¢ L, we define

At ={xeL:xAra=0 forallac A}. A* is always a down set of L but
not necessarily an ideal.

Following result is an improvement of Theorem 6 of the papers.

Theorem 3. Let L be a O-distributive lattice. Then for AcC L, At s
a semi-prime ideal.

Proof: We have already mentioned that A“ is a down set ofL.
Letx,ye A*. Then xAa=0=yAa forall ae L. Hence an(xvy)=0

for all ae A. This implies xv ye A" and so A" is an ideal.

Now, let xAye A" and xAze A*. Then xAyAra=0=xAzAa forall
ae A. This implies x/\a/\(yvz)zO for all aeL as L is O-
distributive. Hence xA(yv z)e A" andso A" is a semi prime ideal.

Let Ac L and J be an ideal of L.

We define A~ = {xe L:xAnae J forall ae A}. This is clearly a down set

containing J . In presence of distributivity, this is an ideal. A™ is called an
annihilator of A relative to J .

Following Theorem due to” gives some nice characterizations of semi prime
ideals.

Theorem 4. Let L be a lattice and J be an ideal of L. The following
conditions are equivalent.
(i) J is semi prime.
(ii) {a}™ ={xe L:xAae J} is a semi prime ideal containing J .
(iii) A~ ={xe L:xAae J forall ac A} is a semi prime ideal containing J .
(iv) Every maximal filter disjoint from J is prime.

Following prime Separation Theorem due to Y. Rav * was proved by
using Glevinko congruence. But we have a simpler proof.
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Theorem 5. Let J be an ideal of a lattice L. Then the following
conditions are equivalent:
(i) Jis semi prime
(ii) For any proper filter F disjoint to Jthere is a prime filter
Q containing F such that QNJ =¢.

Proof. (i)=>(ii). Since F NnJ = ¢, so by Lemma 1, there exists a
maximal filter Q © F such that Q N J =¢. Then by Theorem 4, Q is
prime.

(i1)=>(@1). Let F' be a maximal filter disjoint to J . Then by (ii) there exists
a prime filter Q © F such that Q "N J = ¢. Since F is maximal, so Q =F'.

This implies F' is prime and so by theorem 4, J must be semi prime.

Now we give another characterization of semi-prime ideals with the help
of Prime Separation Theorem using annihilator ideals. This is also an
improvement of the Theorem 8 of the paper3.

Theorem 6. Let J be an ideal in a lattice L. J is semi- prime if and
only if for all filter Fdisjoint to A™ (A C L), there is a prime filter

containing F disjoint to A™ .

Proof. Suppose J is semi prime and F' is a filter with F N At = 0.

Then by Theorem 4, AY s a semi prime ideal. Now by Lemma 1, we
can find a maximal filter Q containing F and disjoint to A" . Then by
Theorem 4 (iv), Q is prime.
Conversely, letxAye J,xAnze J. lfxAn(yvz)e J,then yvz¢ {x}LJ .
Thus [yvz)N{x}™ =¢. So there exists a prime filter Q containing
[yvz) and disjoint from {(x}*. As y,ze{x}",s0y,ze¢ Q. Thus
yvze Q, as Q is prime. This implies, [yv z) [1 Q a contradiction.
Hence xA(yvz)e J,and so J is semi-prime.

Let J be any ideal of a lattice L and P be a prime ideal containing J .
We define J(P) :{xe L:xAyeJ for some ye L—P}. Since P is a
prime ideal, so L—P is a prime filter. Clearly J(P) is a down set
containing J and J(P)cC P.

Lemma 7. If P is a prime ideal of a lattice L containing any semi
prime ideal J, then J( P ) is a semi prime ideal.
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Proof. Leta,be J(P). Then anveJ and baseJ for some
v,se L—P.Thus anvaseJ and bAvAase J. Since J is semiprime,
SO vAsA(avb)e JandvAse L—P as it is a filter. Hence avbe J(P)
and so J(P) is an ideal as it is a down set.

Now suppose xA y,xAze J(P).Then xAyAv,xAzAse J for some
v,s€ L—P .Then by the semi primeness of J,
[(xAyY)V(xAZ)]AvAse Jwhere vAse L—P.

This implies (x A y) v (x A z) € J(P), we have J(P) is semi prime.

Lemma 8. Let J be a semi prime ideal of a lattice L and P be a prime
ideal containing J . If Q is a minimal prime ideal containing J(P) with
Q cC P, then forany ye Q — P, there exists z¢& Q such that yA ze J(P).

Proof. If this is not true, then suppose forall z¢ Q, yAze J(P).
SetD=(L-Q)Vv[y). Weclaim thatJ(P)nD=¢.Ifnot,let te J(P)ND.
Then te J(P) and t=2a Ay forsome ae L—-Q.

Now aAy<t implies aAye J(P), which is a contradiction to the
assumption .

Thus, J(P)ND=¢.

Then by Lemma 1, there exists a maximal filter R > D such that,
RNJ(P)=¢.

Since J( P ) is semiprime , so by Theorem 4, R is a prime filter. Therefore
L-R is a mminimal prime ideal containing J(P).
MoreoverL—Rc Qand L—R#Qasye Q but y¢ L— R. This contradicts
the minimality of Q. Therefore there must exist z¢& Qsuch that
yAaze J(P).

Lemma 9. Let P be a prime ideal containing a semi prime ideal J .
Then each minimal prime ideal containing J(P) is contained in P .

Proof. Let Q be a minimal prime ideal containing J(P).If Q[ P, then
choose ye Q — P. Then by lemma 8, yAze O(P) for some z¢& Q. Then
yAazaxe J for some x¢ P.As P is prime, yAx¢ P. This implies
ze J(P) < Q, which is a contradiction. Hence Q c P.

Proposition 10. If in a lattice L, P is a prime ideal containing a semi
prime ideal J, then the ideal J(P) is the intersection of all the minimal

prime ideals containing J but contained in P .
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Proof. Let Q be a prime ideal containing J such that Q < P . Suppose
xe J(P) . Then xA ye J forsome ye L—P.Since y¢ P,so y¢ Q.
Then xA ye J € Q implies xe Q.

Thus J(P) < Q. Hence J(P)is contained in the intersection of all minimal
prime ideals containing J but contained in P . Thus J(P) < N{Q, the prime
ideals containing J but contained in P} € N{Q, the minimal prime ideals

containing J but contained in P } = X (say).
Now, J(P)c X. If J(P)# X, then there exists x€ X such that

x¢ J(P). Then[x)NJ(P)=¢.So by Zorn’s lemma as in lemma 1 there
exists a maximal filter /' ©[x) and disjoint to J(P). Hence by Theorem 4,
F 1s a prime filter as J(P) is se[ jprime. Therefore L — Fis a minimal
prime ideal containing J(P). But x¢ L—F implies x¢ X gives a
contradiction. Hence J(P) = X = N{Q, the minimal prime ideals containing
J but contained in P }.

An algebra L= <L; A, VL EO, 1> of type <2, 2,1,0, O> is called a p-algebra
if
(1) <L;/\,v,*,0, 1> 1s a bounded lattice, and
(ii) for all ae L, there exists an @ such that x<a if and only if
x~na=0.
The element a " is called the pseudo complement of a .
Let J be an ideal of a lattice L with 1. For an element a€ L, a* is called
the pseudo complement of a relative to J if ana™ € J and for any be L,

anbe J implies b<a™.
L is called a pseudo complemented lattice relative to J if its every element
has a pseudo complement relative to J .

Theorem 11. For an ideal J of a lattice L with 1, if L is pseudo
complemented relative to J, then J must be a principal semi prime ideal.

Proof. Let L be pseudo complemented relative toJ . Now for all ae L,
IAna=a. So the relative pseudo complement of 1 must be the largest
element of J. Hence J must be principal. Now suppose a,b,ce L with
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anbance J. Then b,c<a’, and so bvc<a®. Thus an(bvc)e J,
and hence J is semi prime.

An algebra L = <L;/\,v,+,J ,1> is called a p-algebra relative to J if
(1) <L;/\,v,J ,1> is a lattice with 1 and a principal semi prime ideal J , and

(ii) forall ae L, there exists a pseudo complement a* relative to J .

Suppose J = (t]. An element a€ L is called a dense element relative to J
ifa® =t.

We denote the set of all dense elements relative to J by D, (L). It is easy to
check that D, (L) is a filter of L.

Lemma 12. Let L= (L;/\,v,+,J ,1) be a p-algebra relative toJ and P

be a prime ideal of the lattice L containing J . Then the following conditions
are equivalent.
(i) P is a minimal prime ideal containing J .

(ii)  xe€ P implies x* ¢ P.

(iii)  xe€ P implies x™" € P.

(iv) PND;(L)=4¢.

Proof. (i) implies (ii). LetP be minimal and let (ii) fail, that is,
a* e Pfor some ae P. Let D=(L—P)v [a). We claim that JND=¢.
Indeed, if je JND, then j=gAa for some ge L— P, which implies
that gaae J, and so g<a’. Thus ge P gives a contradiction. Then
a* ¢ D, for otherwise ana* e JND. Hence DN (al* =DN{a}” =9¢.
Then by Theorem 5, there exists a prime filter F 2 D and disjointto (a ] .
Hence Q=L-Fis a prime ideal disjoint toD. Then Q c P, since
QN(L-P)=¢ and Q# P, as ag Q, cotradicting the minimality of P .

(i) implies (iii). Indeed x* Ax™ e J c P for any xe L; thus if xe P,

then by (ii), x* ¢ P, implying that x™" € P.

(iii) implies (iv). If ae PN D, (L) for some ac L, then a™" =1¢ P, a
contradiction to (iii). Thus PN D,(L)=¢.
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(iv) implies (i). If P is not minimal prime ideal containing J , then Q c P
for some prime ideal Q of L containing J . let xe P— Q. Then
xAaxTelc QO and x¢ Q ; therefore x e Q c P, which implies that
xvx eP.But xvx'e D, (L) ; thus we obtain xvx* € PN D, (L),
contradictiong (iv).

A relative p-algebra L = <L;/\,v,+, J ,1> is called a relative S-algebra if

a*va*™ =1. L is said to be a relative D-algebra if for all a,be L,
(anb)" =a” vb". Of course every relative D-algebra is a relative S-

algebra, but the following example due to C. Nag, S. N. Begum and M. R.
Talukder® shows that the converse need not be true.

Here, L is an S-algebra, but (g A r)* =c =w= p=bva= q* vr shows
that it is not a D-algebra.

Two prime ideals P and Q are called co-maximal if Pv Q = L.

Following result on 1-distributive lattices is due to Razia Sultana M. Ayub
Aliand A. S. A. Noor’

Theorem 13. Let L be a lattice with 1. Then the following conditions
are equivalent.
(1) L is I-distributive.
(i1) Every maximal ideal is a prime ideal.
(iii) Each a #1 of L is contained in a prime ideal.

Theorem 14. In a relative p -algebra L = (L;A,v,+,J,1) where L is I-
distributive the following conditions are equivalent
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(i) L isarelative S -algebra.
(ii) Any two distinct minimal prime ideals containing J are co-
maximal.
(iii) Every prime ideal containing J contains a unique minimal prime
ideal containing J .
(iv) For each prime ideal P containing J, J( P ) is a prime ideal .

(v) Forany x,ye L , xAye J, implies x* v y" =1.

Proof. (i) implies (ii). Suppose L is a relative S -algebra. Let P and Q
be two distinct minimal prime ideals containing J. Choose xe P—-Q.

Then by Lemma 12, x* ¢ P but x*" e P. Now xAx* e J < Q implies
x"eQ, as Q is prime. Therefore, 1=x""vx"e PvQ. Hence
Pv Q=L.Thatis P,Q are co-maximal.

(i1) implies (iii) is trivial.

(iii)) implies (iv). By Theorem 11, J is a semi ptrime ideal. So by
Proposition 10, (iv) holds.

(iv) implies (v). Suppose (iv) holds and yet (v) does not. Then there exists
x,ye L with xAyeJ but x* v y" #1. Since Lis 1-distributive, so by

Theorem 13(iii), there is prime ideal P containing x* v y*. If xe J(P),

then xAreJ for some re L—P. This implies r<x*e P gives a
contradiction. Hence x¢ J( P). Similarly ye¢ J(P). But by (iv), J(P) is

prime, and so x A ye J < J( P ) is contradictory. Thus (iv) imples (v).

(v) implies (i). Since xAx* e J,soby (v) x**vx" =1,and L isan S-
algebra relative to J .

A lattice L with O is called O-modular if for all x,y,ze L with z<x
and xAy=0 imply xA(yVv z)=z.Now we generalize the concept. Let J
be an ideal of a lattice L. We define L to be modular with respect to J if
forall x,y,ze L withz<x and xAye J imply xA(yvz)=z.

We conclude the paper with the following result.
Theorem 15. Let <L ANV, J ,1> be a relative P-algebra such that L is

both modular with respect J and I-distributive. If L is a relative S-
algebra, then it is a relative D- algebra.
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Proof. Suppose L is an S-algebra and a,be L. Now
a*va™ =1=b"vb"™. Thus (a+ vb+)vb++ =1= (a+ vb+)va++.
Since L is l-distributive, so avb'v (a++ /\b++):1. Now
anbarateJ and anbabteJ imply at, b* <(anb)", and so
atvbt<(and)’. Also,
(anb)" A (a++ /\b++): (anb)" Alanb)™ e J. Thus by J-modularity of

L, (and) =(anb) Al=(anbd) /\[(a++ /\b++)v (a+ vlf)]:a+ vb*, and
so L is arelative D- algebra.
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