Some Properties of Semi-Prime Ideals in Lattices

M. Ayub Ali

Department of Mathematics Jagannath University, Dhaka, Bangladesh Email: ayub_ju@yahoo.com

R. M. Hafizur Rahman

Department of Mathematics Begum Rokeya University, Rangpur, Bangladesh Email: salim030659@yahoo.com

A. S. A. Noor Md.

Department of ECE East West University, Dhaka, Bangladesh Email: noor@ewubd.edu

Mamunur Rashid

Department of Mathematics Titumir College, Dhaka, Bangladesh Email: <u>mdmamunaddl@gamil.com</u>

(Received December 01, 2012)

Abstract: Recently Yehuda Rav has given the concept of Semi-prime ideals in a general lattice by generalizing the notion of 0-distributive lattices. In this paper we have included several characterizations of Semiprime ideals. We give a simpler proof of a prime Separation theorem in a general lattice by using semi-prime ideals. We also study different properties of minimal prime ideals containing a semi prime ideal in proving some interesting results. By defining a p-algebra L relative to a principal semi prime ideal J, we prove that when L is 1-distributive, then L is a relative S-algebra if and only if every prime ideal containing J contains a unique minimal prime ideal containing J, which is also equivalent to the condition that for any $x, y \in L, x \land y \in J$ implies $x^+ \lor y^+ = 1$. Finally, we prove that every relative S-algebra is a relative D- algebra if L is 1-distributive and modular with respect to J.

1. Introduction

In generalizing the notion of pseudo complemented lattice, J. C. Varlet¹ introduced the notion of 0-distributive lattices. Several characterizations of these lattices are given in P. Balasubramani and P. V. Venkatanarasimhan². On the other hand, Y. S. Powar and N. K. Thakare³ have studied them in meet semi lattices. A lattice L with 0 is called a 0-distributive lattice if for all $a,b,c \in L$ with $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Of course every distributive lattice with 0 is 0-distributive. 0-distributive lattice L can be characterized by the fact that the set of all elements disjoint to $a \in L$ forms an ideal. So every pseudo complemented lattice is 0-distributive. Similarly, a lattice L with 1 is called a 1-distributive lattice if $a \vee b = 1 = a \vee c$ imply $a \vee (b \wedge c) = 1$, for all $a,b,c \in L$.

Y. Rav⁴ has generalized this concept and has given the definition of semi prime ideals in a lattice. For a non-empty subset I of L, I is called a down set if $a \in I$ and $x \leq a$ imply $x \in I$. Moreover I is an ideal if $a \lor b \in I$ for all $a, b \in I$. Similarly, F is called a filter of L if for $a, b \in F$, $a \land b \in F$ and for $a \in F$ and $x \ge a$ imply $x \in F$. F is called a maximal filter if for any filter $M \supseteq F$ it is implied that either M = F or M = L. A proper ideal (down set) I is called a prime ideal (down set) if for $a, b \in L$, $a \land b \in I$ imply either $a \in I$ or $b \in I$. A prime ideal P is called a minimal prime ideal if it does not contain any other prime ideal. Similarly, a proper filter Q is called a prime filter if $a \lor b \in Q$ ($a, b \in L$) implies either $a \in Q$ or $b \in Q$. It is very easy to check that F is a filter of L if and only if L - F is a prime ideal.

An ideal I of a lattice L is called a *semi prime ideal* if for all $x, y, z \in L$, $x \land y \in I$ and $x \land z \in I$ imply $x \land (y \lor z) \in I$. Thus, for a lattice L with 0, L is called *0-distributive* if and only if (0] is a semi prime ideal. In a distributive lattice L, every ideal is a semi prime ideal. Moreover, every prime ideal is semi prime. In a pentagonal lattice $\{0, a, b, c, 1; a < b\}$, (0] is semi prime but not prime. Here (b] and (c] are prime, but (a] is not even semi prime. Again in

 $M_{3} = \{0, a, b, c, 1; a \land b = b \land c = a \land c = 0; a \lor b = a \lor c = b \lor c = 1 \}$

(0], (a], (b], (c] are not semi prime.

Following lemmas are due to R. M. Hafizur Rahaman, Md Ayub Ali and A. S. A. Noor⁵

Lemma 1. Every filter disjoint from an ideal I is contained in a maximal filter disjoint from I.

Lemma 2. Let I be an ideal of a lattice L. A filter M disjoint from I is a maximal filter disjoint from I if and only if for all $a \notin M$, there exists $b \in M$ such that $a \land b \in I$.

Let *L* be a lattice with 0. For $A \subseteq L$, we define $A^{\perp} = \{x \in L : x \land a = 0 \text{ for all } a \in A\}$. A^{\perp} is always a down set of *L*, but not necessarily an ideal.

Following result is an improvement of Theorem 6 of the paper⁵.

Theorem 3. Let L be a 0-distributive lattice. Then for $A \subseteq L$, A^{\perp} is a semi-prime ideal.

Proof: We have already mentioned that A^{\perp} is a down set of *L*. Let $x, y \in A^{\perp}$. Then $x \wedge a = 0 = y \wedge a$ for all $a \in L$. Hence $a \wedge (x \vee y) = 0$ for all $a \in A$. This implies $x \vee y \in A^{\perp}$ and so A^{\perp} is an ideal.

Now, let $x \wedge y \in A^{\perp}$ and $x \wedge z \in A^{\perp}$. Then $x \wedge y \wedge a = 0 = x \wedge z \wedge a$ for all $a \in A$. This implies $x \wedge a \wedge (y \vee z) = 0$ for all $a \in L$ as L is 0-distributive. Hence $x \wedge (y \vee z) \in A^{\perp}$ and so A^{\perp} is a semi prime ideal. Let $A \subset L$ and J be an ideal of L.

We define $A^{\perp_J} = \{x \in L : x \land a \in J \text{ for all } a \in A\}$. This is clearly a down set containing J. In presence of distributivity, this is an ideal. A^{\perp_J} is called an annihilator of A relative to J.

Following Theorem due to⁵ gives some nice characterizations of semi prime ideals.

Theorem 4. Let L be a lattice and J be an ideal of L. The following conditions are equivalent.

(i) J is semi prime.

(ii) $\{a\}^{\perp_J} = \{x \in L : x \land a \in J\}$ is a semi prime ideal containing J.

(iii) $A^{\perp_{J}} = \{x \in L : x \land a \in J \text{ for all } a \in A\}$ is a semi prime ideal containing J.

(iv) Every maximal filter disjoint from J is prime.

Following prime Separation Theorem due to Y. Rav⁴ was proved by using Glevinko congruence. But we have a simpler proof.

Theorem 5. Let *J* be an ideal of a lattice *L*. Then the following conditions are equivalent:

- (*i*) J is semi prime
- (ii) For any proper filter F disjoint to J there is a prime filter Q containing F such that $Q \cap J = \phi$.

Proof. (i)=>(ii). Since $F \cap J = \phi$, so by Lemma 1, there exists a maximal filter $Q \supseteq F$ such that $Q \cap J = \phi$. Then by Theorem 4, Q is prime.

(ii)=>(i). Let F be a maximal filter disjoint to J. Then by (ii) there exists a prime filter $Q \supseteq F$ such that $Q \cap J = \phi$. Since F is maximal, so Q = F. This implies F is prime and so by theorem 4, J must be semi prime.

Now we give another characterization of semi-prime ideals with the help of Prime Separation Theorem using annihilator ideals. This is also an improvement of the Theorem 8 of the paper³.

Theorem 6. Let J be an ideal in a lattice L. J is semi- prime if and only if for all filter F disjoint to A^{\perp_J} ($A \subseteq L$), there is a prime filter containing F disjoint to A^{\perp_J} .

Proof. Suppose J is semi prime and F is a filter with $F \cap A^{\perp_J} = \phi$. Then by Theorem 4, A^{\perp_J} is a semi prime ideal. Now by Lemma 1, we can find a maximal filter Q containing F and disjoint to A^{\perp_J} . Then by Theorem 4 (iv), Q is prime.

Conversely, let $x \land y \in J$, $x \land z \in J$. If $x \land (y \lor z) \notin J$, then $y \lor z \notin \{x\}^{\perp_J}$. Thus $[y \lor z) \cap \{x\}^{\perp_J} = \varphi$. So there exists a prime filter Q containing $[y \lor z)$ and disjoint from $\{x\}^{\perp_J}$. As $y, z \in \{x\}^{\perp_J}$, so $y, z \notin Q$. Thus $y \lor z \notin Q$, as Q is prime. This implies, $[y \lor z) = Q$ a contradiction. Hence $x \land (y \lor z) \in J$, and so J is semi-prime.

Let J be any ideal of a lattice L and P be a prime ideal containing J. We define $J(P) = \{x \in L : x \land y \in J \text{ for some } y \in L-P\}$. Since P is a prime ideal, so L-P is a prime filter. Clearly J(P) is a down set containing J and $J(P) \subseteq P$.

Lemma 7. If P is a prime ideal of a lattice L containing any semi prime ideal J, then J(P) is a semi prime ideal.

Proof. Let $a, b \in J(P)$. Then $a \land v \in J$ and $b \land s \in J$ for some $v, s \in L - P$. Thus $a \land v \land s \in J$ and $b \land v \land s \in J$. Since J is semiprime, so $v \land s \land (a \lor b) \in J$ and $v \land s \in L - P$ as it is a filter. Hence $a \lor b \in J(P)$ and so J(P) is an ideal as it is a down set.

Now suppose $x \wedge y, x \wedge z \in J(P)$. Then $x \wedge y \wedge v, x \wedge z \wedge s \in J$ for some $v, s \in L-P$. Then by the semi primeness of J, $[(x \wedge y) \lor (x \wedge z)] \land v \land s \in J$ where $v \land s \in L-P$.

This implies $(x \land y) \lor (x \land z) \in J(P)$, we have J(P) is semi prime.

Lemma 8. Let J be a semi prime ideal of a lattice L and P be a prime ideal containing J. If Q is a minimal prime ideal containing J(P) with $Q \subseteq P$, then for any $y \in Q - P$, there exists $z \notin Q$ such that $y \land z \in J(P)$.

Proof. If this is not true, then suppose for all $z \notin Q$, $y \land z \notin J(P)$. Set $D = (L-Q) \lor [y)$. We claim that $J(P) \cap D = \phi$. If not, let $t \in J(P) \cap D$. Then $t \in J(P)$ and $t \ge a \land y$ for some $a \in L - Q$.

Now $a \land y \le t$ implies $a \land y \in J(P)$, which is a contradiction to the assumption.

Thus, $J(P) \cap D = \phi$.

Then by Lemma 1, there exists a maximal filter $R \supseteq D$ such that, $R \cap J(P) = \phi$.

Since J(P) is semiprime, so by Theorem 4, R is a prime filter. Therefore L-R is a mminimal prime ideal containing J(P). Moreover $L-R \subseteq Q$ and $L-R \neq Q$ as $y \in Q$ but $y \notin L-R$. This contradicts the minimality of Q. Therefore there must exist $z \notin Q$ such that $y \land z \in J(P)$.

Lemma 9. Let P be a prime ideal containing a semi prime ideal J. Then each minimal prime ideal containing J(P) is contained in P.

Proof. Let Q be a minimal prime ideal containing J(P). If Q = P, then choose $y \in Q - P$. Then by lemma 8, $y \land z \in O(P)$ for some $z \notin Q$. Then $y \land z \land x \in J$ for some $x \notin P$. As P is prime, $y \land x \notin P$. This implies $z \in J(P) \subseteq Q$, which is a contradiction. Hence $Q \subseteq P$.

Proposition 10. If in a lattice L, P is a prime ideal containing a semi prime ideal J, then the ideal J(P) is the intersection of all the minimal prime ideals containing J but contained in P.

Г

Proof. Let Q be a prime ideal containing J such that $Q \subseteq P$. Suppose $x \in J(P)$. Then $x \land y \in J$ for some $y \in L - P$. Since $y \notin P$, so $y \notin Q$. Then $x \land y \in J \subseteq Q$ implies $x \in Q$.

Thus $J(P) \subseteq Q$. Hence J(P) is contained in the intersection of all minimal prime ideals containing J but contained in P. Thus $J(P) \subseteq \bigcap \{Q, \text{ the prime ideals containing J but contained in } P \} \subseteq \bigcap \{Q, \text{ the minimal prime ideals containing J but contained in } P \} = X (say).$

Now, $J(P) \subseteq X$. If $J(P) \neq X$, then there exists $x \in X$ such that $x \notin J(P)$. Then $[x) \cap J(P) = \phi$. So by Zorn's lemma as in lemma 1 there exists a maximal filter $F \supseteq [x)$ and disjoint to J(P). Hence by Theorem 4, F is a prime filter as J(P) is se jprime. Therefore L - F is a minimal prime ideal containing J(P). But $x \notin L - F$ implies $x \notin X$ gives a contradiction. Hence $J(P) = X = \bigcap \{Q, \text{ the minimal prime ideals containing } J$ but contained in P.

An algebra $L = \langle L; \land, \lor, *, 0, 1 \rangle$ of type $\langle 2, 2, 1, 0, 0 \rangle$ is called a p-algebra if

(i) $\langle L; \wedge, \vee, *, 0, 1 \rangle$ is a bounded lattice, and

(ii) for all $a \in L$, there exists an a^* such that $x \le a^*$ if and only if $x \land a = 0$.

The element a^* is called the *pseudo complement* of a.

Let *J* be an ideal of a lattice *L* with 1. For an element $a \in L$, a^+ is called the *pseudo complement of a relative to J* if $a \wedge a^+ \in J$ and for any $b \in L$, $a \wedge b \in J$ implies $b \leq a^+$.

L is called a *pseudo complemented lattice relative to* J if its every element has a pseudo complement relative to J.

Theorem 11. For an ideal J of a lattice L with l, if L is pseudo complemented relative to J, then J must be a principal semi prime ideal.

Proof. Let *L* be pseudo complemented relative to *J*. Now for all $a \in L$, $1 \land a = a$. So the relative pseudo complement of 1 must be the largest element of *J*. Hence *J* must be principal. Now suppose $a, b, c \in L$ with

 $a \wedge b, a \wedge c \in J$. Then $b, c \leq a^+$, and so $b \vee c \leq a^+$. Thus $a \wedge (b \vee c) \in J$, and hence J is semi-prime.

An algebra $L = \langle L; \land, \lor, +, J, 1 \rangle$ is called a p-algebra relative to J if

- (i) $\langle L; \land, \lor, J, 1 \rangle$ is a lattice with 1 and a principal semi prime ideal J, and
- (ii) for all $a \in L$, there exists a pseudo complement a^+ relative to J.

Suppose J = (t]. An element $a \in L$ is called a *dense element relative to J* if $a^+ = t$.

We denote the set of all dense elements relative to J by $D_J(L)$. It is easy to check that $D_J(L)$ is a filter of L.

Lemma 12. Let $L = (L; \land, \lor, +, J, 1)$ be a p-algebra relative to J and P be a prime ideal of the lattice L containing J. Then the following conditions are equivalent.

(i) P is a minimal prime ideal containing J.

- (ii) $x \in P$ implies $x^+ \notin P$.
- (iii) $x \in P$ implies $x^{++} \in P$.
- $(iv) \qquad P \cap D_J(L) = \phi.$

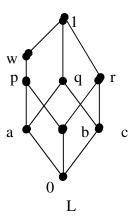
Proof. (i) implies (ii). Let *P* be minimal and let (ii) fail, that is, $a^+ \in P$ for some $a \in P$. Let $D = (L - P) \lor [a]$. We claim that $J \cap D = \phi$. Indeed, if $j \in J \cap D$, then $j \ge q \land a$ for some $q \in L - P$, which implies that $q \land a \in J$, and so $q \le a^+$. Thus $q \in P$ gives a contradiction. Then $a^+ \notin D$, for otherwise $a \land a^+ \in J \cap D$. Hence $D \cap (a]^+ = D \cap \{a\}^{\perp_J} = \phi$. Then by Theorem 5, there exists a prime filter $F \supseteq D$ and disjoint to $(a]^+$. Hence Q = L - F is a prime ideal disjoint to D. Then $Q \subseteq P$, since $Q \cap (L - P) = \phi$ and $Q \neq P$, as $a \notin Q$, cotradicting the minimality of P.

(ii) implies (iii). Indeed $x^+ \wedge x^{++} \in J \subseteq P$ for any $x \in L$; thus if $x \in P$, then by (ii), $x^+ \notin P$, implying that $x^{++} \in P$.

(iii) implies (iv). If $a \in P \cap D_J(L)$ for some $a \in L$, then $a^{++} = 1 \notin P$, a contradiction to (iii). Thus $P \cap D_J(L) = \phi$.

(iv) implies (i). If *P* is not minimal prime ideal containing *J*, then $Q \subset P$ for some prime ideal *Q* of *L* containing *J*. let $x \in P - Q$. Then $x \wedge x^+ \in J \subseteq Q$ and $x \notin Q$; therefore $x^+ \in Q \subset P$, which implies that $x \vee x^+ \in P$. But $x \vee x^+ \in D_J(L)$; thus we obtain $x \vee x^+ \in P \cap D_J(L)$, contradictiong (iv).

A relative p-algebra $L = \langle L; \land, \lor, +, J, 1 \rangle$ is called a *relative S-algebra* if $a^+ \lor a^{++} = 1$. *L* is said to be a relative D-algebra if for all $a, b \in L$, $(a \land b)^+ = a^+ \lor b^+$. Of course every relative D-algebra is a relative S-algebra, but the following example due to C. Nag, S. N. Begum and M. R. Talukder⁶ shows that the converse need not be true.



Here, *L* is an S-algebra, but $(q \wedge r)^* = c^* = w \neq p = b \lor a = q^* \lor r^*$ shows that it is not a D-algebra.

Two prime ideals P and Q are called *co-maximal* if $P \lor Q = L$.

Following result on 1-distributive lattices is due to Razia Sultana M. Ayub Ali and A. S. A. Noor⁷

Theorem 13. Let *L* be a lattice with *l*. Then the following conditions are equivalent.

(i) *L* is 1-distributive.

(ii) Every maximal ideal is a prime ideal.

(iii) Each $a \neq 1$ of L is contained in a prime ideal.

Theorem 14. In a relative *p* -algebra $L = (L; \land, \lor, +, J, 1)$ where *L* is *1*-distributive the following conditions are equivalent

- (*i*) *L* is a relative *S*-algebra.
- *(ii)* Any two distinct minimal prime ideals containing J are comaximal.
- *(iii) Every prime ideal containing J contains a unique minimal prime ideal containing J .*
- (iv) For each prime ideal P containing J, J(P) is a prime ideal.
- (v) For any $x, y \in L$, $x \land y \in J$, implies $x^+ \lor y^+ = 1$.

Proof. (i) implies (ii). Suppose *L* is a relative *S* -algebra. Let *P* and *Q* be two distinct minimal prime ideals containing *J*. Choose $x \in P - Q$. Then by Lemma 12, $x^+ \notin P$ but $x^{++} \in P$. Now $x \wedge x^+ \in J \subseteq Q$ implies $x^+ \in Q$, as *Q* is prime. Therefore, $1 = x^{++} \vee x^+ \in P \vee Q$. Hence $P \vee Q = L$. That is *P*, *Q* are co-maximal. (ii) implies (iii) is trivial.

(iii) implies (iv). By Theorem 11, J is a semi ptrime ideal. So by Proposition 10, (iv) holds.

(iv) implies (v). Suppose (iv) holds and yet (v) does not. Then there exists $x, y \in L$ with $x \land y \in J$ but $x^+ \lor y^+ \neq 1$. Since *L* is 1-distributive, so by Theorem 13(iii), there is prime ideal *P* containing $x^+ \lor y^+$. If $x \in J(P)$, then $x \land r \in J$ for some $r \in L - P$. This implies $r \leq x^+ \in P$ gives a contradiction. Hence $x \notin J(P)$. Similarly $y \notin J(P)$. But by (iv), J(P) is prime, and so $x \land y \in J \subseteq J(P)$ is contradictory. Thus (iv) imples (v).

(v) implies (i). Since $x \wedge x^+ \in J$, so by (v) $x^{++} \vee x^+ = 1$, and L is an S-algebra relative to J.

A lattice L with 0 is called 0-modular if for all $x, y, z \in L$ with $z \le x$ and $x \land y = 0$ imply $x \land (y \lor z) = z$. Now we generalize the concept. Let J be an ideal of a lattice L. We define L to be modular with respect to J if for all $x, y, z \in L$ with $z \le x$ and $x \land y \in J$ imply $x \land (y \lor z) = z$. We conclude the paper with the following result.

Theorem 15. Let $\langle L: \land, \lor, +, J, 1 \rangle$ be a relative *P*-algebra such that *L* is both modular with respect *J* and *1*-distributive. If *L* is a relative *S*-algebra, then it is a relative *D*-algebra.

Proof. Suppose *L* is an S-algebra and $a, b \in L$. Now $a^+ \lor a^{++} = 1 = b^+ \lor b^{++}$. Thus $(a^+ \lor b^+) \lor b^{++} = 1 = (a^+ \lor b^+) \lor a^{++}$. Since *L* is 1-distributive, so $a^+ \lor b^+ \lor (a^{++} \land b^{++}) = 1$. Now $a \land b \land a^+ \in J$ and $a \land b \land b^+ \in J$ imply a^+ , $b^+ \leq (a \land b)^+$, and so $a^+ \lor b^+ \leq (a \land b)^+$. Also, $(a \land b)^+ \land (a^{++} \land b^{++}) = (a \land b)^+ \land (a \land b)^{++} \in J$. Thus by J-modularity of *L*, $(a \land b)^+ = (a \land b)^+ \land 1 = (a \land b)^+ \land [(a^{++} \land b^{++}) \lor (a^+ \lor b^+)] = a^+ \lor b^+$, and so *L* is a relative D- algebra.

References

- 1. J. C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, **37**(1968) 149-158.
- P. Balasubramani and P. V. Venkatanarasimhan, Characterizations of the 0-distributive Lattices, *Indian J. Pure appl.Math.*, 32(3) (2001) 315-324.
- Y. S. Powar and N. K. Thakare, 0-Distributive semilattices, *Canad. Math. Bull.*, 21(4) (1978) 469-475.
- 4. Y. Rav, Semi prime ideals in general lattices, *Journal of pure and Applied Algebra*, **56** (1989) 105-118.
- 5. R. M. Hafizur Rahaman, Md Ayub Ali, A. S. A. Noor, On Semi- prime ideals of a lattice, *Journal of Mechanics of Continua and Mathematical Sciences*, Kolkata, India(Accepted).
- C. Nag, S. N. Begum and M. R. Talukder, Some characterizations of D- algebras and its p- ideals, Presented in the 17th Mathematics conference, *Bangladesh Math. Soc.* (2011).
- 7. Razia Sultana M. Ayub Ali and A. S. A. Noor, Some properties of 0-distributive and 1distributive lattices, communicated.