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Abstract: In this paper, a meshless method called “Meshless Local 

Petrov-Galerkin (MLPG)” is applied to a simple atmospheric model. 

The problem domain is represented by a set of arbitrarily distributed 

nodes. The weight residual in MLPG method is confined to a very 

small local sub-domain of a node. The numerical integrations are 

carried out over a local quadrature domain defined for the node, which 

can also be the local domain where the test (weight) function is defined. 

The moving least-square (MLS) approximation is employed for 

constructing shape functions. Results obtained from the MLPG method 

are compared with the corresponding exact solutions. Effects of 

boundary condition are also investigated. 
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1. Introduction 
 

Numerical method is important for the successful simulation of physical 

processes as the underlying partial differential equation usually has no 

analytic solution and has to be approximated .by Conventional numerical 

methods need a priori definition of the connectivity of the nodes, i.e., they 

rely on a mesh. Finite Element Method (FEM), Finite Difference Method 

(FDM) and Finite Volume Method (FVM) may be the most well-known 

members of these thoroughly developed mesh-based methods. The large 

deformations in highly nonlinear problems that can deteriorate the accuracy 

because of mesh or element distortion may cause severe loss of accuracy or 

even complete failure of computations. The mesh-based methods are 
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unsuitable for finding solutions of problems with changing domain shape. A 

new class of numerical methods has been developed which approximates 

partial differential equations based on only a set of nodes without the need 

for an additional mesh. This is called mesh free methods (MMs). Mesh free 

method is different from FEM because a mesh of element is not used in 

mesh free method, the field variable u at any point x = (x, y, z) within the 

problem domain is interpolated using the displacements at its nodes within 

the support domain of the point at x, i.e. 
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, where n  is the number of nodes include in a “small 

local domain” of the point at   x. The local domain means the interpolation 

area which is represented by point x, ui is the nodal field variable at the i th 

node in the small local domain, 
sU is the vector that collects all the field 

variables at these nodes, and ( )i xϕ
�  is the shape function of the i th node 

determined using the nodes that are included in the small domain of x. This 

small local domain is called the support domain of x. A support domain of a 

point x determines the number of nodes to be used to support or 

approximate the function value at x.  
 

 

2. Materials and Methods  

 

2.1 Moving Least-Square (MLS) 
 

In the MLPG method, the problem domain is represented by a set of 

arbitrarily distributed nodes. The weighted residual method is used to create 

the discrete system equation. The weighted residual method is in integral 

form, and a background mesh of cells is still required for the integration. 

However, the weight residual in MLPG method is confined to a very small 

local sub-domain of a node. This means that the weak form is satisfied at 

each node in the problem domain in a local integral sense. Therefore, the 

weak form is integrated over a "local quadrature domain" that is 

independent of other domains of other nodes. The moving least-square 

(MLS) is the basis for many meshless methods because it is generally 

considered to be one of the best schemes to interpolate data with a 

reasonable accuracy. MLS approximation is based on three components: a 

weight function of compact support associated with each node, polynomial 

basis functions and a set of coefficients that depend on the position x of the 



point. The approximation ( )xh
u of a function of the field variable ( )xu  at 

any point x  in the domain ( Ω ) of computation is expressed by2 
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u p a
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= =∑x x x p x a x ,    

where m is the number of terms of monomials (polynomial basis), and a 

vector of coefficients ( )a x is determined using the function values at a set of 

nodes that are included in the support domain of x .  

( )p x  is a vector of basis function that consists most often of monomials of 

the lowest orders to ensure minimum completeness. In 1D space, a complete 

polynomial basis of order m is given by 
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Note that the coefficient vector a(x) in Eq. (2) is a function of x. A 

functional of weighted residual is constructed using the approximated values 

of the field function and the nodal parameters, ( )i iu u= x  
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where n is the number of nodes in the support domain of x for which the 

weight function ( ) 0iW − ≠x x
⌢

. In MLS approximation, a(x) is chosen to 

minimize the weighted residual. The minimization condition requires 
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J∂

=
∂a
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which leads to the following set of linear relations: 
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s
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A(x) is called the weighted moment matrix defined by 
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where ( ) ( )i iW W= −x x x
⌢ ⌢

 

The matrix B in eq. (2.4) has the form of  
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and 
s

U  is the vector that collects the nodal parameters of the field variables 

for all the nodes in the support domain 
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Solving Eq. (2.4) for a(x),   
 

(2.8)    ( ) ( ) ( )1=
s
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Substituting the above equation back into Eq. (2) leads to  
 

(2.9)          T

1

( ) ( ) ( )
n

h

i i s

i

u uφ
=

= =∑x x x UΦ     

  

where ( )xΦ  is the vector of MLS shape functions corresponding n nodes in 

the support domain of the point x. The shape function ( )
i

φ x  for the ith node 

is defined by 
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The function obtained by the MLS approximation is a smooth curve and 

it does not pass through the nodal values. Therefore, the MLS shape 

functions given in Eq. (2.10) do not, in general, satisfy the Kronecker delta 

condition. Thus,  
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The weight function which will be used for this approximation  is a quartic 

spline weight function2 
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s

d
S
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cd  is the nodal spacing near the point at x and 
sd is the size of the support 

domain for the weight function. 

 
 



2.2 The Linear Advection Equation 
 

given by the expressions3. 
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c
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where u = u (x, t) is the advection quantity. The initial conditions for (4) are 

u = sin(kx), k = 2π/Lx, Lx = 1000m, and the advection speed is c = 10m/s. 

Equation (4) is approximated from t = 0s to t = 10s with the time step of 

0.01s. The exact solution of (4) is u = sin(k(x-ct)). The boundary condition 

is a periodic boundary.  
 

2.3 The Linear Advection Equation in MLPG form 
 

The partial derivatives of displacement u in Eq. (4) can be transformed 

to the local weak form using the weight residual with the integral by part 

and the divergence theorem as  
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where u is the trial function, w is the test function, and 
su

Γ  is a part of the 

boundary 
s

∂Ω  of local sub-domain ( )s
Ω ∈ Ω  over which the essential 

boundary conditions are specified. In Eq. (5), the continuity requirements on 

trial (u) and test function (w) are not the same, the formulation is called 

“local unsymmetric weak formulation” and denote as LUSWF1. That can be 

generated the discretized system equations in the matrix form as 
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Rearranging and rewriting Eq. (6) into the new form as 
 

(8)                            t
=Cu Ku ,      
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The linear advection equation is an unsteady state flow problem. This is a

simple atmospheric model. The one-dimensional linear advection equation is
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where the matrix C contains the time derivative terms 
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The stiffness matrix K contains the terms with spatial derivatives 
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Time is best discretized using the Crank-Nicolson scheme, which replaces 

the time derivative at half-step 
2

t t
u t
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+ 

 
 with the central difference 

approximation4 

 

(11)                      ( ) ( )

2

t
u t t u tt

u t
t

+ ∆ −∆ 
+ = 

∆ 
 .   

 

For 
2

t
u t

∆ 
+ 

 
 will be approximated by using the average of ( )u t  and 

( )u t t+ ∆ . 

This scheme is unconditionally stable. Therefore, the time-discretized in the 

matrix form of the linear system equation (Eq. (8)) is obtained 
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where t t+∆
u  represent the matrix of ( )u t t+ ∆  and u is the matrix of ( )u t . 

The final system that has to be solved at every time-step has the form 
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If the advection equation in Eq. (4) is transformed to local weak form 

without using the weight residual and the divergence theorem, then the 

another local unsymmetric weak formulation and it is denote as LUSWF2. 

That can be written as  
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That can be generated the discretized system equations in a matrix form as 
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Rearranging Eq. (15) into the matrix form of Eq. (8), the new matrix K is  
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The solution from LUSWF2 will obtained by repeating the procedure in Eq. 

(13) with using K in Eq. (16) 

 

3. Results and Discussion 
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t = 0s                                                                   t = 10s  

Figure 1a Numerical simulations from LUSWF1 with 10 nodes at t = 0s and t = 10s 
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                      t=0s                                                                 t=10s 

Fig. 1bNumerical simulations from LUSWF1 with 100 nodes at t = 0s and t = 10s 
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                        t = 0s                  t = 10s   

Figure 1b Numerical simulations from LUSWF1 with 100 nodes at t = 0s and t = 10s 

The simulation in Figure 1a shows the moving of sine wave. The red 

asterisk is the MLPG solution, the blue line is the exact solution and the 

green line is the error. The wave moves from west to east with the advection 

speed (c) of 10m/s. From the figure, at the initial time (t = 0s), the result is 

similar to exact solution. At the later time when t = 10s, the result has large 

errors. There is no significant difference in amplitude between the MLPG 

solution and the exact solution. The main cause of error in MLPG method 

for this case is due to the problem on the boundary. Figure 1b shows the 

solution of approximation using 100 nodes. Even though the number of 

node was increased, the error still occur near the boundary when t = 10s. 

The problem may come from the boundary integral term in Eq. (10), which 

is not satisfied with the periodic boundary condition. 
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Repeating the procedure in Eq.(13) using LUSWF2. Figure 2a and 2b show 

the numerical simulations from the approximation with 10 nodes and 100 

nodes, respectively. The efficiency and the accuracy are very good. When t 

= 10s the sine wave on boundary from MLPG solution are smooth. At the 

later times, the results still have small error. Thus the periodic boundary 

condition in this problem is suitable to the LUSWF without the boundary 

integral term. 
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          t = 0s               t = 10s 

Figure 2a Numerical simulations from LUSWF2 with 10 nodes at t = 0s and t = 10s 
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                        t = 0s                  t = 10s   

Figure. 2b Numerical simulations from LUSWF2 with 100 nodes at t = 0s and t = 10s 
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4. Conclusion  
 

Meshless Local Petrov-Galerkin (MLPG) is a meshless method, the 

concept is based on the idea of the local weak form which eliminates the 

need of the background cell and, consequently, performs the numerical 

integration in a meshfree sense. In this approach, the global set of equations 

is derived by writing the weak forms over the small sub-domains defined 

around the nodes used for the discretization. The size and shape of the local 

sub-domains may vary from node to node, and they may overlap each other. 

For each node, it is theoretically possible to define the required size of the 

local sub-domain by taking into account only the layout of the nodes 

positioned in the immediate neighbourhood of the node. Consequently, the 

use of the global mesh of background cells or elements is not necessary 

throughout the solution procedure, the MLPG represents a truly meshless 

concepts. Application of the MLPG method to the linear advection equation, 

by using the cubic spline test function, shows that the main cause of error in 

approximation for this case is due to the problem on the boundary. The 

weak point of MLS shape function which do not have Kronecker delta 

function property. So, the local unsymmetric weak formulation is adjusted 

without a boundary integral term that is suitable to problems with periodic 

boundary conditions. 
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