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Abstract: In this paper, a four dimensional SIS epidemic non-linear 

model with immigration is proposed and analyzed to study the effect 

of infrastructure on the spread of carrier dependent infectious diseases. 

It is assumed that the density of carrier population follows logistic 

model and its growth rate and carrying capacity increase with the 

cumulative density of infrastructures, which depends on population 

density non-linearly. The model has been analyzed by using stability 

theory of differential equations and simulation. The model has three 

equilibria namely, disease free, carrier free and non-trivial endemic 

equilibrium. It is shown that the disease free and carrier free equilibria 

are always unstable and the endemic equilibrium, if exists, becomes 

locally as well as non-linearly stable under certain conditions. This 

analysis implies that as the cumulative density of infrastructures 

increases due to increase in human population density, not only the 

density of carriers increases but, the spread of carrier dependent 

infectious disease also increases. It is found that the disease becomes 

more endemic due to immigration. A numerical analysis of the model 

is also performed which supports the analytical results. 
 

Keywords: Carriers, Infrastructure, Immigration, Stability, 

Lyapunov’s function. 
 

2010 AMS  Classification No: 93A30, 34C60, 34D23. 

 
 

1. Introduction 

 

In general, the spread of infectious diseases in human population 

depends upon various factors such as the densities of infectives and 
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susceptibles, population migration, modes of transmission, carriers such as 

flies, mites, ticks etc., socio-economic, environmental, ecological and 

geographical factors in the habitat, etc. In the case of carrier dependent 

infectious diseases such as tuberculosis, diarrhoea, cholera, typhoid fever, 

the spread depends not only on the carrier population density but also on 

human population density related factors such as infrastructure. These 

carriers transport agents of infectious disease from the environment to 

susceptibles, causing spread of the disease. A detailed account of modelling 

and study of epidemic diseases can be found in literature in the form of 

lecture notes, monograph, etc.1-12. 
 

In a habitat, Infrastructure plays a very important role in the spread of 

the carrier dependent infectious diseases as it provides a good space for 

growth and survival of carriers. No attention has been paid to study the 

effects of infrastructure although several models have been proposed and 

analysed to study the effect of environment on the spread of infectious 

disease. In particular, Ghosh et. al.13-15. presented some mathematical models 

for carrier dependent infectious diseases by considering environmental 

effect. They concluded that the spread of the infectious disease increases, 

when the growth of carriers caused by conducive environmental factors due 

to population density related factors, increases. Singh et. al.16, 17 have also 

studied the effects of environmental and ecological factors on the spread of 

carrier and vector dependent infectious diseases. 
 

In view of the above, in this paper, therefore, the effect of cumulative 

density of infrastructure on the spread of carrier dependent infectious 

diseases is modelled and analyzed by using stability theory of differential 

equations and numerical simulation.  

 
2. An SIS Model 

 

Let  X t and ( )Y t denote densities of susceptible and infective classes 

respectively of total human population density    ( ) ,N t X t Y t   in a region 

under consideration. Let  C t  be the carrier population density which affects 

all susceptibles and ( )I t  be the cumulative density of infrastructures. By 

assuming simple mass action interaction, an SIS model can be written as 

follows 
 

(2.1)   0( ) ,
dX

A N N XY XC Y dX
dt

   


      

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

    



   


 

 

where X Y N   with initial conditions  (0) 0, (0) 0, (0) 0, (0) 0.X Y C I     

In the above model (2.1), A is the immigration rate of human population 

from outside the region,  is the rate by which the population density ( )N t

approaches to its equilibrium density 0( ),N t  in absence of immigration and 

interactions etc. The coefficient d  is the natural death rate,  and are the 

transmission coefficients due to infective and carrier population 

respectively,  is the disease related death rate,  is the recovery rate, 0s  is 

the growth rate of carrier population, L  is the carrying capacity of carrier 

population, cs  is the rate of control of carriers in the habitat, 1s  is the growth 

rate coefficient of carrier population and 2s  is the growth coefficient of the 

carrying capacity caused by the growth of cumulative density of 

infrastructures. Also 0Q  is the growth rate of cumulative density of 

infrastructures, assumed to be a constant, 0 is its depletion rate coefficient, 

1 is the growth rate coefficient of infrastructural development due to human 

population density related factors and 2 is the growth rate coefficient caused 

by the bilinear interaction of human population density. All the coefficients 

in the model (2.1) are assumed to be positive and constant. 

 
3. Equilibrium Analysis 

 

Since NYX  , the model (2.1) can be written as follows 

 

(3.1)   
1 1

2
20

1 2

0 0 1 2

( ) ( ) ( ) ,

,

,

,

dY
N Y Y N Y C d Y

dt

dN
A d N Y

dt

s CdC
sC s IC s C I

dt L

dI
Q I N NI

dt

   



  


      


   


    


    

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where 1 0 1 0,    ,   0.cA A N d d s s s         
 

The following lemma establishes region of attraction for the system (3.1)18. 
 

Lemma 3.1: The set 
  

 

  1 1 1

1 1 1

A
, , , : 0 ,   N ,  0  ,  0   ,

   α d   
m m

A A
Y N C I Y N C C I I

d d

 
           

 
 

 

attracts all the solutions initiating in the positive orthant, where 
 

(3.2)   

1
0 1

1 1

0 1
0 22

1

,m
m m

m

A
Q

s s I d
C I

s A
s I

dL



 




 



,        

 

provided 
 

 (3.3)   0 1
0 2

2 1

,m

s A
I

s L d
   . 

 

The proof of the lemma is given in appendix A. 
 

We analyze the model (3.1), under the conditions (3.3). 

 

Theorem 3.1: The system (3.1) has following three equilibria 
 

(i) 1
0

1

(0, ,0, ),m

A
E I

d
the disease free equilibrium, 

where

1
0 1

1

1
0 2

1

m

A
Q

d
I

A

d



 







which exists if 1
0 2

1

0,
A

d
    as assumed in (3.3). 

 
 

(ii)  1 , ,0, ,E Y N I
 
the carrier free equilibrium, 

 

where 0 11 1 1

1 1 0 2

( ) ( )
, ,

( ) ( )

Q NA d A d d
N Y I

d d N

      

     

     
  

    

and 

Y  exists if 
 

1
0

1

1.
A

R
d d



 
 

 
  Here 0R  is the basic reproduction 

number. 
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(iii)  * * * * *, , ,E Y N C I  , the endemic equilibrium.  

 

The proof of the theorem is given in appendix B. 
 

The existence of 0E  or 1E  is obvious. We prove the existence of *E . 
 

The equilibrium point *E  is given as the solutions of system of following 

equations, which are obtained after some simplification from (3.1) by 

putting left hand sides to zero 

 

(3.4)     2 ( ) 0Y Y d N C NC            , 

 

(3.5)   1 1 ,
A d N

Y



                                                                                                                           

 

(3.6)   1

0
2

,
s s I

C
s

s I
L






 

 

where 0 2 .s s IL  

 

(3.7)   0 1

0 2

,
Q N

I
N



 






 

 

where 0 2 0.N    

 

Now eliminating Y  between equations (3.4) and (3.5) we get 
 

(3.8)    2
1 12

( ) ( )F N A d N




 
  
   

 

 1 1 0
A d N

d N C NC    


 
          
 

, 

 

where C  is given in terms of N  by using (3.6) and (3.7). From equation 

(3.8) we note the following                               

 

(3.9)    1 1

1 1

( ) 0
A A

F d
d d

 
 

 
    

  
, 
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(3.10)   1 1

1 1

0
A A

F C
d d

 
   

 
. 

 

Thus, it is clear that there exists a root *N  of ( ) 0F N   in the interval  

1 1

1 1

.
A A

N
d d

 


 Further, this root will be unique if '( ) 0F N    for 

1 1

1 1

.
A A

N
a d d

 


To show this, we differentiate (3.8) to get

 
 

(3.11)         ' 1 1
1 12

2 d d
F N A d N d N C


   


            

 

        '
1 1 1 1 .A d N C N a d A C

a

 



          

 
Using (3.8) in (3.11), we get on simplification,  

 

(3.12)      
 

' 1 1
1 12

1 1

d d
F N A d N NC

A d N





   


 

 

    '
1 1 1 1 

 
A d N C N d A C

 
 

 
         , 

 

which is negative in 1 1

1 1

A A
N

d d
 


 as 

0  1
2

' '

2

0
2

 

 

s s
s s

LC I
s

s I
L

 
 
 
 
 
  
   

 and

 

' 1 0 2 0

2

0 2

Q
I

N

  

 





 are positive. 

 

Now, knowing the value of *,N  the value of *Y , *C , *I  can be uniquely 

determined from (3.5), (3.6), (3.7). 
 

Remark: Using (3.4), (3.5), (3.6), (3.7), we can check that  
0

0,
dY

d


1

0
dY

d
 and 

2

0
dY

d
 . These conditions imply that as the cumulative density 
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of infrastructures increases (decreases), the density of infectives increases 

(decreases). 

 

4. Stability Analysis 

 

Now we shall study the stability behavior of above equilibria. The local 

stability result of equilibria 0 ,E 1E  and *E are given in the following theorem 

 

Theorem 4.1: The equilibria 0E and 1E  are locally unstable and the 

equilibrium *E  is locally asymptotically stable provided the following 

conditions are satisfied, 

 

(4.1)    2 *2 2 *2
1 ,C d Y   

 

(4.2)            
 

   

2
2

2 *2 * *0
1 2 0 2

2 * * 2

2 2
* *

1 2 1 2

( ) .

2

s
d Y s I N

L
N Y

s s C I

  


 

 
  

 
 

   

 
The proof of the theorem is given in appendix C. 

 

The nonlinear stability results for E  are given by the following theorem 
 

Theorem 4.2: The equilibrium point E is nonlinearly asymptotically 

stable in   provided the following inequalities are satisfied: 

 
(4.3)   2 2 2 *2

1mC d Y  , 

 

(4.4)   
 

   

2
2

2 *2 * *0
1 2 0 2

2 * * 2

2 2

1 2 1 2

( )
2 m m

s
d Y s I N

L
N Y

s s C I

  


 

 
  

 
 

 
. 

 
The proof of the theorem is given in appendix D. 

 

Remark: It is noted here that if 0  or 0,  the above inequalities are 

satisfied automatically, which shows that   and   have destabilizing 

effects on the system.   
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5. Numerical Simulation 

 

Here we discuss the existence and stability of the nontrivial equilibrium 

point E  by taking the following set of parameter values and using the 

MAPLE: 
 

1 1

0

1 2 0 0 1

2

504, 0.0202, 0.02, 0.03, 0.000005,

0.000001, 0.05, 0.899, 0.9, 100000,

0.002, 0.00000001, 1, 0.1, 0.002,

0.00000001

A d d

s s L

s s Q

 

 

 



    

    

    



 

 

For these values of parameters, the value of nontrivial equilibrium point E  

corresponding to (3.3) is obtained as follows  
 

         12042.07659, 8691.668429,  215962.8391, 251.1439613.N t Y t C t E t   

 

The variational matrix corresponding to the equilibrium point E  is 

obtained as 

 

*

-.3426691404 0.2594211812 0.003350408161 0

-0.03 0.0202 0 0

0 0 -1.401287923 898.3251569

0 0.00200251144 0 -0.09987957923

M

 
 


 
 
 
 

 

 
The eigen values of this matrix are 

 
 - 0.3191874820, -0.05944515925, -0.08421062520, -1.401193376 

 

which are all negative. Hence  * * * * *, , ,E Y N C I  is locally stable. Now 

numerical simulation is performed forY  vs. N  for the different initial starts 

in the following four cases and displayed in the fig.1 which indicates 

nonlinear stability of the point  ,Y N   in N Y  plane. 

 

(i)               1 1 1 10 12500, 0 9200, 0 215500, 0 250N Y C I     

(ii)               2 2 2 20 11500, 0 9200, 0 215500, 0 250N Y C I     
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(iii)               3 3 3 30 11500, 0 8000, 0 215500, 0 250N Y C I     

(iv)               4 4 4 40 12500, 0 8000, 0 215500, 0 250N Y C I     

 

 
 

Figure 1:  Phase plot between Y  and N  

 

The model (3.1) has also been solved by using MAPPLE and the graphs of 

the variableY  with respect to t for various values of different parameters 

have been plotted in Figure 2 – Figure 8.From Figure 2, it is noted that  Y t

increases as 0 cs s s   increases, ie. 0s increases or cs  decreases.From Figure 

3, it is seen that  Y t  increases as 1s  increases.From Figure 4, we note that 

 Y t  increases as 2s  increases.The above results are expected, as the carrier 

population increases with the parameters 0 1 2, ,s s s  but it decreases with .cs

Further from Figure 5, it is seen that  Y t  increases as 0Q  increases.From 

Figure 6, we note that  Y t  increases as 0 decreases.From Figure 7, it is 

seen that  Y t  increases as 1  increases.From Figure 8, it is seen that  Y t  

increases as 2  increases.These results are again expected as increase 

(decrease) in the cumulative density of infrastructure 

causes increase (decrease) in the density of carrier population, resulting 

increase (decrease) of the density of infectives.  



116          Shikha Singh and Vivek Kumar 
 

 
 

Figure 2: Plot between Y and t for different values of 0 cs s s   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Plot between Y  and t  for different values of 1s  
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Figure 4: Plot between Y  and t  for different values of 2s  

 

 

 

 

 

 

 

 
 

Figure 5:  Plot between Y  and t  for different values of 0Q  
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Figure 6: Plot between Y  and t  for different values of 0  

 

 

 

 
Figure 7: Plot between Y  and t   for different values of 1  
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Figure 8: Plot between Y  and t   for different values of 2  

 

6. Conclusions 

 

In this paper, a four dimensional SIS non-linear model with immigration 

has been proposed and analyzed to study the spread of infectious diseases, 

which is dependent on the density of the carriers, affected by human made 

infrastructure. The density of carriers has been assumed to be governed by a 

logistic model, with prescribed intrinsic growth rate and carrying capacity, 

which depend on the cumulative density of infrastructures. It is further 

assumed that the carrier population in the habitat can be controlled by using 

some insecticide. 
 

In the modeling process, the cumulative density of infrastructure has 

been assumed to grow with a constant rate, and it is depleted with a rate, 

which is proportional to cumulative density of infrastructures. In a realistic 

situation this cumulative density must depend upon human population 

density in the habitat and therefore this aspect has been taken into account 

by considering its non-linear interaction with population density. The model 

has been analyzed analytically as well as by computer simulation. It has 

been found that the density of infectives increases, as the parameters related 

to increase in infrastructural development due to human population density 

related factors, increases. It may then be concluded that the spread of carrier 

dependent infectious diseases increases due to increase in infrastructures in 

the habitat. 
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Appendix A 

 

Proof of lemma 3.1: Here we give only a brief outline of the proof, the 

detail proof can be seen in Freedman and So (1985). From the first equation 

of model (3.1),we have 

  

1 1 1 1

dN
A d N Y A d N

dt
      

 

and 
 

 1 1 1 1 ,
dN

A d N Y A d N
dt

        

 

which give 1

1

0 ,
A

Y N
d

   1 1

1 1

A
N .

α d   

A

d
 


 

 

From the last equation of model (3.1), we have 

 
1 1 1 1

0 0 1 2 0 1 0 2

1 1 1 1

( ) ,
A A A AdI

Q I I Q I
dt d d d d

              

 

which gives

1
0 1

1

1
0 2

1

0 ,m

A
Q

d
I I

A

d



 



  



 which is positive provided 1
0 2

1

.
A

d
   

 

 

Similarly from the equation for carrier population density in (3.1), we have 

1

0
2

0   ,m
m

m

s s I
C C

s
s I

L


  



which is positive provided 0
2 .m

s
s I

L
  
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Appendix B 

Proof of theorem 3.1: In the following, we find the characteristics of 
*.E  

 

(i) We show that at *,E
0

0.
dY

d
  

 

For equilibrium point *,E  (3.1) can be reduced as 

 

(B.1)     2 ( ) 0,Y Y d N C NC             

 

(B.2)    1

1

,
A Y

N
d


  

 

(B.3)   1

0
2

,
s s I

C
s

s I
L





 

where 0 2 ,s s IL  

 

(B.4)   0 1

0 2

,
Q N

I
N



 




  

where 
0 2 0.N  

 

 

From (B.2) we have  

 

(B.5)   
0 1 0

dN dY

d d d



 


  

 

Now on differentiating (B.1) w. r. t. 𝜃0 and using (B.1) and (B.2) we get 

 

(B.6)    
0 1 1 0

dY NC dC
Y Y C N Y

d Y d d d

 
  

 

 
     

 
 

 

From (B.4), we get       

 

(B.7)   

   

 

0 1 0 2 0 1
1 0

2
0 0 2

 
dY

Q Q N
d ddI

d N


   



  

   




 

 

From (B.3), we get   
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(B.8)   

0 1
2

0

2
0 0

2

 
s s dI

ss
L ddC

d s
s I

L





 
 

 


 
 

 

 

 

Using (B.7) and (B.8) in (B.6), we get at *E
0

0
dY

d
  

 

Thus it is seen here that as the depletion rate coefficient of cumulative 

density of infrastructures 0  increases, the infective human population 

density decrease at  𝐸∗.   

 

(ii)  For *,E
1

0.
dY

d
  

 

In the similar manner  as in (i), we can show that
1

0.
dY

d
                                              

Thus it is seen here that as the growth rate coefficient of infrastructural 

development due to human population density related factors 1  increases, 

the infective human population density increases at the equilibrium point  
*.E  

 

(iii) Again for *,E  we get,
2

0.
dY

d
  

 

Thus it is seen here that as the growth rate coefficient caused by the bilinear 

interaction of human population density 2   increases, the infective human 

population density increases at the equilibrium point *.E  
 

From the above discussion it may be concluded that the spread of the 

carrier dependent infectious disease increases as infrastructures increase in a 

habitat. 

 
Appendix C 

 

Proof of theorem 4.1: The local stability 123ersiste of each of the two 

equilibria 0E  or 1E  is studied by computing corresponding variational 
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matrices for system (3.1) and for the nontrivial equilibrium point E it is 

studied by using Lyapunov’s theory. 
 

The variational matrix iM  corresponding to equilibrium points is given by 

 

1

0
2

1 2

1 2

1 2 0 2

2
( ) 0

( )

0 0

2

0 0

2

0 0

i

N Y C
Y C N Y

d

d

M s
s C

s C s CL

s I s CI

I N

  
  

 



   

  
  

  
 
  
 


 
 
 

 
 
    

 

 
 

Local Stability Behaviour of m

A
E        I

d

1
0

1

0, ,0,
 
 
 

 

 

The variational matrix corresponding to equilibrium point 0E is given by 

 

1 1

1 1

1
0

1

1
1 2 0 2

1

( ) 0 0

0 0

0 0 0

0 0

m

m

A A
d

d d

d
M

s s I

A
I

d

   



   

 
   

 
  

  
 

 
   

 

 

 
Here one of the eigen value 1 ms s I  is positive and hence 0 ,E  if exists, is 

unstable. 

 

Local Stability Behaviour of  1 , ,0,E Y N I  

 

In this case the variational matrix will be 
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1 1

1

1 2 0 2

2
( ) 0

( )

0 0

0 0 0

0 0

N Y
Y N Y

d

M d

s s I

I N

 
 

 



   

 
 

   
   
 

 
    

 

 
This variational matrix has a positive eigen value 1s s I  and hence 1,E if 

exists, is unstable. 

 

Local Stability Behaviour of  * * * * *
, , ,E Y N C I  

 

We study the stability 125ersiste or E  by Lyapunov’s method. For this 

we linearize the system (3.1) by using following transformations 

 
* * *    ,     ,     Y Y y N N n C C c       and *       I I i   

 

and use following positive definite function to use the sufficient condition 

for stability 
 

(C.1)   2 2 2 231 21

2 2 2 2

kk k
V y n c i    , 

 
where 1 2,k k  and 3k  are positive constants to be chosen appropriately. 
 

Differentiating (C.1) w.r.t. t  and using the linearized version of (3.1), 
dV

dt

can be written as 
 

 

 

   

   

* *
* 2 2 * * 20

1 1 2 2*

* 2 * * * *
3 0 2 1

* * *
3 1 2 2 1 2

sdV N C
Y y k d n k C s I c

dt LY

k N i Y C k yn N Y yc

k I ni k C s s C ci

 

     

 

   
            

       
 

   
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 

 

   

   

* *
* 2 * 2 * 21 1

1 *

* 2 * * * * 202
2

* * 2 * * * 20 32
2 2 1 2 0 2

* 2 * 23 1 1
0 2 3 1 2

2 2

2 2

2 2

2 2

k dN C
Y k yn y Y y C yn n

Y

sk
Y y N Y yc C s I c

L

s kk
C s I c k C s s C ci N i

L

k k d
N i k I ni n


   




 

   

              

   
        

    

  
       

  

 
    
 

.

 

 

Choosing 
*

1 ,
Y

k



  the conditions for 

dV

dt
 to be negative definite can be 

written as follows 

 

 (C.2)   2 *2 2 *2
1C d Y  , 

 

(C.3)   
2 * * 2

2
* * *0

2

( )N Y
k

s
Y C s I

L








 
 

 

, 

 

(C.4)   
 

 

* *0
2 0 2

2 32
* *

1 2

s
s I N

L
k k

C s s C

 
 

  
 





, 

 

(C.5)   
 

 

**
0 2 1

3 2
*

1 2

N dY
k

I

 

  






. 

 

Now if we choose 
 

 

**
0 2 1

3 2
*

1 2

1
,

2

N dY
k

I

 

  






then inequality (C.5) will satisfy 

automatically. Now we can choose k2 satisfying inequality (C.3) and (C.4) 

provided 
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(C.6)   
 

   

2
2

2 *2 * *0
1 2 0 2

2 * * 2

2 2
* *

1 2 1 2

( )

2

s
d Y s I N

L
N Y

s s C I

  


 

 
  

 
 

 

. 

 

Hence
dV

dt
 is negative definite if (C.2) and (C.6) are satisfied. Thus, E is 

locally stable if (4.1) and (4.2) are satisfied. 

 

 

Appendix D 

 

Proof of theorem 4.2: We prove the theorem by using the following 

positive definite function 
 

(D.1)      
2 2

* * * * * *31
2* *

ln ln ,
2 2

kkY C
V Y Y Y N N k C C C I I

Y C

   
            
   

 

 

where 1 2,k k  and 3k  are positive constants to be chosen appropriately. 

 

Differentiating (D.1) w.r.t. t  and using (3.1), we get 

 

  

   

   

     
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2
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 
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

    
           
   

  
          

   

 
        

 

 
        

 

    * *
3 1 2 .I I I N N   

 

 

Taking 1k



 , we get 

 



128          Shikha Singh and Vivek Kumar 
 

        

      

     

        
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*2 2
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2
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 



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 
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   
               

 
       

 

        

   
2

*I

 

 

Now 
dV

dt
 will be negative definite if following conditions holds 

 

2 2 2 *2
1C d Y  ,

2
*

2

*

2
*0

2

1
N

Y
k

s
s I

L





 
 
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

 
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2 32
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s
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L
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s s C

 
 
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*
1 0 2

3 2
1 2

( / ) ( )

( )

d N
k

I

   

 





. 

 

Now on maximizing the left hand sides and minimizing right hand side of 

above inequalities, we get 

 

(D.2)   2 2 2 *2
1 ,mC d Y   
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(D.5)   
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( / ) ( )
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If we choose
*
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
 the inequality (D.5) will satisfy 

automatically and we can choose k2 satisfying inequality (D.3) and (D.4) 

provided 
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i.e. 
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2
2
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 
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Hence 
dV

dt
 is negative definite if (D.2) and (D.6) are satisfied. Thus E  is 

nonlinearly asymptotically stable if (4.3) and (4.4) are satisfied, as stated in 

theorem 4.2. 


