On Transiso Graphs of Groups of Order Less Than 32

L. K. Mishra* and B. K. Sharma
Department of Mathematics
University of Allahabad, Allahabad - 211002, India.
Email: lkmp02@gmail.com, brajeshsharma72@gmail.com

(Received March 18, 2016)

Abstract

For a finite group G and a divisor d of $|G|$, the transiso graph $\Gamma_{d}(G)$ is a graph whose vertices are subgroups of G of order d and two distinct vertices H_{1} and H_{2} are adjacent if and only if there exist normalized right transversals S_{1} and S_{2} of H_{1} and H_{2} respectively in G such that $S_{1} \cong S_{2}$ with respect to the right loop structure induced on them. In the present paper, we have determined some finite groups G for which the graphs $\Gamma_{d}(G)$ are complete for each divisor d of $|G|$. We have also discussed the completeness of transiso graphs for groups of order less than 32.

Keywords: Right loop, Normalized right transversal, Transiso graph, t-group.

2010 AMS Classification No.: 05C25, 20N05.

1. Introduction

Let G be a finite group and H be a subgroup of G. A normalized right transversal (NRT) S of H in G is a subset of G obtained by selecting one and only one element from each right coset of H in G and $1 \in S$. An NRT S has an induced binary operation \circ given by $\{x \circ y\}=S \cap H x y$, with respect to which S is a right loop with identity 1 (Smith ${ }^{1}$, p.42, Lal ${ }^{2}$). Conversely, every right loop can be embedded as an NRT in a group with some universal property (Lal ${ }^{2}$, p.76). Let $\langle S\rangle$ be the subgroup of G generated by S and $H_{S} \quad$ be the subgroup $H \cap\langle S\rangle$. Then, $H_{S}=\left\langle\left\{x y(x \circ y)^{-1} \mid x, y \in S\right\}\right\rangle$ and $H_{S} S=\langle S\rangle$. Identifying S with the set $H \backslash G$ of all right cosets of H in G, we get a

[^0]transitive permutation representation $\chi_{S}: G \rightarrow \operatorname{Sym}(S)$ defined by $\left\{\chi_{S}(g)(x)\right\}=S \cap H x g, g \in G, x \in S$. The kernel $\operatorname{ker} \chi_{S}$ of this action is $\operatorname{Core}_{G}(H)$, the core of H in G. The group $G_{S}=\chi_{S}\left(H_{S}\right)$ is known as the group torsion of the right loop $S\left(\mathrm{Lal}^{2}\right.$, p. 75) which depends only on the right loop structure \circ on S and not on the subgroup H. Since χ_{S} is injective on S and if we identify S with $\chi_{S}(S)$, then $\chi_{S}(\langle S\rangle)=G_{S} S$ which also depends only on the right loop S and S is an NRT of G_{S} in $G_{S} S$. One can also verify that $\operatorname{ker}\left(\left.\chi_{S}\right|_{H_{s} s}: H_{S} S \rightarrow G_{S} S\right)$ $=\operatorname{ker}\left(\left.\chi_{S}\right|_{H_{s}}: H_{S} \rightarrow G_{S}\right)=\operatorname{Cor}_{H_{S} S}\left(H_{S}\right)$ and $\left.\chi_{S}\right|_{S}=I_{S}$, the identity map on S. If H is a corefree subgroup of G, then there exists an NRT T of H in G which generates G (Cameron ${ }^{3}$). In this case, $G=H_{T} T \cong G_{T} T$ and $H=H_{T} \cong G_{T}$. Also (S, \circ) is a group if and only if G_{S} is trivial. Let $\mathcal{T}(G, H)$ denote the set of all normalized right transversals (NRTs) of H in G. Two NRTs $S, T \in \mathcal{T}(G, H)$ are said to be isomorphic (denoted by $S \cong T$), if their induced right loop structures are isomorphic. A subgroup H is normal in G if and only if all NRTs of H in G are isomorphic to the quotient group $G / H\left(\mathrm{Lal}^{2}\right)$.

Throughout the paper, we will assume that G is a finite group and d is a divisor of the order $|G|$ of the $\operatorname{group} G$. Let $V_{d}(G)$ be the set of all subgroups of G of order d. We define a graph $\Gamma_{d}(G)=\left(V_{d}(G), E_{d}(G)\right)$ with $\left\{H_{1}, H_{2}\right\} \in E_{d}(G)$ if and only if there exists $S_{i} \in \mathcal{T}\left(G, H_{i}\right)(i=1,2)$ such that $S_{1} \cong S_{2}$ with respect to the right loop structure induced on S_{i}. We will call this graph a transiso graph (Kakkar and Mishra ${ }^{4}$). If G has no subgroup of order d, then $\Gamma_{d}(G)$ is a null graph (a graph having empty vertex set and empty edge set). If G has unique subgroup of order d, then $\Gamma_{d}(G)$ is an empty graph (a graph having empty edge set). We will denote transiso graph $\Gamma_{d}(G)$ by Γ_{d} if there is no confusion about G. A group G is called a t-group if $\Gamma_{d}(G)$ is a complete graph for each divisor d of $|G|$.

In this paper, we have determined all t-groups of the order less than 32 . In the Section2, we have recalled some preliminary results related to transiso graph from Kakkar and Mishra ${ }^{4}$. We have also discussed about the relation of adjacency and proved that the direct product of two t-groups of co-prime order is a t-group. In the Section 3, we have discussed about the
transiso graphs of some non-abelian groups like dicyclic groups, quasidihedral groups and the groups of the order $p q, 4 p, 2 p q$ and $2 p^{2}$ for distinct odd prime p and q. We have classified all the t -groups of order less than 32 in the Section 4.

2. Preliminaries

We first recall the following results of Kakkar and Mishra ${ }^{4}$ and prove some elementary results which will be used in the present paper.

Proposition 1: A subgroup of a group G is always adjacent with its automorphic images in $\Gamma_{d}(G)$ for any divisord of $|G|$.

Proposition 2: Let H_{1} and H_{2} be corefree subgroups of G. Let $S_{i} \in \mathcal{T}\left(G, H_{i}\right) \quad(i=1,2) \quad$ such that $S_{1} \cong S_{2} \quad$ and $\left\langle S_{i}\right\rangle=G$. Then, an isomorphism between S_{1} and S_{2} can be extended to an automorphism of G which sends H_{1} onto H_{2}.

Proposition 3: A finite abelian group G is a t-group if and only if each Sylow subgroup of G is either elementary abelian or cyclic.

Corollary 1: An elementary abelian group is a t-group.
Proposition 4: The dihedral group $D_{2 n}$ of order $2 n$ is a t-group.
One can easily observe that the number of vertices in the graph is equal to the number of subgroups of order d and is given by

$$
\left|V_{d}\left(D_{2 n}\right)\right|= \begin{cases}1 & \text { if } d \text { is odd. } \\ \frac{2 n}{d} & \text { if d iseven and does not dividen. } \\ \frac{2 n}{d}+1 & \text { if } d \text { iseven and divides } n .\end{cases}
$$

Proposition 5: Let G be a non p-central finite p-group. Then, $\Gamma_{d}(G)$ is complete if and only if whenever H is a non-normal subgroup of G of order $p, G \cong H \ltimes K$ for some subgroup K of G with $G / L \cong K$ for any normal subgroup L of G of order p.

Proposition 6: Let p be an odd prime and G be a non-abelian group. Then,

1. If the group G is a t-group and $|G|=p^{3}$, then G is of exponent P (and hence $G \cong C_{p}{ }^{2} \rtimes C_{p}$).
2. If $|G|=p^{4}$, then $\Gamma_{p}(G)$ is not a complete graph.
3. $I f|G|=p^{5}$, then $\Gamma_{p}(G)$ is not complete unless $\Phi(G)=Z(G)=G^{\prime} \cong C_{p}^{2}$.

Let G be a finite group and d be a divisor of $|G|$. Let us define a relation \sim_{d} on the set $V_{d}(G)$ of all subgroups of the group G of order d such that two subgroups H_{1} and H_{2} are related by the relation \sim_{d} if either $H_{1}=H_{2}$ or H_{1} and H_{2} are adjacent in the graph $\Gamma_{p}(G)$. We call this relation \sim_{d} the relation of adjacency in the graph $\Gamma_{p}(G)$. It is trivial that the relation \sim_{d} is reflexive and symmetric on $V_{d}(G)$.

Proposition 2.1: If the relation \sim_{d} defined above is a transitive relation on $V_{d}(G)$, then $\Gamma_{p}(G)$ is either a complete graph or a disjoint union of complete graphs.

Proof: Assume that the relation \sim_{d} is a transitive relation on $V_{d}(G)$. Then, it is an equivalence relation on $V_{d}(G)$ and hence it gives a partition of $V_{d}(G)$ and each component of this partition corresponds to a complete graph.

Lemma 2.1: Let H_{i} and $K_{i}(i=1,2)$ be subgroups of the groups G_{i} such that there exist NRTs $S_{i} \in \mathcal{T}\left(G, H_{i}\right)$ and $T_{i} \in \mathcal{T}\left(G, H_{i}\right)$ with $S_{i} \cong T_{i}$. Then , $S_{1} \times S_{2} \cong T_{1} \times T_{2}$.

Proof: One can easily observe that $S_{1} \times S_{2} \in \mathcal{T}\left(G_{1} \times G_{2}, H_{1} \times H_{2}\right)$, for an element $\quad\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2} \quad$ can \quad be expressed as $\quad\left(g_{1}, g_{2}\right)=\left(h_{1} s_{1}, h_{2} s_{2}\right)$ $=\left(h_{1}, h_{2}\right)\left(s_{1}, s_{2}\right)$, where $\quad h_{i} \in H_{i} \quad$ and $\quad s_{i} \in S_{i}(i=1,2)$. Similarly, $T_{1} \times T_{2} \in \mathcal{T}\left(G_{1} \times G_{2}, K_{1} \times K_{2}\right)$. Then, the map $f \times g: S_{1} \times S_{2} \rightarrow T_{1} \times T_{2}$ given
by $\left(s_{1}, s_{2}\right) \in\left(f\left(s_{1}\right), g\left(s_{2}\right)\right)$, is a right loop isomorphism where $f: S_{1} \rightarrow T_{1}$ and $g: S_{2} \rightarrow T_{2}$ are right loop isomorphisms.

Proposition 2.2: The direct product of two t-groups of co-prime order is a t-group.

Proof: Let G_{1} and G_{2} be two t-groups of co-prime order. Let $G=G_{1} \times G_{2}$ and H, K be subgroups of G of same order. Then by [Suzuki ${ }^{5}$, p. 141], $H=H_{1} \times H_{2}$ and $K=K_{1} \times K_{2}$ for some subgroups $H_{1}, K_{1} \in G_{1}$ and $H_{2}, K_{2} \in G_{2}$ such that $\left|H_{1}\right|=\left|K_{1}\right|=d_{1}$ and $\left|H_{2}\right|=\left|K_{2}\right|=d_{2}$. Since G_{1} and G_{2} are t-groups, $H_{1} \sim_{d_{1}} K_{1}$ and $H_{2} \sim_{d_{2}} K_{2}$. Therefore by Lemma 2.1, the subgroups H and K are adjacent in the corresponding transiso graph. Hence the group G is also a t-group.

Lemma 2.2: Let G be a finite group and H be a non-normal subgroup of prime order. Then, an NRT S of H in G is either a subgroup of G or $H=H_{S} \cong G_{S}$.

Proof: Let S be an NRT of H in G. Then, either $H_{S}=\{1\}$ or $H_{S}=H$. If $H_{S}=\{1\}$, then S is a subgroup of G. Now, assume that $H_{S}=H$. Since H is core-free, $G_{S} \cong H_{S}$. We also observe that S is not a group in this case.

3. Transiso Graphs for Some Non-Abelian Groups

In this section, we have determined transiso graphs for some nonabelian groups like dicyclic groups, quasidihedral groups and the groups of the order $p q, 4 p, 2 p q$ and $2 p^{2}$ for distinct odd primes p and q. The dicyclic group (or binary dihedral group) $Q_{4 n}=\left\langle a, b \mid a^{2 n}, a^{n} b^{2}, a b a b^{-1}\right\rangle$ is a group of order $4 n$ for $n \geq 1$ (Roman^{6}, p. 347). It is a non-abelian group for $n>1$ and it is a cyclic group for $n=1$ (that is, $Q_{4} \cong C_{4}$). A generalized quaternion group is a special case of the dicyclic group $Q_{4 n}$ when $n=2^{k}$ for some positive integer k.

In order to prove the Proposition 3.1 , we need the following elementary lemma.

Lemma 3.1: A subgroup of the dicyclic group $Q_{4 n}$ is either cyclic or dicyclic. Moreover, if d is a divisor of $4 n$, then

1. there is unique subgroup (namely $\left\langle a^{\frac{2 n}{d}}\right\rangle$) of $Q_{4 n}$ of order d if 4 does not divide d,
2. there are i subgroups $\left(\left\langle a^{i}, a^{i} b\right\rangle, 0 \leq j<i\right)$ of order d conjugate to each other if 4 divides d and $i=\frac{4 n}{d}$ is odd,
3. a subgroup of order d is either $\left\langle a^{i}\right\rangle$ or conjugate to one of $\left\langle a^{i}, b\right\rangle$ or $\left\langle a^{i}, a b\right\rangle$ if 4 divides d and $i=\frac{4 n}{d}$ is even.

Proof: Let H be a nontrivial proper subgroup of $Q_{4 n}$ of order d. Clearly $\langle a\rangle$ is maximal cyclic subgroup of $Q_{4 n}$ of index 2. The composite homomorphism $H \rightarrow Q_{4 n} \rightarrow Q_{4 n} /\langle a\rangle$ is either trivial or onto with the kernel $H \cap\langle a\rangle=\left\langle a^{i}\right\rangle$ for unique divisor i of $2 n$. If the homomorphism is trivial, then $H \cap\langle a\rangle=\left\langle a^{i}\right\rangle$ for unique divisor $i=\frac{4 n}{d}$ of $2 n$. Therefore the subgroup H is cyclic in this case.

Now, if the homomorphism is onto, then $\left.H /\left\langle a^{i}\right\rangle \cong Q_{4 n} /<a\right\rangle \cong C_{2}$. Since $H \not \subset<a\rangle, H$ has an element $a^{j} b$ and $a^{n} \subseteq\left\langle a^{i}\right\rangle$ for $\left(a^{j} b\right)^{2}=a^{n} \in H$.
Therefore $H \cap<a\rangle=\left\langle a^{i}\right\rangle$ for unique divisor $i=\frac{4 n}{d}$ of n. Now, we have an appropriate element $a^{j} b \in H \backslash<a>$ where $0 \leq j<i$, such that $H=\left\langle a^{i}, a^{j} b\right\rangle$. Clearly H is a dicyclic group $\left(\right.$ precisely $\left.\mathrm{H} \cong \mathrm{Q}_{4 \frac{\mathrm{n}}{\mathrm{i}}}\right)$ for $\left(a^{i}\right)^{\frac{d}{2}}=1,\left(a^{i}\right)^{\frac{d}{4}}=\left(a^{j} b\right)^{2}$ and $\left(a^{j} b\right) a^{i}\left(a^{j} b\right)^{-1}=\left(a^{i}\right)^{-1}$.

Now, we prove the next part of the lemma.
Let H be a subgroup of $Q_{4 n}$ of order d and $i=\frac{4 n}{d}$. If d is not a multiple of 4 , then there is no subgroup of $Q_{4 n}$ of order d which is dicyclic
and so $H=\left\langle a^{\frac{i}{2}}\right\rangle$ is a cyclic subgroup. If d is a multiple of 4 , then there are two cases.

If $d \nmid 2 n$ i.e. i is odd, then H cannot be contained in $\langle a\rangle$ so H is dicyclic subgroup of the form $\left\langle a^{i}, a^{j} b\right\rangle$. If $i \leq j$, then we can find l such that $0 \leq l<i$ and $H=\left\langle a^{i}, a^{l} b\right\rangle$. Thus we conclude that $0 \leq j<i$ and hence there are i subgroups of order d which are conjugates.

If $d \mid 2 n$ i.e., i is even, then H is either $\left\langle a^{\frac{i}{2}}\right\rangle$ or of the form $\left\langle a^{i}, a^{j} b\right\rangle$. Using above arguments, we see that there are $\frac{i}{2}$ subgroups conjugate to $\left\langle a^{i}, b\right\rangle$ and $\frac{i}{2}$ subgroups conjugate to $\left\langle a^{i}, a b\right\rangle$.

One can easily observe that an abelian normal subgroup of the group $Q_{4 n}$ is cyclic subgroup contained in the maximal cyclic subgroup and a non-abelian normal subgroup of $Q_{4 n}$ has index less than or equal to 2 .

Proposition 3.1: The dicyclic group $Q_{4 n}=\left\langle a, b \mid a^{2 n}, a^{n} b^{2}, a b a b^{-1}\right\rangle$ of order $4 n$ is a t-group.

Proof: Let d be a divisor of $4 n$ and $i=\frac{4 n}{d}$.
First assume that $4 \backslash d$. Then by Lemma 3.1, there is unique subgroup of $Q_{4 n}$ of order d and so $\Gamma_{d}\left(Q_{4 n}\right)$ is trivially a complete graph.

Now assume that $4 \mid d$ and i is odd. Then by Lemma 3.1, there are i subgroups of order d conjugate to $\left\langle a^{i}, b\right\rangle$ and so $\Gamma_{d}\left(Q_{4 n}\right)$ is a complete graph.

Finally assume that $4 \mid d$ and i is even. Then, a subgroup of order d is either $H_{1}=\left\langle a^{\frac{i}{2}}\right\rangle$ or conjugate to exactly one of $H_{2}=\left\langle a^{i}, b\right\rangle$ or $H_{3}=\left\langle a^{i}, a b\right\rangle$. Note that H_{1} is a normal subgroup of $Q_{4 n}$ and so its all NRTs are isomorphic to $Q_{4 n} / H_{1}\left(\cong D_{2 \frac{i}{2}}\right)$.

Now, choose $S_{2}=\left\{a^{2 j+k} b^{k} \left\lvert\, 0 \leq j<\frac{i}{2}\right., k=0,1\right\} \quad$ in $\quad \mathcal{T}\left(Q_{4 n}, H_{2}\right)$ and $S_{3}=\left\{a^{2^{j} b^{k}} \left\lvert\, 0 \leq j<\frac{i}{2}\right., k=0,1\right\}$ in $\mathcal{T}\left(Q_{4 n}, H_{3}\right)$. Note that $\left\langle S_{2}\right\rangle=\left\langle a^{2}, a b\right\rangle$ and $\left\langle S_{3}\right\rangle=\left\langle a^{2}, b\right\rangle$. Then, $H_{S_{2}}=\left\langle S_{2}\right\rangle \cap H_{2}=\left\langle a^{i}\right\rangle \unlhd\left\langle S_{2}\right\rangle$ and $H_{S_{3}}=\left\langle S_{3}\right\rangle \cap H_{3}=\left\langle a^{i}\right\rangle \unlhd\left\langle S_{3}\right\rangle$. Therefore $G_{S_{2}}=G_{S_{3}}=\{1\}$ and hence S_{2} and S_{3} are groups.

Let \circ_{2} denote the induced binary operation on S_{2} as described in the Section 1. One can observe that, $\left(a^{2}\right)^{\frac{i}{2}}=(a b)^{2}=\left(a b \circ_{2} a^{2}\right)^{2}=1$. This implies that $S_{2} \cong D_{2 \frac{i}{2}}$. One can similarly observe that $S_{3} \cong D_{2 \frac{i}{2}}$. This shows that the graph $\Gamma_{d}\left(Q_{4 n}\right)$ is complete.

It follows from the Lemma 3.1 that the number of vertices in the graph $\Gamma_{d}\left(Q_{4 n}\right)$ is given by

$$
\left|V_{d}\left(Q_{4 n}\right)\right|= \begin{cases}1 & \text { if } 4 \text { does not divide } d . \\ \frac{4 n}{d} & \text { if } 4 \text { divides } d \text { and } \frac{4 n}{d} \text { isodd } . \\ \frac{4 n}{d}+1 & \text { if } 4 \text { divides } d \text { and } \frac{4 n}{d} \text { iseven } .\end{cases}
$$

The quasidihedral (or semidihedral) group $Q D_{2^{n}}=\left\langle a, b \mid a^{2^{n-1}}, b^{2}, b a b a^{2^{n-2}+1}\right\rangle$ is a non-abelian group of order 2^{n} where $n>4$ (Gorenstein ${ }^{7}$, p. 191). Its subgroup structure can be given by the following lemma.

Lemma 3.2: A proper nontrivial subgroup of the quasidihedral group $Q D_{2^{n}}$ is either cyclic or dihedral or generalized quaternion.

Proof: The proof is similar to that of the Lemma 3.1. From theorem 4.10 of Gorenstein ${ }^{7}$ (p. 199), it follows that an abelian normal subgroup of the quasidihedral group $Q D_{2^{n}}$ of order $d=2^{m}$ is cyclic (precisely $\left\langle a^{2^{n-m-1}}\right\rangle$) and a non-abelian normal subgroup of $Q D_{2^{n}}$ has index less than or equal to 2 .

Now, we have the following proposition from which it follows that the quasidihedral group $Q D_{2^{n}}$ is not a t-group.

Proposition 3.2: Let G be the quasidihedral group $Q D_{2^{n}}$ and $d=2^{m}$ be a divisor of 2^{n}. Then, the graph $\Gamma_{d}(G)$ is complete if and only if $d \neq 2$.

Proof: First assume that $d \neq 2$. Then by Lemma 3.2, a subgroup of G of order $d=2^{m}$ is either $H_{1}=\left\langle a^{2^{n-m-1}}\right\rangle \cong C_{2^{m}}$ or conjugate to exactly one of $H_{2}=\left\langle a^{2^{n-m}}, b\right\rangle$ or $H_{3}=\left\langle a^{2^{n-m}}, a b\right\rangle$. Note that H_{1} is a normal subgroup of $Q D_{2^{n}}$ and so its all NRTs are isomorphic to $Q D_{2^{n}} / H_{1}\left(\cong D_{2^{n-m}}\right)$.
Now choose $S_{2}=\left\{a^{2 j+k} b^{k} \mid 0 \leq j<2^{n-m-1}, k=0,1\right\} \quad$ in $\mathcal{T}\left(Q D_{2^{n}}, H_{2}\right)$ and $S_{3}=\left\{a^{2 j} b^{k} \mid 0 \leq j<2^{n-m-1}, k=0,1\right\} \quad$ in $\mathcal{T}\left(Q D_{2^{n}}, H_{2}\right)$. Note that $\left\langle S_{2}\right\rangle=\left\langle a^{2}, a b\right\rangle$ and $\left\langle S_{3}\right\rangle=\left\langle a^{2}, b\right\rangle$. Then, $H_{S_{2}}=\left\langle S_{2}\right\rangle \cap H_{2}=\left\langle a^{2^{n-m}}\right\rangle \unlhd\left\langle S_{2}\right\rangle$ and $H_{S_{3}}=\left\langle S_{3}\right\rangle \cap H_{3}=\left\langle a^{2^{n-m}}\right\rangle \unlhd\left\langle S_{3}\right\rangle$. Therefore $G_{S_{2}}=G_{S_{3}}=\{1\}$ and hence S_{2} and S_{3} are groups.

Let \circ_{2} denote the induced binary operation on S_{2} as described in the Section 1. One can observe that, $\left(a^{2}\right)^{2^{n-m-1}}=(a b)^{2}=\left(a b \circ_{2} a^{2}\right)^{2}=1$. This implies that $S_{2} \cong D_{2^{n-m}}$. One can similarly observe that $S_{3} \cong D_{2^{n-m}}$. This shows that the graph $\Gamma_{d}\left(Q D_{2^{n}}\right)$ is complete.
Finally assume that $d=2$. Then, a subgroup of G of order 2 is either $H_{1}=\left\langle a^{2^{n-2}}\right\rangle$ or a conjugate to $H_{2}=\langle b\rangle$. Since $H_{1} \unlhd G$, every NRT of H_{1} in G is isomorphic to $G / H_{1} \cong D_{2^{n-1}}$.

Let H be a non-normal subgroup of $Q D_{2^{n}}$ of order 2. Then, H is contained in $\left\langle a^{2}, b\right\rangle \cong D_{2^{n-1}}$ and H is a conjugate to the subgroup $\langle b\rangle$. Clearly the core $\operatorname{Core}_{G}(H)$ of H in $Q D_{2^{n}}$ is trivial. Now let S be an NRT of H in $Q D_{2^{n}}$. Then, the order of $H_{S}=H \cap\langle S\rangle$ is less than or equal to 2 .

If $\left|H_{S}\right|=1$, then $S=\langle S\rangle$ is a subgroup of $Q D_{2^{n}}$. Therefore S is equal to either $\langle a\rangle$ or $\left\langle a^{2}, a b\right\rangle \cong Q_{2^{n-1}}$.
Finally if $\left|H_{S}\right|=2$, then $H_{S}=H \quad$ and $\langle S\rangle=G$. Therefore, $G_{s} \cong H_{S} / \operatorname{Core}_{H_{S} s}\left(H_{S}\right)=H / \operatorname{Core}_{G}(H) \cong H$. Since G_{S} is nontrivial, S is not a group. Hence $S \nRightarrow D_{2^{n-1}}$.
It can be trivially observed that the number of vertices in the graph $\Gamma_{d}\left(Q D_{2^{n}}\right) \quad$ is equal to the number of subgroups of $Q D_{2^{n}}$ of order d and is given by

$$
\left|V_{d}\left(Q D_{2^{n}}\right)\right|= \begin{cases}1 \quad \text { if } d=1 \text { or } d=2^{n} . \\ 2^{n-2}+1 & \text { if } d=2 . \\ 2^{n-m}+1 & \text { if } d=2^{m} \text { with } 0<m<n .\end{cases}
$$

Proposition 3.3: Let p and q be distinct odd primes. Then, a group of order either pq or $4 p$ or $2 p q$ is t-group.

Proof: Observe that a nontrivial proper subgroup of a group of order $p q$ is a Sylow subgroup. Hence any two subgroups of same order are adjacent in corresponding transiso graph.

By classification of groups of order $4 p$ (Burnside ${ }^{8}$, p.132-137), a nonabelian group of order $4 p$ is isomorphic to exactly one of $D_{4 n}, Q_{4 n}$, the alternating group $\operatorname{Alt}(4)$ (for $p=3$), $C_{p} \rtimes C_{4}$ (for $p \equiv 1 \bmod 4$). The groups $D_{4 n}$ and $Q_{4 n}$ are t-groups from the propositions 4 and 3.1. Since any two subgroups of the group $\operatorname{Alt}(4)$ of equal order are conjugate therefore the group $\operatorname{Alt}(4)$ is also a t-group.

Let H_{1} and H_{2} be two distinct subgroups of $C_{p} \rtimes C_{4}$ of order 2. Then, there exist unique Sylow 2 -subgroup K_{i} of $C_{p} \rtimes C_{4}$ containing H_{i} where $i=1,2$. Since K_{1} and K_{2} are conjugate, the subgroups H_{1} and H_{2} are conjugate. So H_{1} and H_{2} are adjacent in $\Gamma_{2}\left(C_{p} \rtimes C_{4}\right)$.

A non-abelian group of order $2 p q$ is isomorphic to exactly one of the groups $D_{2 p q}, D_{2 q} \times C_{p}, D_{2 p} \times C_{q}$ and $C_{2} \times\left(C_{q} \rtimes C_{p}\right),\left(C_{q} \rtimes C_{p}\right) \rtimes C_{2}$ (when
p divides $q-1$) (Ghorbani and Larki ${ }^{9}$, p. 50). $D_{2 q} \times C_{p}, D_{2 p} \times C_{q}$ and $C_{2} \times\left(C_{q} \rtimes C_{p}\right)$ are t-groups due to the Proposition 2.2. Order of the normalizer $N_{G}(H)$ of a Sylow p-subgroup H of $\left(C_{q} \rtimes C_{p}\right) \rtimes C_{2}$ is $2 p$ and H is unique Sylow p-subgroup of $N_{G}(H)$. Since all Sylow p subgroups are conjugate; therefore their normalizers are also conjugate.

Proposition 3.4: Let G be a non-abelian group of order $2 p^{2}$ for some odd prime p. Then, the group G is t-group if and only if G is isomorphic to either the dihedral group $D_{2 p^{2}}$ or $\left(C_{p}\right)^{2} \rtimes C_{2}$.

Proof: It is well known that a non-abelian group of order $2 p^{2}$ is isomorphic to exactly one of the groups $D_{2 p^{2}},\left(C_{p}\right)^{2} \rtimes C_{2}$ and $C_{p} \times D_{2 p}$ (Burnside ${ }^{8}$, p.132-137).

Let $G=\left\langle a, b, c \mid a^{p}, b^{p}, c^{2},[a, b],(a c)^{2},(b c)^{2}\right\rangle \cong\left(C_{p}\right)^{2} \rtimes C_{2}$. Then, all subgroups of $\langle a, b\rangle \cong\left(C_{p}\right)^{2}$ are normal in G and their quotients are dihedral groups $D_{2 p}$. Hence $\Gamma_{p}(G)$ is a complete graph. Now $\Gamma_{2 p}(G)$ is also complete as there are several NRTs of a subgroup H of G order $2 p$ which are isomorphic to the cyclic group of order p. So G is a t-group.

Now, let $G \cong C_{p} \times D_{2 p}=\left\langle a, b, c \mid a^{p}, b^{p}, c^{2},[a, b],[a, c],(b c)^{2}\right\rangle$. Then, it is obvious that $\langle a\rangle$ and $\langle b\rangle$ are normal subgroups of G of order p such that $G /\langle a\rangle \cong D_{2 p}$ and $G /\langle b\rangle \cong C_{2 p}$. Hence $\Gamma_{p}(G)$ is not a complete graph.

4. Classification of T-Groups of Order Less Than 32

Abelian t-groups are already determined by Proposition 3 which tells that a finite abelian group G is a t-group if and only if it is isomorphic to the direct sum of a cyclic group C and a direct sum A of some elementary abelian groups, where $|A|$ and $|C|$ are co-prime.

Non-abelian groups of the order 12, 20, 21, 28 and 30 are t-groups by Proposition 3.3 and a non-abelian t-group of the order 18 can be determined by Proposition 3.4. By Propositions 3.1 and 4, it is clear that the non-abelian
groups of order 8 and $2 p$ (for odd prime $p \leq 13$) are t-groups. In Propositions 4.1 and 4.2, we have determined non-abelian t-groups of the order 16 and 24 respectively. We recall that a finite p-group P is p central if each subgroup of P of order p is contained in the center $Z(P)$.

Proposition 4.1: Let G be a non-abelian group of order 16. Then, the group G is a t-group if and only if G is isomorphic to either dihedral group D_{16} or dicyclic group Q_{16}.

Proof: If G is a 2 -central group, then it is isomorphic to one of the groups $Q_{8}, C_{4} \rtimes C_{4}$ and $C_{2} \times Q_{8}\left(\right.$ Wild $\left.^{10}\right)$. By Proposition 3.1, Q_{16} is a tgroup. The group $C_{4} \rtimes C_{4}=\left\langle a, b \mid a^{4}, b^{4}, a b a b^{-1}\right\rangle$ has three normal subgroups $\left\langle a^{2}\right\rangle,\left\langle b^{2}\right\rangle$ and $\left\langle a^{2} b^{2}\right\rangle$ of order 2 with quotient groups isomorphic to the groups $C_{4} \times C_{2}, D_{8}$ and Q_{8} respectively. Therefore the graph $\Gamma_{2}\left(C_{4} \rtimes C_{4}\right)$ is not complete and hence $C_{4} \rtimes C_{4}$ is not a t-group. The group $C_{2} \times Q_{8}=\left\langle a, b, c \mid a^{2}, b^{4}, b^{2} c^{2},[a, b],[a, c], b c b c^{-1}\right\rangle$ is not a t-group, for it has three normal subgroups $\langle a\rangle,\left\langle b^{2}\right\rangle$ and $\left\langle a b^{2}\right\rangle$ of order 2 with quotient groups isomorphic to the groups $Q_{8},\left(C_{2}\right)^{3}$ and Q_{8} respectively. Therefore $C_{4} \rtimes C_{4}$ is not a t -group.

If G is a non 2 -central group which is also a t-group, then $\Gamma_{2}(G)$ is a complete graph and hence by Proposition 5, G should be isomorphic to a nontrivial semidirect product $H \ltimes K$ of a non-normal subgroup H of G of order 2 and a normal subgroup K of G of order 8 such that for any normal subgroup L of G of order $2, K$ is isomorphic to G / L. From a result of Wild ${ }^{10}$ we observe that there are five groups $\left(C_{4} \times C_{2}\right) \rtimes_{1} C_{2}, C_{8} \rtimes C_{2}, Q D_{16}=C_{8} \rtimes_{1} C_{2}, D_{16}=D_{8} \rtimes C_{2}$ and $\left(C_{4} \times C_{2}\right) \rtimes_{2} C_{2}$ of required semidirect product type. Proposition 4 asserts that the group D_{16} is a t-group and the group $Q D_{16}$ is not a t-group by Proposition 3.2. The groups $\left(C_{4} \times C_{2}\right) \rtimes_{1} C_{2}, C_{8} \rtimes C_{2}$ and $\left(C_{4} \times C_{2}\right) \rtimes_{2} C_{2}$ have normal subgroups of order 2 such that corresponding quotient groups are isomorphic to $D_{8}, C_{4} \times C_{2}$ and $\left(C_{2}\right)^{3}$ respectively ${ }^{10}$. Therefore these groups are not t groups.

Lemma 4.1: Let G be the group $C_{2} \times \operatorname{Alt}(4)$. Then, the graph $\Gamma_{2}(G)$ is not a complete graph.

Proof: First note that $N=C_{2} \times\{1\}$ is a normal subgroup of $G=C_{2} \times \operatorname{Alt}(4)$ of order 2, where I is the identity element of $\operatorname{Alt}(4)$ and every NRT of N in G is isomorphic to $G / N \cong \operatorname{Alt}(4)$.

Now, choose a non-normal subgroup H of G of order 2 which is contained the subgroup $C_{2} \times \operatorname{Alt}(4)$ of G.

Let S be an NRT of H in G. Note that $S^{\prime}=S \cap\left(C_{2} \times \operatorname{Alt}(4)\right)$ is an NRT of H in $C_{2} \times \operatorname{Alt}(4)$ and $\left\langle S^{\prime}\right\rangle=C_{2} \times \operatorname{Alt}(4)$. Hence by Lemma 2.2, S can not be a group. Thus, the subgroups H and N are not adjacent in the graph $\Gamma_{2}(G)$, that is, the graph $\Gamma_{2}(G)$ is not complete.

Proposition 4.2: Let G be a non-abelian group of order 24. Then, the group G is a t-group if and only if G is isomorphic to a semidirect product of two t-groups of co-prime order except the groups $C_{2} \times \operatorname{Alt}(4)$ and $\left(C_{2} \times C_{6}\right) \rtimes C_{2}$.

Proof: We know that there are 12 non isomorphic non-abelian groups of order 24 (Burnside ${ }^{8}$, p.101-104) and 9 of them are semidirect product of two t-groups of co-prime order.

It is obvious that the groups $C_{3} \rtimes C_{8}$ and $S L(2,3)$ are t -groups, for any two subgroups of respective groups of equal order are conjugate. The groups Q_{24} and D_{24} are also t-groups by Propositions 3.1 and 4 respectively. By Proposition 2.2, we see that the groups $C_{3} \times D_{8}, C_{3} \times Q_{8}$ and $C_{2} \times D_{12} \cong\left(C_{2}\right)^{2} \times D_{6}$ are t-groups. It is clear from example 2.2 of Kakkar and Mishra ${ }^{4}$ that the symmetric group $\operatorname{Sym}(4)$ is not a t-group. One can observe that $\left\langle a^{2}\right\rangle \times \operatorname{Alt}(3) \cong C_{6}$ and $\{1\} \times \operatorname{Sym}(3)$ are normal subgroups of the group $<a>\times \operatorname{Sym}(3) \cong C_{4} \times D_{6}$ such that their quotient groups are $\left(C_{2}\right)^{2}$ and C_{4} respectively. So $\Gamma_{6}\left(C_{4} \times D_{6}\right)$ is not a complete graph and hence the group $C_{4} \times D_{6}$ is not a t-group. Similarly $C_{2} \times D_{12}$ is not a t-group since there are two normal subgroups $C_{2} \times\{1\}$ and $\{1\} \times Z\left(D_{12}\right)$ of order 2 such that their quotient groups are D_{12} and Q_{12}.

Now, consider $G=\left(C_{2} \times C_{6}\right) \rtimes C_{2}$. It has a normal subgroup H of order 2 such that $G / H \cong D_{12}$. Let K be a subgroup of G of order 2 contained in the subgroup isomorphic to D_{12}. Then, there is no NRT $S \in \mathcal{T}(G, H)$ such that $S=D_{12}$, for otherwise $S=\langle S\rangle$ and $S \cap H=H$ which contradicts the fact that S is an NRT. Therefore the group $\left(C_{2} \times C_{6}\right) \rtimes C_{2}$ is not a t-group. Finally by Lemma 2.2 , the group $C_{2} \times \operatorname{Alt}(4)$ is not a t-group.

Acknowledgement

Authors are thankful to Prof. R. P. Shukla, Department of Mathematics, University of Allahabad, India and Dr. Vipul Kakkar, School of Mathematics, Harish-Chandra Research Institute, Allahabad, India for suggesting this problem and their valuable discussions.

References

1. J. D. H. Smith, An Introduction to Quasigroups and Their Representations, Boca Raton, FL: Chapman and Hall/CRC, 2007.
2. R. Lal, Transversals in Groups, J. Algebra, 181 (1996) 70-81.
3. P. J. Cameron, Generating a Group by a Transversal, preprint available at http://www.maths.qmul.ac.uk/~pjc/preprints/transgenic.pdf.
4. V. Kakkar and L. K. Mishra, On Transiso Graph, Asian European Journal of Mathematics, 8(4) (2015)1550070 (11 pages).
5. M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.
6. S. Roman, Fundamentals of Group Theory: An Advanced Approach, Birkhauser, New York, 2012.
7. D. Gorenstein, Finite groups, AMS Chelsea Publishing, 2007.
8. W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897.
9. M. Ghorbani and F. N. Larki, Automorphism Group of Groups of Order pqr, Algebraic Structures and Their Applications (ASTA), 1(1) (2014) 49-56.
10. M. Wild, The groups of order sixteen made easy, The American Mathematical Monthly, 112 (2005) 20-31.
11. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.7.4, 2014, http://www.gap-system.org.

[^0]: *Author is supported by University Grants Commission, India

