pp. 93 - 106

On Transiso Graphs of Groups of Order Less Than 32

L. K. Mishra* and B. K. Sharma

Department of Mathematics University of Allahabad, Allahabad – 211002, India. Email: lkmp02@gmail.com, brajeshsharma72@gmail.com

(Received March 18, 2016)

Abstract: For a finite group *G* and a divisor *d* of |G|, the transiso graph $\Gamma_d(G)$ is a graph whose vertices are subgroups of *G* of order *d* and two distinct vertices H_1 and H_2 are adjacent if and only if there exist normalized right transversals S_1 and S_2 of H_1 and H_2 respectively in *G* such that $S_1 \cong S_2$ with respect to the right loop structure induced on them. In the present paper, we have determined some finite groups *G* for which the graphs $\Gamma_d(G)$ are complete for each divisor *d* of |G|. We have also discussed the completeness of transiso graphs for groups of order less than 32.

Keywords: Right loop, Normalized right transversal, Transiso graph, t-group.

2010 AMS Classification No.: 05C25, 20N05.

1. Introduction

Let G be a finite group and H be a subgroup of G. A normalized right transversal (NRT) S of H in G is a subset of G obtained by selecting one and only one element from each right coset of H in G and $1 \in S$. An NRT S has an induced binary operation \circ given by $\{x \circ y\} = S \cap Hxy$, with respect to which S is a right loop with identity 1 (Smith¹, p.42, Lal²). Conversely, every right loop can be embedded as an NRT in a group with some universal property (Lal², p.76). Let $\langle S \rangle$ be the subgroup of G generated by S and H_s be the subgroup $H \cap \langle S \rangle$. Then, $H_s = \langle \{xy(x \circ y)^{-1} \mid x, y \in S\} \rangle$ and $H_s S = \langle S \rangle$. Identifying S with the set $H \setminus G$ of all right cosets of H in G, we get a

^{*}Author is supported by University Grants Commission, India

transitive permutation representation $\chi_S : G \to Sym(S)$ defined bv $\{\chi_{S}(g)(x)\} = S \cap Hxg$, $g \in G$, $x \in S$. The kernel ker χ_{S} of this action is $Core_G(H)$, the core of H in G. The group $G_S = \chi_S(H_S)$ is known as the group torsion of the right loop S (Lal², p. 75) which depends only on the right loop structure \circ on S and not on the subgroup H. Since χ_s is injective on S and if we identify S with $\chi_{S}(S)$, then $\chi_{S}(\langle S \rangle) = G_{S}S$ which also depends only on the right loop S and S is an NRT of G_s in $G_s S$. One $\ker\left(\chi_{S}\mid_{H_{s}S}:H_{S}S\to G_{S}S\right)$ also verifv that can $= \ker \left(\chi_{S} \mid_{H_{S}} : H_{S} \to G_{S} \right) = Core_{H_{S}S} \left(H_{S} \right) \text{ and } \chi_{S} \mid_{S} = I_{S}, \text{ the identity map}$ on S. If H is a corefree subgroup of G, then there exists an NRT T of H in G which generates G (Cameron³). In this case, $G = H_T T \cong G_T T$ and $H = H_T \cong G_T$. Also (S, \circ) is a group if and only if G_S is trivial. Let $\mathcal{T}(G,H)$ denote the set of all normalized right transversals (NRTs) of H in G. Two NRTs $S,T \in \mathcal{T}(G,H)$ are said to be isomorphic (denoted by $S \cong T$), if their induced right loop structures are isomorphic. A subgroup H is normal in G if and only if all NRTs of H in G are isomorphic to the quotient group G/H (Lal²).

Throughout the paper, we will assume that *G* is a finite group and *d* is a divisor of the order |G| of the group *G*. Let $V_d(G)$ be the set of all subgroups of *G* of order *d*. We define a graph $\Gamma_d(G) = (V_d(G), E_d(G))$ with $\{H_1, H_2\} \in E_d(G)$ if and only if there exists $S_i \in \mathcal{T}(G, H_i)$ (i=1,2) such that $S_1 \cong S_2$ with respect to the right loop structure induced on S_i . We will call this graph a transiso graph (Kakkar and Mishra⁴). If *G* has no subgroup of order *d*, then $\Gamma_d(G)$ is a null graph (a graph having empty vertex set and empty edge set). If *G* has unique subgroup of order *d*, then $\Gamma_d(G)$ is an empty graph (a graph having empty edge set). We will denote transiso graph $\Gamma_d(G)$ by Γ_d if there is no confusion about *G*. A group *G* is called a t-group if $\Gamma_d(G)$ is a complete graph for each divisor *d* of |G|.

In this paper, we have determined all t-groups of the order less than 32. In the Section 2, we have recalled some preliminary results related to transiso graph from Kakkar and Mishra⁴. We have also discussed about the relation of adjacency and proved that the direct product of two t-groups of co-prime order is a t-group. In the Section 3, we have discussed about the transiso graphs of some non-abelian groups like dicyclic groups, quasidihedral groups and the groups of the order pq, 4p, 2pq and $2p^2$ for distinct odd prime p and q. We have classified all the t-groups of order less than 32 in the Section 4.

2. Preliminaries

We first recall the following results of Kakkar and Mishra⁴ and prove some elementary results which will be used in the present paper.

Proposition 1: A subgroup of a group G is always adjacent with its automorphic images in $\Gamma_d(G)$ for any divisord of |G|.

Proposition 2: Let H_1 and H_2 be corefree subgroups of G. Let $S_i \in \mathcal{T}(G, H_i)$ (i = 1, 2) such that $S_1 \cong S_2$ and $\langle S_i \rangle = G$. Then, an isomorphism between S_1 and S_2 can be extended to an automorphism of G which sends H_1 onto H_2 .

Proposition 3: A finite abelian group G is a t-group if and only if each Sylow subgroup of G is either elementary abelian or cyclic.

Corollary 1: An elementary abelian group is a t-group.

Proposition 4: The dihedral group D_{2n} of order 2n is a t-group.

One can easily observe that the number of vertices in the graph is equal to the number of subgroups of order d and is given by

 $\left|V_{d}(D_{2n})\right| = \begin{cases} 1 & \text{if } d \text{ is odd.} \\ \frac{2n}{d} & \text{if } d \text{ is even and } does \text{ not } divide n. \\ \frac{2n}{d} + 1 & \text{if } d \text{ is even and } divides n. \end{cases}$

Proposition 5: Let G be a non p-central finite p-group. Then, $\Gamma_d(G)$ is complete if and only if whenever H is a non-normal subgroup of G of order p, $G \cong H \ltimes K$ for some subgroup K of G with $G/L \cong K$ for any normal subgroup L of G of order p. **Proposition 6:** Let p be an odd prime and G be a non-abelian group. Then,

- 1. If the group G is a t-group and $|G| = p^3$, then G is of exponent P (and hence $G \cong C_p^2 \rtimes C_p$).
- 2. If $|G| = p^4$, then $\Gamma_p(G)$ is not a complete graph.
- 3. If $|G| = p^5$, then $\Gamma_p(G)$ is not complete unless $\Phi(G) = Z(G) = G' \cong C_p^2$.

Let *G* be a finite group and *d* be a divisor of |G|. Let us define a relation \sim_d on the set $V_d(G)$ of all subgroups of the group *G* of order *d* such that two subgroups H_1 and H_2 are related by the relation \sim_d if either $H_1 = H_2$ or H_1 and H_2 are adjacent in the graph $\Gamma_p(G)$. We call this relation \sim_d the relation of adjacency in the graph $\Gamma_p(G)$. It is trivial that the relation \sim_d is reflexive and symmetric on $V_d(G)$.

Proposition 2.1: If the relation \sim_d defined above is a transitive relation on $V_d(G)$, then $\Gamma_p(G)$ is either a complete graph or a disjoint union of complete graphs.

Proof: Assume that the relation \sim_d is a transitive relation on $V_d(G)$. Then, it is an equivalence relation on $V_d(G)$ and hence it gives a partition of $V_d(G)$ and each component of this partition corresponds to a complete graph.

Lemma 2.1: Let H_i and K_i (i = 1, 2) be subgroups of the groups G_i such that there exist NRTs $S_i \in \mathcal{T}(G, H_i)$ and $T_i \in \mathcal{T}(G, H_i)$ with $S_i \cong T_i$. Then, $S_1 \times S_2 \cong T_1 \times T_2$.

Proof: One can easily observe that $S_1 \times S_2 \in \mathcal{T}(G_1 \times G_2, H_1 \times H_2)$, for an element $(g_1, g_2) \in G_1 \times G_2$ can be expressed as $(g_1, g_2) = (h_1 s_1, h_2 s_2) = (h_1, h_2)(s_1, s_2)$, where $h_i \in H_i$ and $s_i \in S_i$ (i = 1, 2). Similarly, $T_1 \times T_2 \in \mathcal{T}(G_1 \times G_2, K_1 \times K_2)$. Then, the map $f \times g : S_1 \times S_2 \to T_1 \times T_2$ given

by $(s_1, s_2) \in (f(s_1), g(s_2))$, is a right loop isomorphism where $f: S_1 \to T_1$ and $g: S_2 \to T_2$ are right loop isomorphisms.

Proposition 2.2: The direct product of two t-groups of co-prime order is a t-group.

Proof: Let G_1 and G_2 be two t-groups of co-prime order. Let $G = G_1 \times G_2$ and H, K be subgroups of G of same order. Then by [Suzuki⁵, p. 141], $H = H_1 \times H_2$ and $K = K_1 \times K_2$ for some subgroups $H_1, K_1 \in G_1$ and $H_2, K_2 \in G_2$ such that $|H_1| = |K_1| = d_1$ and $|H_2| = |K_2| = d_2$. Since G_1 and G_2 are t-groups, $H_1 \sim_{d_1} K_1$ and $H_2 \sim_{d_2} K_2$. Therefore by Lemma 2.1, the subgroups H and K are adjacent in the corresponding transiso graph. Hence the group G is also a t-group.

Lemma 2.2: Let G be a finite group and H be a non-normal subgroup of prime order. Then, an NRT S of H in G is either a subgroup of G or $H = H_s \cong G_s$.

Proof: Let S be an NRT of H in G. Then, either $H_s = \{1\}$ or $H_s = H$. If $H_s = \{1\}$, then S is a subgroup of G. Now, assume that $H_s = H$. Since H is core-free, $G_s \cong H_s$. We also observe that S is not a group in this case.

3. Transiso Graphs for Some Non-Abelian Groups

In this section, we have determined transiso graphs for some nonabelian groups like dicyclic groups, quasidihedral groups and the groups of the order pq, 4p, 2pq and $2p^2$ for distinct odd primes p and q. The dicyclic group (or binary dihedral group) $Q_{4n} = \langle a, b | a^{2n}, a^n b^2, abab^{-1} \rangle$ is a group of order 4n for $n \ge 1$ (Roman⁶, p. 347). It is a non-abelian group for n > 1 and it is a cyclic group for n = 1 (that is, $Q_4 \cong C_4$). A generalized quaternion group is a special case of the dicyclic group Q_{4n} when $n = 2^k$ for some positive integer k.

In order to prove the Proposition 3.1, we need the following elementary lemma.

Lemma 3.1: A subgroup of the dicyclic group Q_{4n} is either cyclic or dicyclic. Moreover, if d is a divisor of 4n, then

- 1. there is unique subgroup (namely $\left\langle a^{\frac{2n}{d}} \right\rangle$) of Q_{4n} of order d if 4 does not divide d,
- 2. there are *i* subgroups $(\langle a^i, a^ib \rangle, 0 \le j < i)$ of order *d* conjugate to each other if 4 divides *d* and $i = \frac{4n}{d}$ is odd,
- 3. a subgroup of order d is either $\langle a^i \rangle$ or conjugate to one of $\langle a^i, b \rangle$ or $\langle a^i, ab \rangle$ if 4 divides d and $i = \frac{4n}{d}$ is even.

Proof: Let *H* be a nontrivial proper subgroup of Q_{4n} of order *d*. Clearly $\langle a \rangle$ is maximal cyclic subgroup of Q_{4n} of index 2. The composite homomorphism $H \rightarrow Q_{4n} \rightarrow Q_{4n}/\langle a \rangle$ is either trivial or onto with the kernel $H \cap \langle a \rangle = \langle a^i \rangle$ for unique divisor *i* of 2n. If the homomorphism is trivial, then $H \cap \langle a \rangle = \langle a^i \rangle$ for unique divisor $i = \frac{4n}{d}$ of 2n. Therefore the subgroup *H* is cyclic in this case.

Now, if the homomorphism is onto, then $H / \langle a^i \rangle \cong Q_{4n} / \langle a \rangle \cong C_2$. Since $H \not\subset \langle a \rangle$, H has an element $a^j b$ and $a^n \subseteq \langle a^i \rangle$ for $(a^j b)^2 = a^n \in H$. Therefore $H \cap \langle a \rangle = \langle a^i \rangle$ for unique divisor $i = \frac{4n}{d}$ of n. Now, we have an appropriate element $a^j b \in H \setminus \langle a \rangle$ where $0 \leq j < i$, such that $H = \langle a^i, a^j b \rangle$. Clearly H is a dicyclic group $\left(\text{precisely H} \cong Q_{4\frac{n}{i}} \right)$ for $\left(a^i \right)^{\frac{d}{2}} = 1, \left(a^i \right)^{\frac{d}{4}} = \left(a^j b \right)^2$ and $\left(a^j b \right) a^i \left(a^j b \right)^{-1} = \left(a^i \right)^{-1}$.

Now, we prove the next part of the lemma.

Let *H* be a subgroup of Q_{4n} of order *d* and $i = \frac{4n}{d}$. If *d* is not a multiple of 4, then there is no subgroup of Q_{4n} of order *d* which is dicyclic

and so $H = \langle a^{\frac{i}{2}} \rangle$ is a cyclic subgroup. If *d* is a multiple of 4, then there are two cases.

If $d \nmid 2n$ i.e. *i* is odd, then *H* cannot be contained in $\langle a \rangle$ so *H* is dicyclic subgroup of the form $\langle a^i, a^j b \rangle$. If $i \leq j$, then we can find *l* such that $0 \leq l < i$ and $H = \langle a^i, a^l b \rangle$. Thus we conclude that $0 \leq j < i$ and hence there are *i* subgroups of order *d* which are conjugates.

If d | 2n i.e., *i* is even, then *H* is either $\left\langle a^{\frac{i}{2}} \right\rangle$ or of the form $\left\langle a^{i}, a^{j}b \right\rangle$. Using above arguments, we see that there are $\frac{i}{2}$ subgroups conjugate to $\left\langle a^{i}, b \right\rangle$ and $\frac{i}{2}$ subgroups conjugate to $\left\langle a^{i}, ab \right\rangle$.

One can easily observe that an abelian normal subgroup of the group Q_{4n} is cyclic subgroup contained in the maximal cyclic subgroup and a non-abelian normal subgroup of Q_{4n} has index less than or equal to 2.

Proposition 3.1: The dicyclic group $Q_{4n} = \langle a, b | a^{2n}, a^n b^2, abab^{-1} \rangle$ of order 4n is a t-group.

Proof: Let *d* be a divisor of 4n and $i = \frac{4n}{d}$.

First assume that $4 \nmid d$. Then by Lemma 3.1, there is unique subgroup of Q_{4n} of order d and so $\Gamma_d(Q_{4n})$ is trivially a complete graph.

Now assume that 4 | d and *i* is odd. Then by Lemma 3.1, there are *i* subgroups of order *d* conjugate to $\langle a^i, b \rangle$ and so $\Gamma_d(Q_{4n})$ is a complete graph.

Finally assume that 4 | d and *i* is even. Then, a subgroup of order *d* is either $H_1 = \left\langle a^{\frac{i}{2}} \right\rangle$ or conjugate to exactly one of $H_2 = \left\langle a^i, b \right\rangle$ or $H_3 = \left\langle a^i, ab \right\rangle$. Note that H_1 is a normal subgroup of Q_{4n} and so its all NRTs are isomorphic to $Q_{4n} / H_1 \left(\cong D_{2\frac{i}{2}} \right)$.

Now, choose
$$S_2 = \left\{ a^{2j+k}b^k \mid 0 \le j < \frac{i}{2}, k = 0, 1 \right\}$$
 in $\mathcal{T}(Q_{4n}, H_2)$ and
 $S_3 = \left\{ a^{2j}b^k \mid 0 \le j < \frac{i}{2}, k = 0, 1 \right\}$ in $\mathcal{T}(Q_{4n}, H_3)$. Note that $\langle S_2 \rangle = \langle a^2, ab \rangle$ and
 $\langle S_3 \rangle = \langle a^2, b \rangle$. Then, $H_{S_2} = \langle S_2 \rangle \cap H_2 = \langle a^i \rangle \trianglelefteq \langle S_2 \rangle$ and $H_{S_3} = \langle S_3 \rangle \cap H_3 = \langle a^i \rangle \trianglelefteq \langle S_3 \rangle$.
Therefore $G_{S_2} = G_{S_3} = \{1\}$ and hence S_2 and S_3 are groups.

Let \circ_2 denote the induced binary operation on S_2 as described in the Section 1. One can observe that, $(a^2)^{\frac{i}{2}} = (ab)^2 = (ab \circ_2 a^2)^2 = 1$. This implies that $S_2 \cong D_{2\frac{i}{2}}$. One can similarly observe that $S_3 \cong D_{2\frac{i}{2}}$. This shows that the graph $\Gamma_d(Q_{4n})$ is complete.

It follows from the Lemma 3.1 that the number of vertices in the graph $\Gamma_d(Q_{4n})$ is given by

$$|V_{d}(Q_{4n})| = \begin{cases} 1 & \text{if } 4 \text{ does not divide } d. \\ \frac{4n}{d} & \text{if } 4 \text{ divides } d \text{ and } \frac{4n}{d} \text{ is odd.} \\ \frac{4n}{d} + 1 & \text{if } 4 \text{ divides } d \text{ and } \frac{4n}{d} \text{ is even.} \end{cases}$$

The quasidihedral (or semidihedral) group $QD_{2^n} = \langle a, b | a^{2^{n-1}}, b^2, baba^{2^{n-2}+1} \rangle$ is a non-abelian group of order 2^n where n > 4 (Gorenstein⁷, p. 191). Its subgroup structure can be given by the following lemma.

Lemma 3.2: A proper nontrivial subgroup of the quasidihedral group QD_{2^n} is either cyclic or dihedral or generalized quaternion.

Proof: The proof is similar to that of the Lemma 3.1. From theorem 4.10 of Gorenstein⁷ (p. 199), it follows that an abelian normal subgroup of the quasidihedral group QD_{2^n} of order $d = 2^m$ is cyclic (precisely $\left\langle a^{2^{n-m-1}} \right\rangle$) and a non-abelian normal subgroup of QD_{2^n} has index less than or equal to 2.

Now, we have the following proposition from which it follows that the quasidihedral group QD_{2^n} is not a t-group.

Proposition 3.2: Let G be the quasidihedral group QD_{2^n} and $d = 2^m$ be a divisor of 2^n . Then, the graph $\Gamma_d(G)$ is complete if and only if $d \neq 2$.

Proof: First assume that $d \neq 2$. Then by Lemma 3.2, a subgroup of G of order $d = 2^m$ is either $H_1 = \langle a^{2^{n-m-1}} \rangle \cong C_{2^m}$ or conjugate to exactly one of $H_2 = \langle a^{2^{n-m}}, b \rangle$ or $H_3 = \langle a^{2^{n-m}}, ab \rangle$. Note that H_1 is a normal subgroup of QD_{2^n} and so its all NRTs are isomorphic to $QD_{2^n}/H_1(\cong D_{2^{n-m}})$. Now choose $S_2 = \{a^{2^{j+k}}b^k \mid 0 \le j < 2^{n-m-1}, k = 0, 1\}$ in $\mathcal{T}(QD_{2^n}, H_2)$ and $S_3 = \{a^{2^j}b^k \mid 0 \le j < 2^{n-m-1}, k = 0, 1\}$ in $\mathcal{T}(QD_{2^n}, H_2)$. Note that

 $\langle S_2 \rangle = \langle a^2, ab \rangle$ and $\langle S_3 \rangle = \langle a^2, b \rangle$. Then, $H_{S_2} = \langle S_2 \rangle \cap H_2 = \langle a^{2^{n-m}} \rangle \leq \langle S_2 \rangle$ and $H_{S_3} = \langle S_3 \rangle \cap H_3 = \langle a^{2^{n-m}} \rangle \leq \langle S_3 \rangle$. Therefore $G_{S_2} = G_{S_3} = \{1\}$ and hence S_2 and S_3 are groups.

Let \circ_2 denote the induced binary operation on S_2 as described in the Section 1. One can observe that, $(a^2)^{2^{n-m-1}} = (ab)^2 = (ab \circ_2 a^2)^2 = 1$. This implies that $S_2 \cong D_{2^{n-m}}$. One can similarly observe that $S_3 \cong D_{2^{n-m}}$. This shows that the graph $\Gamma_d(QD_{2^n})$ is complete.

Finally assume that d = 2. Then, a subgroup of G of order 2 is either $H_1 = \langle a^{2^{n-2}} \rangle$ or a conjugate to $H_2 = \langle b \rangle$. Since $H_1 \leq G$, every NRT of H_1 in G is isomorphic to $G/H_1 \cong D_{2^{n-1}}$.

Let *H* be a non-normal subgroup of QD_{2^n} of order 2. Then, *H* is contained in $\langle a^2, b \rangle \cong D_{2^{n-1}}$ and *H* is a conjugate to the subgroup $\langle b \rangle$. Clearly the core $Core_G(H)$ of *H* in QD_{2^n} is trivial. Now let *S* be an NRT of *H* in QD_{2^n} . Then, the order of $H_s = H \cap \langle S \rangle$ is less than or equal to 2. If $|H_s|=1$, then $S = \langle S \rangle$ is a subgroup of QD_{2^n} . Therefore S is equal to either $\langle a \rangle$ or $\langle a^2, ab \rangle \cong Q_{3^{n-1}}$.

Finally if $|H_s| = 2$, then $H_s = H$ and $\langle S \rangle = G$. Therefore, $G_s \cong H_s / Core_{H_s S} (H_s) = H / Core_G (H) \cong H$. Since G_s is nontrivial, S is not a group. Hence $S \not\cong D_{2^{n-1}}$.

It can be trivially observed that the number of vertices in the graph $\Gamma_d(QD_{2^n})$ is equal to the number of subgroups of QD_{2^n} of order d and is given by

$$\left| V_d \left(QD_{2^n} \right) \right| = \begin{cases} 1 & \text{if } d = 1 \text{ or } d = 2^n. \\ 2^{n-2} + 1 & \text{if } d = 2. \\ 2^{n-m} + 1 & \text{if } d = 2^m \text{ with } 0 < m < n \end{cases}$$

Proposition 3.3: Let *p* and *q* be distinct odd primes. Then, a group of order either pq or 4p or 2pq is t-group.

Proof: Observe that a nontrivial proper subgroup of a group of order pq is a Sylow subgroup. Hence any two subgroups of same order are adjacent in corresponding transiso graph.

By classification of groups of order 4p (Burnside⁸, p.132-137), a nonabelian group of order 4p is isomorphic to exactly one of D_{4n} , Q_{4n} , the alternating group Alt(4) (for p=3), $C_p \rtimes C_4$ (for $p \equiv 1 \mod 4$). The groups D_{4n} and Q_{4n} are t-groups from the propositions 4 and 3.1. Since any two subgroups of the group Alt(4) of equal order are conjugate therefore the group Alt(4) is also a t-group.

Let H_1 and H_2 be two distinct subgroups of $C_p \rtimes C_4$ of order 2. Then, there exist unique Sylow 2-subgroup K_i of $C_p \rtimes C_4$ containing H_i where i = 1, 2. Since K_1 and K_2 are conjugate, the subgroups H_1 and H_2 are conjugate. So H_1 and H_2 are adjacent in $\Gamma_2(C_p \rtimes C_4)$.

A non-abelian group of order 2pq is isomorphic to exactly one of the groups D_{2pq} , $D_{2q} \times C_p$, $D_{2p} \times C_q$ and $C_2 \times (C_q \rtimes C_p)$, $(C_q \rtimes C_p) \rtimes C_2$ (when

p divides q-1) (Ghorbani and Larki⁹, p. 50). $D_{2q} \times C_p$, $D_{2p} \times C_q$ and $C_2 \times (C_q \rtimes C_p)$ are t-groups due to the Proposition 2.2. Order of the normalizer $N_G(H)$ of a Sylow p-subgroup H of $(C_q \rtimes C_p) \rtimes C_2$ is 2pand H is unique Sylow p-subgroup of $N_G(H)$. Since all Sylow psubgroups are conjugate; therefore their normalizers are also conjugate.

Proposition 3.4: Let G be a non-abelian group of order $2p^2$ for some odd prime p. Then, the group G is t-group if and only if G is isomorphic to either the dihedral group D_{2p^2} or $(C_p)^2 \rtimes C_2$.

Proof: It is well known that a non-abelian group of order $2p^2$ is isomorphic to exactly one of the groups D_{2p^2} , $(C_p)^2 \rtimes C_2$ and $C_p \times D_{2p}$ (Burnside⁸, p.132-137).

Let $G = \langle a,b,c | a^p, b^p, c^2, [a,b], (ac)^2, (bc)^2 \rangle \cong (C_p)^2 \rtimes C_2$. Then, all subgroups of $\langle a,b \rangle \cong (C_p)^2$ are normal in *G* and their quotients are dihedral groups D_{2p} . Hence $\Gamma_p(G)$ is a complete graph. Now $\Gamma_{2p}(G)$ is also complete as there are several NRTs of a subgroup *H* of *G* order 2p which are isomorphic to the cyclic group of order *p*. So *G* is a t-group.

Now, let $G \cong C_p \times D_{2p} = \langle a, b, c | a^p, b^p, c^2, [a, b], [a, c], (bc)^2 \rangle$. Then, it is obvious that $\langle a \rangle$ and $\langle b \rangle$ are normal subgroups of G of order p such that $G / \langle a \rangle \cong D_{2p}$ and $G / \langle b \rangle \cong C_{2p}$. Hence $\Gamma_p(G)$ is not a complete graph.

4. Classification of T-Groups of Order Less Than 32

Abelian t-groups are already determined by Proposition 3 which tells that a finite abelian group G is a t-group if and only if it is isomorphic to the direct sum of a cyclic group C and a direct sum A of some elementary abelian groups, where |A| and |C| are co-prime.

Non-abelian groups of the order 12, 20, 21, 28 and 30 are t-groups by Proposition 3.3 and a non-abelian t-group of the order 18 can be determined by Proposition 3.4. By Propositions 3.1 and 4, it is clear that the non-abelian

groups of order 8 and 2p (for odd prime $p \le 13$) are t-groups. In Propositions 4.1 and 4.2, we have determined non-abelian t-groups of the order 16 and 24 respectively. We recall that a finite p-group P is pcentral if each subgroup of P of order p is contained in the center Z(P).

Proposition 4.1: Let G be a non-abelian group of order 16. Then, the group G is a t-group if and only if G is isomorphic to either dihedral group D_{16} or dicyclic group Q_{16} .

Proof: If *G* is a 2-central group, then it is isomorphic to one of the groups Q_8 , $C_4 \rtimes C_4$ and $C_2 \times Q_8$ (Wild¹⁰). By Proposition 3.1, Q_{16} is a t-group. The group $C_4 \rtimes C_4 = \langle a, b | a^4, b^4, abab^{-1} \rangle$ has three normal subgroups $\langle a^2 \rangle, \langle b^2 \rangle$ and $\langle a^2 b^2 \rangle$ of order 2 with quotient groups isomorphic to the groups $C_4 \times C_2$, D_8 and Q_8 respectively. Therefore the graph $\Gamma_2(C_4 \rtimes C_4)$ is not complete and hence $C_4 \rtimes C_4$ is not a t-group. The group $C_2 \times Q_8 = \langle a, b, c | a^2, b^4, b^2 c^2, [a, b], [a, c], bcbc^{-1} \rangle$ is not a t-group, for it has three normal subgroups $\langle a \rangle, \langle b^2 \rangle$ and $\langle ab^2 \rangle$ of order 2 with quotient groups isomorphic to the groups isomorphic to the group.

If G is a non 2-central group which is also a t-group, then $\Gamma_2(G)$ is a complete graph and hence by Proposition 5, G should be isomorphic to a nontrivial semidirect product $H \ltimes K$ of a non-normal subgroup H of G of order 2 and a normal subgroup K of G of order 8 such that for any normal subgroup L of G of order 2, K is isomorphic to G/L. From a result of Wild¹⁰ we observe that there are five groups $(C_4 \times C_2) \rtimes C_2, C_8 \rtimes C_2, QD_{16} = C_8 \rtimes C_2, D_{16} = D_8 \rtimes C_2$ and $(C_4 \times C_2) \rtimes C_2$ of required semidirect product type. Proposition 4 asserts that the group D_{16} is a t-group and the group QD_{16} is not a t-group by Proposition 3.2. The groups $(C_4 \times C_2) \rtimes C_2, C_8 \rtimes C_2$ and $(C_4 \times C_2) \rtimes C_2$ have normal subgroups of order 2 such that corresponding quotient groups are isomorphic to $D_8, C_4 \times C_2$ and $(C_2)^3$ respectively¹⁰. Therefore these groups are not t-groups.

Lemma 4.1: Let G be the group $C_2 \times Alt(4)$. Then, the graph $\Gamma_2(G)$ is not a complete graph.

Proof: First note that $N = C_2 \times \{1\}$ is a normal subgroup of $G = C_2 \times Alt(4)$ of order 2, where *I* is the identity element of Alt(4) and every NRT of *N* in *G* is isomorphic to $G/N \cong Alt(4)$.

Now, choose a non-normal subgroup H of G of order 2 which is contained the subgroup $C_2 \times Alt(4)$ of G.

Let *S* be an NRT of *H* in *G*. Note that $S' = S \cap (C_2 \times Alt(4))$ is an NRT of *H* in $C_2 \times Alt(4)$ and $\langle S' \rangle = C_2 \times Alt(4)$. Hence by Lemma 2.2, *S* can not be a group. Thus, the subgroups *H* and *N* are not adjacent in the graph $\Gamma_2(G)$, that is, the graph $\Gamma_2(G)$ is not complete.

Proposition 4.2: Let G be a non-abelian group of order 24. Then, the group G is a t-group if and only if G is isomorphic to a semidirect product of two t-groups of co-prime order except the groups $C_2 \times Alt(4)$ and $(C_2 \times C_6) \rtimes C_2$.

Proof: We know that there are 12 non isomorphic non-abelian groups of order 24 (Burnside⁸, p.101-104) and 9 of them are semidirect product of two t-groups of co-prime order.

It is obvious that the groups $C_3 \rtimes C_8$ and SL(2,3) are t-groups, for any two subgroups of respective groups of equal order are conjugate. The groups Q_{24} and D_{24} are also t-groups by Propositions 3.1 and 4 respectively. By Proposition 2.2, we see that the groups $C_3 \times D_8$, $C_3 \times Q_8$ and $C_2 \times D_{12} \cong (C_2)^2 \times D_6$ are t-groups. It is clear from example 2.2 of Kakkar and Mishra⁴ that the symmetric group Sym(4) is not a t-group. One can observe that $\langle a^2 \rangle \times Alt(3) \cong C_6$ and $\{1\} \times Sym(3)$ are normal subgroups of the group $\langle a \rangle \times Sym(3) \cong C_4 \times D_6$ such that their quotient groups are $(C_2)^2$ and C_4 respectively. So $\Gamma_6(C_4 \times D_6)$ is not a complete graph and hence the group $C_4 \times D_6$ is not a t-group. Similarly $C_2 \times D_{12}$ is not a t-group since there are two normal subgroups $C_2 \times \{1\}$ and $\{1\} \times Z(D_{12})$ of order 2 such that their quotient groups are D_{12} and Q_{12} . Now, consider $G = (C_2 \times C_6) \rtimes C_2$. It has a normal subgroup H of order 2 such that $G/H \cong D_{12}$. Let K be a subgroup of G of order 2 contained in the subgroup isomorphic to D_{12} . Then, there is no NRT $S \in \mathcal{T}(G, H)$ such that $S = D_{12}$, for otherwise $S = \langle S \rangle$ and $S \cap H = H$ which contradicts the fact that S is an NRT. Therefore the group $(C_2 \times C_6) \rtimes C_2$ is not a t-group. Finally by Lemma 2.2, the group $C_2 \times Alt(4)$ is not a t-group.

Acknowledgement

Authors are thankful to Prof. R. P. Shukla, Department of Mathematics, University of Allahabad, India and Dr. Vipul Kakkar, School of Mathematics, Harish-Chandra Research Institute, Allahabad, India for suggesting this problem and their valuable discussions.

References

- 1. J. D. H. Smith, An Introduction to Quasigroups and Their Representations, Boca Raton, FL: Chapman and Hall/CRC, 2007.
- 2. R. Lal, Transversals in Groups, J. Algebra, 181 (1996) 70-81.
- 3. P. J. Cameron, *Generating a Group by a Transversal*, preprint available at <u>http://www.maths.qmul.ac.uk/~pjc/preprints/transgenic.pdf</u>.
- V. Kakkar and L. K. Mishra, On Transiso Graph, Asian European Journal of Mathematics, 8(4) (2015)1550070 (11 pages).
- 5. M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.
- 6. S. Roman, *Fundamentals of Group Theory: An Advanced Approach*, Birkhauser, New York, 2012.
- 7. D. Gorenstein, Finite groups, AMS Chelsea Publishing, 2007.
- 8. W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897.
- 9. M. Ghorbani and F. N. Larki, Automorphism Group of Groups of Order pqr, *Algebraic Structures and Their Applications (ASTA)*, **1(1)** (2014) 49-56.
- M. Wild, The groups of order sixteen made easy, *The American Mathematical Monthly*, 112 (2005) 20-31.
- 11. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.7.4, 2014, <u>http://www.gap-system.org</u>.